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Decisions under Risk 

Dispersion and Skewness 

 
Oben K. Bayrak and John D. Hey 

 
Abstract 

When people take decisions under risk, it is not only the expected utility 

that is important, but also the shape of the distribution of utility: clearly 

the dispersion is important, but also the skewness. For given mean and 

dispersion, decision-makers treat positively and negatively skewed 

prospects differently. This paper presents a new behaviourally-inspired 

model for decision making under risk, incorporating both dispersion and 

skewness. We run a horse-race of this new model against six other models 

of decision-making under risk and show that it outperforms many in terms 

of goodness of fit and shows a reasonable performance in predictive 

ability. It can incorporate the prominent anomalies of standard theory such 

as the Allais paradox, the valuation gap, and preference reversals, and also 

the behavioural patterns observed in experiments that cannot be 

explained by Rank Dependent Utility Theory. 
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1. Introduction 

We present a new model of decision-making under risk. Crucial to our story is that the 

decision-maker (henceforth DM) considers not only the expected utility of a lottery, but also 

the dispersion and skewness of the utilities. Our new theory explains how an individual values 

lotteries and hence takes decisions under risk. The theory is based on a behavioural 

description of the evaluation process.  

In this theory, evaluation is thought of as a two-stage process: first, the DM formulates 

an interval for the value of each lottery; secondly, the DM takes a weighted average of the 

extremes of this interval. Crucially, the interval depends upon the dispersion of the lottery, 

while the weights in the weighted average depend upon the skewness of the lottery and the 

optimism/pessimism of the individual.  

Let us break this down into its two stages. As to the first stage, the literature suggests 

that many individuals find it difficult to state a precise Willingness-to-Pay (WTP) or 

Willingness-to-Accept (WTA) for a good (Bayrak and Kriström, 2016; Dubourg et al., 1994, 

1997; Morrison, 1998). Studies show that if subjects are given the option of stating their 

subjective valuations in terms of a single amount or an interval, more than half of subjects 

prefer to state their valuations in terms of an interval (Banerjee and Shogren, 2014, 

Håkansson, 2008; Bayrak and Kriström, 2016). However, because of the problems in 

incentivising the true revelation of intervals (if they exist), this evidence does not prove that 

people think in terms of an interval, but only suggests it. But this seems a natural 

phenomenon: if asked to state their valuation for some lottery, individuals usually find it 

difficult to specify a precise number. Of course, this depends upon the lottery: if it is a 

certainty, then there is no difficulty; if however, the lottery is risky then there is, and it 

becomes more difficult the more dispersed is the lottery. This is consistent with findings of 

Butler and Loomes (1988) and Cubitt et al. (2015), who conclude that, on the basis of their 

experimental evidence, the higher the variance of a lottery, the broader the imprecision range 

for a lottery1. 

Consider a lottery with pays either x-d or x+d each with probability one-half. The 

individual might, for example, say that the value is between x-ad and x+ad where a<1, and 

                                                        
1 See Bayrak and Hey, 2020 for a review of relevant literature. 
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where a depends upon the confidence of the decision-maker. We formulate this more 

precisely shortly. 

After the formation of an interval, the second stage sees the individual selecting a 

single value from the interval.  This is done by taking a weighted average of the extremes of 

the interval, where the weights depend upon the skewness of the lottery and upon the 

optimism/pessimism of the decision-maker. We shall explain in more detail in the next 

section. 

Readers should note that we are not presenting a new normative theory, instead we 

focus on the descriptive side of the problem: we distill our new model from the accumulated 

experimental findings in the literature to explain observed behaviour.  

The paper is structured as follows: section 2 formalises our theory; section 3 describes 

how our model explains some typical ‘anomalies’ of EUT and RDUT found in the literature. 

Section 4 describes the ‘horse race’ that we conducted, comparing our model to six others 

familiar in the literature, with our methodology and stochastic assumptions described in 

section 5. Section 6 details the results of the ‘horse race’. Section 7 concludes.  

2. Model 

Let X be the set of outcomes (consequences) with elements denoted by xi, i=1…I. The outcome 

set consists of real numbers designating amounts of money. The objects of choice are 

lotteries, which are probability distributions over the set X. A lottery is denoted by

  1 1, ;...; ,
I I

z x p x p , where  1 ...
I

x x and 1 ,...,
I

p p are the associated probabilities such that

 0
i

p and


 1
1

l

ii
p . Since this paper focusses on decisions under risk, the probabilities are 

taken as given by the DM. Let us denote by z the utilities of the outcomes in the lottery and 

their associated probabilities:   1 1( ), ;...; ( ),
I I

z u x p u x p . For notational convenience, we 

denote the expected utility of the lottery by


 1
( ) ( )

l

i ii
E z p u x .  

We consider first the situation when the DM is choosing between two lotteries; later 

we shall consider the changes necessary when the individual owns a lottery and is considering 

selling it, or when the individual does not own a lottery and is considering buying it.  

In the first stage, the DM is thought of as formulating an interval for the value of each 

lottery, perceiving it as between LEU(z) and HEU(z), which are the lowest and highest 

expected utilities. This captures the idea that the DM is unable to attach a precise number to 
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the value of a lottery, instead coming up with an interval, saying that the utility of the lottery 

is somewhere between some lower number and some higher number. The bounds are given 

by: 

  ( ) ( ) ( )LEU z E z kD z   (1) 

  ( ) ( ) ( )HEU z E z kD z   (2) 

These are centered on the expected utility of the lottery with the distance between 

them depending upon the dispersion ( )D z of the utilities of the outcomes of the lottery, and 

upon a parameter k – which adds the individual heterogeneity to the model and reflects the 

DM’s uncertainty about his or her evaluations. ( )D z  denotes the standard deviation of the 

utilities, defined by 


  2

1
( ) ( ( ) ( ))

l

i ii
D z p u x E z  . 

Our theory now posits that at the second stage the DM evaluates the lottery by taking 

a weighted average of the Worst and the Best. If we denote this valuation by V(z), it is given 

by: 

      ( ) ( )( ) ( ) [1 ] ( )
S z S z

V z WEU z BEU z   (3) 

Here ( )V z is a weighted average of the Worst and the Best expected utilities. 

 ( ) [0,1]
S z is defined as the pessimism/optimism level of the individual, and this is a function 

of the skewness of the utilities in the lottery.  Skewness, ( )S z , is defined by the Pearson 

Measure2. 

Notice that in equation (3), the weights are attached to ( )WEU z and ( )BEU z , instead of 

( )LEU z  and ( )HEU z . Because the designation of the bounds as the ( )WEU z and ( )BEU z  is done 

in a task/situation contingent way: for a choice and buying task the lower bound and the 

upper bound are perceived as the worst case (WEU) and the best case (BEU), respectively. 

However, for a selling task the reverse is the case: for a buyer the upper bound of the 

imprecision range is the best thing that can happen; for a seller the opposite is the case, since 

the lottery is going to be given away.  

For expositional simplicity, we initially restrict our analysis to pairwise choice problems, 

so equation (3) becomes      ( ) ( )( ) ( ) [1 ] ( )
S z S z

V z LEU z HEU z . 

                                                        
2   3 3

( ) ,S z  where  3
is the third central moment and is standard deviation. If is zero (so that the 

lottery is degenerate and the Pearson measure undefined), we naturally put the skewness equal to zero. 
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When we substitute (1) and (2) into (3) we get the following:  

     ( )( ) ( ) (1 2 ) ( )
S z

V z E z k D z   (4) 

Here all variables are measured in units of utility. Let us simplify this by putting 

 ( )(1 2 ) ( )
S z

S z  thus getting the final form of our model3: 

  ( ) ( ) ( ) ( )V z E z kD z S z   (5) 

There are three key components4 in the model: First the dispersion of (the utilities of) 

the lottery, ( ).D z Second the skewness of (the utilities of) the lottery, ( ).S z And there is the 

parameter k. Note that ( )D z is necessarily positive while ( )S z can be either positive or negative. 

The parameter k is individual-specific and could be either positive or negative. We discuss the 

implications below.  

Figure 1: Skewness Examples 

  

If k is positive: Dispersion hurts when skewness is negative (left-skewed) and is a desirable 

property when the skewness is positive (right-skewed) 5. As ( )D z is positive, then how 

                                                        
3 Note that in the most general form of DS given in (3), ( )S z  is introduced as a function of skewness, but here 

we adopt a simplification. Alternatively, pessimism can have a more complicated functional form that, for 

example, includes the DM's experience in the past; we leave this issue for future work.  
4 We note that Hagen (1991) also proposes a model involving dispersion and skewness. Hagen incorporates 

these in an additive manner in the preference functional; they are seen as the source of extra utility and 

disutility, respectively. Instead our theory has behavioural motivations for the way that dispersion and skewness 

affect the preference functional. 
5 The literature on the relationship between the skewness and preferences dates back to the 1990s: The 

common finding is that individuals favour positively/right skewed lotteries more than the negatively/left skewed 

lotteries (Ebert, 2015). One explanation for this behaviour is that people feel excited and hopeful for the large 

gains that come with a low probability such as national lotteries. For example, national lotteries can be 

interpreted as one is actually “buying a dream” which includes for example imagining how one can spend the 
prize and the joy of quitting one’s job (Forrest et al., 2002; Garrett and Sobel, 1999). Possibly the most direct 

evidence comes from a study which employs neuroimaging measures: Wu et al. (2011) found that positive 

skewed gambles increased positive arousal, but negatively skewed gambles increased negative arousal and 
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skewness affects the valuation depends upon the sign of the skewness. See the figure above. 

If the skewness is positive our theory implies that the lottery is valued more than it would be 

by its expected utility. Moreover, an increase in dispersion increases the value of the lottery. 

This can represent the behaviour of an optimistic person whose attention is drawn to the 

possible high outcomes of the lottery. If the skewness is negative our theory implies that the 

lottery is valued less than it would be by its expected utility. Moreover, an increase in 

dispersion decreases the value of the lottery. This can represent the behaviour of a pessimistic 

person whose attention is drawn to the possible low outcomes of the lottery. If k is negative 

we get the reverse. 

In summary, our model has three key components: dispersion, skewness and 

optimism/pessimism6. 

3. Anomalies 

In Section 3.1, we look at what can DS can tell us about the prominent ‘anomalies’ of standard 

economic theory7. Most of the ‘anomalies’ are situations in which behaviour is not consistent 

with that of EU. With EU, indifference curves in the Marschak-Machina Triangle (MMT) are 

parallel straight lines. This is not the case with non-expected utility theories, DS included. In 

Section 3.2, we focus on behavioral patterns observed in experiments that cannot be 

explained by RDUT and CPT, but possible under DS. 

3.1. Anomalies of EUT 

3.1.1. The Common Consequence and the Common Ratio effects 

                                                        
perceived risk. Subjects preferred positively skewed and high dispersion lotteries more than the negatively 

skewed gambles. Tversky and Kahneman (1992) found that subjects exhibit risk-loving preferences for positively 

skewed lotteries and risk-averse preferences for negatively skewed lotteries. Golec and Tamarkin (1998) find 

that people tend to favour the long-shot options in horse races with high prizes but low probabilities. Grossman 

and Eckel (2015) developed a new protocol consisting of 3 tasks. In task 1 subjects make a choice between 6 

lotteries which are zero-skewed lotteries but differ in dispersion. In task 2, subjects are asked to keep the 

preferred lottery in task 1 or to choose one of the new 6 lotteries. The new 6 lotteries are the modified versions 

of Task 1 lotteries in a way to keep their dispersion same but have a skewness level of 1. Finally, in task 3, a new 

set of 6 lotteries are presented which have a skewness level of 2. There are two important results from that 

study: firstly more 88.2% of the subjects prefer the skewed lotteries over the zero-skewed lotteries. Secondly, 

and more importantly is that an increase in skewness leads 37.6% of the subjects to take on greater risk/seek 

for higher dispersion in their choice for lotteries. 
6 We could insert a fourth component – an editing phase, in which the DM looks for (first-order stochastically) 

dominating lotteries in the lottery pair and simply chooses them without evaluating them first. We discuss this 

in Appendix G. 
7 For a reader unfamiliar with the anomalies see online for a brief summary.   

https://www.york.ac.uk/economics/exec/research/bayrakandhey2/
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A Common Consequence problem is described by two choice problems between pairs 

of lotteries, constructed in the specific way presented in Table 1. Here 1 2,p p  and 3p  are the 

associated probabilities of the outcomes of the lotteries; such that  1 2 3.x x x S2 and R2 are 

derived from S1 and R2 by moving probability cc (the ‘common consequence’) from x2 to x1. 

An individual whose preferences are compatible with EU would choose either ‘S’ or ‘R’ in both 

choice problems; common consequences added or subtracted to the two prospects should 

have no effect on the desirability of one prospect over the other, because the probabilities 

are incorporated in a linear way in EU8. Figure 2 superimposes the common consequence 

lotteries on a DS indifference map. Here S1 would be preferred to R1 and R2 to S2. 

Table 1: Common Consequence Lotteries 

Lottery p1 p2 p3 

S1 0 1 0 

R1 a cc 1-a-cc 

S2 cc 1-cc 0 

R2 a+cc 0 1-a-cc 

Notes: The table presents the generic structure of four lotteries used in common consequence problems. There 

are two binary choice tasks between lotteries S1 and R1 and between S2 and R2. In the first column are the 

lottery labels. All lotteries can have at most three outcomes with associated probabilities, p1, p2 and p3 presented 

in the last three columns. a is a scaling parameter whereas cc stands for common consequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
8 Formally, under EU, putting u(x1)=0, u(x2)=u and u(x3)=1,  S1 is preferred to R1 if and only if u > cc∙u +(1-a-cc), 

while S2 is preferred to R2 if and only if u∙(1-cc) > 1-a-cc. 
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Figure 2: Common Consequence Effect 

 

A related phenomenon is the Common Ratio effect: there are two choice tasks and 

each task includes a pair of lotteries as shown in Table 2.  

Table 2: Common Ratio Lotteries 

Lottery p1 p2 p3 

M1 0 1 0 

N1 1-a 0 a 

M2 1-cr cr 0 

N2 1-a.cr 0 a.cr 

Notes: The table presents the generic structure of four lotteries used in common ratio problems. There are two 

binary choice tasks between lotteries M1 and N1 and between M2 and N2. In the first column are the lottery 

labels. All lotteries can have at most three outcomes with associated probabilities, p1, p2 and p3 presented in 

the last three columns. a is a scaling parameter whereas cr stands for common ratio. 

The common choice pattern of choosing M1 and N2 is inconsistent with the predictions 

of EU9. Figure 3 shows an example of such lotteries superimposed on DS indifference curves. 

Here M1 would be preferred to N1 and N2 to M2. 

 

                                                        
9 Formally, under EU, putting u(x1)=0, u(x2)=u and u(x3)=1, M1 is preferred to N1 if and only if u > a, while M2 is 

preferred to N2 if and only if u∙cr > a∙cr. 
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Figure 3: Common Ratio Effect 

 

3.1.2. The Valuation Gap 

Our model implies that Willingness To Pay (WTP) may differ from Willingness To Accept (WTA) 

and this can be shown immediately from equation (3). As explained in Section 2, the key point 

that allows DS to incorporate the valuation gap is the task contingent designation of the 

bounds of the imprecision range as the worst and the best cases: in a buying task LEU(z) and 

HEU(z) are perceived as the worst and the best cases, respectively; whereas in a selling task 

the perceptions are reversed.  

So, equation (3) has the following forms for buying and selling tasks respectively as below:  

    ( ) ( )( ) ( ) [1 ] ( )
S z S z

V z LEU z HEU z   (6) 

    ( ) ( )( ) ( ) [1 ] ( )
S z S z

V z HEU z LEU z   (7) 

Inspection of (6) and (7) shows that valuations will change unless  ( )S z  = 0.5 or the dispersion 

is zero. So WTP may differ from WTA. 

DS ascribes the gap to uncertainty. For a gap to be observed a necessary condition is 

that the good should have an uncertain nature; this implies that there exists a dispersion of 

possible utilities. This conjecture is consistent with the findings in Plott and Zeiler (2005) 
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which reports a significant gap for lotteries, but not for the ordinary goods used in their 

experiments. Additionally, we note that uncertainty also can be associated with unfamiliarity 

of goods. In other words, having an uncertain nature regarding the utilities is not a specific 

feature of the standard lotteries used in experiments. DMs might view unfamiliar goods as if 

they are lotteries giving different utilities for different states of the world with subjective 

probabilities attached to those states. Contraiwise, a DM might view familiar goods that are 

regularly purchased as close to degenerate lotteries –since the DM can be sure about the 

utility that (s)he will attain from them. For example, Bateman et al., (1997) observed the gap 

both for a familiar (Coke) and an unfamiliar (luxury chocolate), yet the gap is larger for the 

latter (for a detailed discussion see Teitelbaum and Zeiler, p.376, 2018). 

3.1.3. Preference Reversals 

A preference reversal occurs when the DM prefers a lottery A to lottery B, but values B more 

highly. This possibility is immediately apparent from our discussion of the valuation gap 

above. 

3.2. Anomalies of RDUT and CPT 

3.2.1. The Reverse Common Ratio Effect 

Blavatskyy (2010) discovered that the exact opposite of the classical common ratio pattern is 

more frequently observed than the classical one when in the first question, the expected 

value of risky lottery is above the sure payoff: 57.1% of the subjects chose the risky lottery in 

the first question and switch to choosing a safer lottery when the probabilities of winning 

non-zero prizes are scaled down by a common ratio. The lotteries used by Blavatskyy (2010) 

are presented in Table 3: the ones in question 2 were simply constructed by dividing the 

probability of winning nonzero prizes of the lotteries in question 1 by 3. 

 

Table 3: Blavatskyy (2010) pairs for reverse common ratio effect 

Question 1  Question 2  

Sure Payoff Risky Lottery  Safer Lottery Riskier Lottery k range 

$60 3/4 chance of 

$100 

 1/3 chance of 

$60 

1/4 chance of 

$100 

k< -0.2 

$50 3/4 chance of 

$100 

 1/3 chance of 

$50 

1/4 chance of 

$100 

k< -0.3 

$40 3/4 chance of 

$100 

 1/3 chance of 

$40 

1/4 chance of 

$100 

k< -0.3 
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Note: Questions 1 and 2 are binary choice questions. Labels of the lotteries in Question 1 are “Sure Payoff” which 
implies a degenerate lottery and “Risky Lottery”, and in Question 2 are “Safer Lottery” and “Riskier Lottery”.. 
Risky, Safer and Riskier lotteries are two outcome lotteries whose second outcome is getting zero. Lotteries in 

question 2 were constructed by dividing the probability of winning nonzero outcomes of the corresponding 

lotteries in question 1 by 3. Last column reports the range of values for parameter k which allows DS to 

incorporate reverse common ratio effect. 

Neither EUT nor non-EUT theories which were designed to account for the Allais paradox 

(including RDUT and CPT), predict a Reverse Common Ratio effect to be observed in two or 

all three simultaneously (See Blavatskyy, 2010, p.228). On the other hand, DS can account for 

the reverse common ratio effect in all three pairs even for the simplest case of linear utility 

function for the range of k values presented in the final column of Table 3 calculated using 

the model in (5). 

3.2.2. Violation of Ordinal Independence/Upper Tail Independence 

DS allows for violations of ordinal independence (OI) or upper tail Independence, yet these 

must be satisfied by RDUT and CPT (Green and Jullien, 1988, Quiggin, 1982). Wu (1994) 

reports systematic violations of OI which requires that replacing a common right tail of two 

lotteries/cumulative distributions with another common right tail should not change the 

original preference order. Wu’s experiment includes 25 OI questions. For 12 of them, the  

results are significant at 1%.  Consider the two pairs from Wu (1994, p.45) presented in the 

table below. 

Table 4: Two pairs of lotteries for testing Ordinal Independence in Wu (1994, p.45) 

Outcomes R S R’ S’ 
$750 65% 65% - - 

$240 30% - 95% 65% 

$200 - 34% - 34% 

0 5% 1% 5% 1% 

EV 559.5 555.5 228.0 224.0 

Standard Deviation 264.3 265.8 52.3 29.4 

Skewness -0.8 -0.7 -4.1 -4.5 

Notes: In the upper part of the table, the outcomes of the 2 pairs of lotteries used in OI shown under column 1 

and the associated probabilities for each lottery is under the remaining columns. Lottery S and R have a common 

tail which is the best outcome (750$), the remaining lotteries are constructed by transferring the probabilities 

of this outcome to the second-best outcome. In the bottom part of the paper EV, standard deviation and 

skewness of the lotteries are reported. 

 

All the lotteries designed for testing OI in the experiment have the same structure: R and S 

pairs have a common right tail, i.e. winning $750 with a probability of 65%. R’ and S’ are 

constructed simply by transferring the probability of the common tail to the next best 
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outcome in the pair’s context, i.e. winning $240. The typical finding in the experiments is that 

subjects choose R in the first pair and S’ in the second pair. 

For the simplest case when the utility function is linear, the expected utility, standard 

deviation and skewness of the lotteries are shown in the bottom part of the table above. An 

individual chooses R over S, using (5) we have: 

 

       559.5 264.3 0.8 555.5 265.8 0.7k k   (8) 

 0.14k   (9) 

Similarly, when an individual chooses S’ over R’, we have: 

       228.0 52.3 4.1 224.0 29.4 4.5k k   (10) 

 0.05k   (11) 

Both choice correspondences can be simultaneously accommodated under DS for k values 

between 0.05 and 0.14.  

 

3.2.3. Violation of Stochastic Dominance 

Violation of stochastic dominance contradicts theories such as RDUT and CPT. The 

experimental literature has documented several cases showing significant violations of 

stochastic dominance (see, for example Tversky and Kahneman, 1986; Carbone and Hey, 

1995; Loomes and Sugden, 1998; Hey, 2001 and Birnbaum, 2005). Birnbaum and Navarrete 

(1998) used the four lotteries shown in Table 5 to test for stochastic dominance. The fourth 

column shows that a considerable portion of the subjects chose the stochastically dominated 

lottery over the dominating one. The proportion of subjects violating stochastic dominance is 

significantly higher than 50% for all lotteries as shown in the third column in table 5. Using 

the model in (5), the last column solves for the parameter k that allows for such violations for 

the simplest case when the utility function is linear.  
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Table 5: Lotteries used to test stochastic dominance in Birnbaum and Navarrete (1998, p.61) 

Dominant Dominated % Violations k range 

$12, 5%; $14, 5%; $96, 90% $12, 1%; $90, 5%; $96, 85% 73 k< -1.5 

$3, 6%; $5, 6%; $97, 88% $3, 12%; $92, 4%; $97, 84% 61 k< -0-7 

$6, 2%; $8, 3%; $99, 95% $6, 5%; $91, 3%; $99, 92% 73 k< -0.7 

$4, 1%; $7, 1%; $95, 98% $4, 2%; $89, 2%; $95, 96% 73 k< -0.2 

Notes: The first two columns present the outcomes and associated probabilities of the stochastically dominant 

and dominated lotteries respectively. The third column reports the percentage of people violating the 

dominance in Birnbaum and Navarrete (1998); the final column lists the range of values for parameter k which 

allows DS to incorporate the observed violations of stochastic dominance when the utility function is linear.  

 

3.2.4. Lower Distribution Independence: 3-LDI and 3-2 LDI  

Lower distribution independence (LDI) is a property that is implied by EUT, yet CPT (for gains 

only)/RDUT predicts the violation of it if the employed de-cumulative weighting function is 

nonlinear (see Birnbaum, 2005, p.1349). The first type of lower distribution independence, 

that is 3-LDI, is defined as follows: 

 
    
   
( , ; , ; ,1 2 ) ( ', ; ', ; ,1 2 )

2 ( , '; , '; ,1 2 ') 2 ( ', '; ' '; ,1 2 ')

S x p y p z p R x p y p z p

S x p y p z p R x p y p z p
  (12) 

where    0.x y z  Both lotteries in the first pair give the lowest outcome z with a probability 

of 1-2p. The remaining probability is split equally between the other outcomes in each lottery. 

The second pair is simply constructed by assigning a different probability to the common 

outcome (z), and then the remaining probability is distributed equally between the outcomes 

in each lottery. Birnbaum (2005) uses the four lotteries in Table 6 and concludes that 

predicted violations by RDUT and CPT do not materialise in his experiments. 

Table 6: Lotteries for testing 3-LDI (Birnbaum, 2005) 

Lotteries $2 $4 $40 $44 $96 EV(.) D(.) S(.) 

S 0.80 
 

0.10 0.10 
 

10.0 16.0 1.51 

R 0.80 0.10 
  

0.10 11.6 28.1 2.66 

S2 0.10  0.45 0.45 
 

38.0 12.1 -2.54 

R2 0.10 0.45 
  

0.45 45.2 46.0 0.20 

Notes: In the left part of the table, the lotteries used in 3-LDI experiments are shown; the values in cells are the 

probabilities associated with the five monetary outcomes reported as the column labels. The right part of the 

table includes the expected value, standard deviation and skewness of the lotteries, respectively. 

 

Let us now investigate how DS behaves for different values of the parameter k in the simplest 

case of a linear utility function. Using the model in (5) we get the following inequalities: 
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      10 24.2 11.6 74.9S R k k   (13) 

       2 2 38 ( 30.9) 45.2 9S R k k   (14) 

Solving these leads to the following constraints on the parameter k that can be simultaneously 

satisfied: 0.03k and 0.17k . 

The second type of lower distribution independence that Birnbaum (2005) examines is 3-2 

LDI and defined as follows: 

 
  
   

( ,0.5; ,0.5) ( ',0.5; ',0.5)

( , ; , ; ,1 2 ) ( ', ; ', ; ,1 2 )

A x y B x y

C x p y p z p D x p y p z p
  (15) 

3-2 LDI simply states that cancelling a common part of two lotteries (z with a probability of 1-

2p) and allocating its probability equally to other outcomes should not reverse the preference 

order. Birnbaum (2005) shows that RDUT might violate the property when the commonly 

estimated parameters used in the functional. Yet, in his experiments, the data show no 

systematic violation of the property. In table 7, the first five columns describe the four 

lotteries used to test 3-2 LDI and last three columns show the three measures that DS uses in 

its formula.  

Table 7: Lotteries for testing 3-2 LDI (Birnbaum, 2005) 

Lotteries $2 $4 $40 $44 $96 EU D(.) S(.) 

S 0 0 0.5 0.5 0 42.0 2.0 0.00 

R 0 0.5 0.0 0.0 0.5 50.0 46.0 0.00 

S2 0.04 0 0.48 0.48 0 40.4 8.1 -4.25 

R2 0.04 0.48 0 0 0.48 48.1 46.0 0.08 

Notes: In the left part of the table, the lotteries used in 3-2 LDI experiments are shown; the values in cells are 

the probabilities associated with the five monetary outcomes reported as the column labels. The right part of 

the table includes the expected value, standard deviation and skewness of the lotteries, respectively. 

 

Let us now investigate values of the parameter k for which DS conforms to 3-2 LDI. For the 

simplest case of a linear utility function, using the model in (5), we see that R is chosen over 

S since, both lotteries have zero skewness, that is, they are symmetric around the mean. Thus, 

only the EU part of our model becomes relevant for this comparison: 42 50 . For the second 

pair, R2 has a higher EU than S2. Even at a first glance it is easy to see that individual will 
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choose R2 over S2, therefore will not reverse his or her preferences that we articulated for 

the first pair, if k is sufficiently high: 

       2 2 40.40 ( 34.4) 48.08 3.7S R k k   (16) 

DS satisfies this choice correspondence, in other words 3-2 LDI if 0.2k .  

4. A horse race 

We compare the goodness-of-fit and the predictive ability of our theory with six other 

prominent theories in the literature. We use data from Hey (2001) which contains the 

pairwise choice responses of 53 individuals for the same 100 pairs of lotteries on five different 

days presented in different orders. The four monetary outcomes for the lotteries were -£25, 

£25, £75 and £125 respectively10. 

We consider the following preference functionals: Expected Utility theory (EU), 

Disappointment Aversion theory (DA) (Gul, 1991), Prospective Reference theory (PR) (Viscusi, 

1989), Rank dependent expected utility theory with a Prelec weighting function (RL) (Quiggin, 

1982; Prelec, 1998), Salience Theory (ST) (Bordalo et al., 2012) and Weighted Utility theory 

(WU) (Chew, 1983; Dekel, 1986). We test these against our Dispersion and Skewness theory 

(DS). Details of the preference functionals can be found in Hey (2001) and Appendix A, though 

we should comment briefly on our implementation of Salience Theory, as this was not 

considered in Hey (2001) but is now popular in the literature. 

In the Hey (2001) experiment subjects were presented with two lotteries side by side 

and not juxtaposed as in Salience theory. So, we have to make some assumption as to how 

subjects did the juxtapositioning. What we have assumed is the following. If the two lotteries 

are   1 1 2 2 3 3 4 4, ; , ; , ; ,X x p x p x p x p and   1 1 2 2 3 3 4 4, ; , ; , ; ,Y y q y q y q y q , then we have assumed 

that the subjects consider the choice problem as over 16 ‘states of the world’ leading to 

outcomes either xi or yj with probabilities piqj (for i=1,2,3,4 and j=1,2,3,4). Now we can apply 

Salience Theory11. 

Our procedure is to estimate all seven models by maximum likelihood using GAUSS. 

We do this using the data in a variety of ways. We have 500 observations, collected in batches 

of 100 on 5 separate days. We do the following: 

                                                        
10 There was a participation fee of £25. See Appendix B for the lotteries used in the experiment. 
11 Clearly this is not the only way that we can posit how subjects do the juxtapositioning. 
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1. Estimate using the first 100 observations (“1st 100”). 

2. Estimate using the second 100 observations (“2nd 100”). 

3. Estimate using the third 100 observations (“3rd 100”). 

4. Estimate using the fourth 100 observations (“4th 100”). 

5. Estimate using the fifth 100 observations (“5th 100”). 

6. Estimate using all 500 observations (“All 500”). 

7. Estimate using the first 400 observations and predict on the last 100, using the 

estimates of the parameters from the first 400 (“1st 400”). 

8. Estimate using the first 300 observations and predict on the last 200 using the 

estimates of the parameters from the first 300 (“1st 300”). 

9. Estimate using the first 200 observations and predict on the last 300 using the 

estimates of the parameters from the first 200 (“1st 200”). 

10. Estimate using the first 100 observations and predict on the last 400 using the 

estimates of the parameters from the first 100 (“1st 100”). 

5. Methodology and stochastic assumptions 

As noted above we fit the various models by maximum likelihood. To do this we need some 

assumptions about the stochastic nature of the data since it is abundantly clear that subjects 

make mistakes in experiments. We follow first what Wilcox (2008) calls “a strong utility 

model”.  The particular form of strong utility that we use first is what is sometimes called the 

Luce Model. In addition, since Wilcox (2008) reports that the stochastic specification may be 

more important than the preference functional, we also investigate the White Noise or 

Fechner story12; the differences are small.  

To explain what we have done, we need to give more detail. In the experiment there 

were four possible outcomes: -£25, £25, £75 and £125. All the models involve a utility function 

over the various outcomes. Such a function involves two normalisations. We normalise the 

utility of -£25 to be 0; the second normalisation comes through our strong utility story. In the 

Luce Model, in a pairwise choice between A and B where the value of A is VA and the value of 

                                                        
12 Further results are reported in Appendices C and F: The distribution of estimated values of the parameter k 

can be found in Appendix C, results with White Noise specification are presented in Tables F2a and F3b in 

Appendix F. 
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B is VB, then the probability of A being chosen over B is given by 


 
exp( )

exp( ) exp( )

A

A B

V

V V
  where 

λ is a parameter inversely related to the level of error; the smaller is λ the noisier is the 

subject. We put λ=1; this is our second normalisation. The estimated values of the utilities of 

£25, £75 and £125 are therefore relative to this normalisation. The smaller are the estimated 

values of the utilities of £25, £75 and £125, the noisier is the subject. The probability that A is 

chosen over B is thus  1 (1 exp( ))
B A

V V  . In contrast, in the White Noise (Fechner) story this 

probability is given by 1-cdf(VB-VA) where cdf(.) is the cumulative distribution function of the 

unit normal. We apply this specification for all the decision problems.  We call this 

specification Version C.  

Clearly, this is just one of many possible stochastic specifications. Problems where one 

option dominates the other might be considered different from non-dominating problems. 

DS assumes an editing phase, where domination is recognised, but the DM might tremble in 

its implementation. So, in Appendix D, we introduce two different specifications, both with 

the editing of dominated problems for DS, and with a tremble in its implementation: Version 

A where the tremble is exogenous; Version B where it is endogenous (and estimated from the 

data): the results from them are in Appendices E and F. We note that the results for DS with 

these other specifications are better than the results for DS reported below. These versions 

obviously favour DS. 

6. Results 

This section summarises our results. We measure performance both by goodness-of-fit and 

by predictive ability.  

All these comparisons involve ranking the models in some way. We note that there is no 

general agreement on the ‘best’ ranking, nor even on what that might mean. So, we present 

a set of different rankings and leave it up to the reader to judge. 

We first count the percentage of times that each model comes first, either on the 

Akaike or on the Bayes information criterion, or in terms of predictive ability. The first two 

both penalise the goodness-of-fit – the maximised log-likelihood – by the number of 

parameters involved in the preference functional. EU has three parameters, WU and RL have 

five and the others have four. The results using the Akaike criterion are in the top part of Table 

8. We mark the ‘winners’ in bold. It will be seen that RL dominates under the Akaike criterion. 
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Considering the nine rows under the Akaike criterion, DS is ranked as the best model in one 

case, second best in five cases, third best in two cases and fifth in one case. Using the Bayesian 

criterion, which penalizes the number of estimated parameters (degrees of freedom) more 

heavily compared to the Akaike Criterion, EU wins the race for six cases in which DS is ranked 

as the second best, and DS is ranked as the best model in three cases. 

We get a different picture on predictive ability shown in the final four rows of Table 8. We 

measure this by fitting the models on a subset of the observations and using the estimated 

parameters to predict decisions on the remaining observations. We measure this by fitting 

the models on a subset of the observations and using the estimated parameters to predict 

decisions on the remaining observations. We measure predictive ability by the log-likelihood 

of the prediction set using the parameters from the estimation set, without penalizing models 

for the number of parameters estimated.  We note that this gives an unfair advantage to more 

complicated models (such as RL in our case). (See Busemeyer and Wang (2002) for a detailed 

discussion).  RL is ranked as the best model, and DS is the second in one case and third in two 

cases and the last model in one case.  

An alternative way of looking how ‘good’ models are is to look at the average ranking 

rather than at the number of times each model comes first. Why one might prefer to do this 

is that if one model comes first for half the subjects and last for the other half, while a second 

model is always second, one might prefer the latter. We start again with the Akaike criterion. 

Note here that ‘first’ is ranked 1 and ‘last’ is ranked 7, so that the lower the average ranking 

the better. Table 9 gives the detail.  
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Table 8: % of the time that each model comes first; Luce Model 

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 13 11 23 8 19 15 13 

2nd_100 17 9 23 6 28 6 15 

3rd 100 17 11 15 13 26 8 11 

4th 100 15 9 11 13 25 6 21 

5th 100 13 8 17 11 34 4 15 

all 500 9 6 13 9 38 4 21 

1st 400 11 6 15 11 42 4 11 

1st 300 9 13 13 8 40 8 9 

1st 200 9 9 17 8 38 6 13 

        
Bayesian Criterion        
1st 100 36 9 21 8 9 13 6 

2nd_100 51 6 23 4 13 6 2 

3rd 100 32 13 19 11 11 8 8 

4th 100 38 9 17 11 11 4 9 

5th 100 43 4 21 9 11 6 8 

all 500 17 6 28 8 26 6 9 

1st 400 19 8 25 9 23 6 11 

1st 300 19 11 26 9 17 9 8 

1st 200 34 8 25 9 15 8 2 

        
Predictive Ability        
1st 400 4 11 19 11 30 8 19 

1st 300 0 15 17 15 23 9 21 

1st 200 6 17 15 9 26 15 11 

1st 100 15 9 8 9 26 19 13 

Notes: The table reports the number of times a model comes first in descriptive ability (using the Akaike and 

Bayesian Information Criteria) and predictive ability. The explanation for row labels can be found in Section 4. 

Model abbreviations from left to right: EU: Expected Utility; DA: Disappointment Aversion DS: Dispersion 

Skewness; PR: Prospective Reference; RL: Rank Dependent Utility with Prelec Function; ST; Salience; WU: 

Weighted Utility.  

 

DS does well throughout. Under the Akaike criterion, DS is the best in five out of nine cases 

and second best in the remaining four cases for which RL is the winner. When we look at the 

Bayesian Criterion, DS is ranked as the best in eight out of the nine cases, and the second best 

in the one case in which EU is the winner. For predictive ability, we see that RL is the winner 

and DS follows it as being the second best with a small difference in average rankings. 
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Table 9: Average Rankings; Luce Model 

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 4.2 4.7 2.6 3.8 3.5 4.9 4.4 

2nd_100 4.0 4.5 2.6 4.1 3.2 5.4 4.0 

3rd 100 4.1 4.5 2.9 3.8 3.3 5.0 4.2 

4th 100 4.1 4.7 3.0 3.7 3.1 5.5 3.8 

5th 100 4.0 4.7 3.1 3.7 2.8 5.5 4.1 

all 500 5.1 4.8 2.8 4.2 2.4 5.4 3.3 

1st 400 5.1 4.8 2.8 3.9 2.5 5.4 3.5 

1st 300 4.9 4.7 2.8 4.1 2.5 5.3 3.6 

1st 200 4.6 4.5 2.6 4.0 2.9 5.2 4.2 

        

Bayesian Criterion        
1st 100 3.1 4.5 2.5 3.6 4.3 4.7 5.2 

2nd_100 2.6 4.2 2.4 3.8 4.5 5.2 5.2 

3rd 100 2.8 4.2 2.8 3.8 4.4 4.9 5.0 

4th 100 3.0 4.4 2.7 3.5 4.1 5.4 4.8 

5th 100 2.8 4.5 2.9 3.5 4.0 5.3 5.0 

all 500 4.1 4.7 2.3 3.9 3.2 5.3 4.4 

1st 400 3.9 4.7 2.4 3.7 3.3 5.3 4.7 

1st 300 3.8 4.6 2.4 3.8 3.6 5.1 4.8 

1st 200 3.2 4.4 2.4 3.8 4.1 4.9 5.2 

        
Predictive Ability        
1st 400 4.8 4.2 3.4 3.9 2.7 5.3 3.6 

1st 300 5.0 4.1 3.2 3.8 2.8 5.2 3.7 

1st 200 4.5 3.9 3.6 4.0 3.5 4.8 3.7 

1st 100 4.2 3.7 3.6 3.7 3.5 4.7 4.5 

Notes: The table reports the number of times a model comes first in descriptive ability (using the Akaike and 

Bayesian Information Criteria) and predictive ability. The explanation for row labels can be found in Section 4. 

Model abbreviations from left to right: EU: Expected Utility; DA: Disappointment Aversion DS: Dispersion 

Skewness; PR: Prospective Reference; RL: Rank Dependent Utility with Prelec Function; ST; Salience; WU: 

Weighted Utility.  

 

Figure 4 below presents a visual representation of the results of these rankings, including also 

the results for the other two stochastic specifications – Versions A and B. The figure focuses 

on the performance of DS relative to the other models. The key result is that DS is mostly the 

1st or 2nd best model, with its closest rival being RDUT; but we note that DS can explain 

behavioural patterns that RDUT cannot explain. We also note that DS does relatively better 

on the average rankings, rather than the rankings based on the ‘percentage of times first’; 

from this, one may conclude that DS is more ‘robust’ than the others. 
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Figure 4: Summary of DS rankings in all versions; A, B and C 
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7.  Discussion and Conclusion 

We present a new model of decision-making under risk, which incorporates the dispersion, 

and skewness of the utilities of the outcomes of a lottery. We test this model against six others 

standard in the literature and show that it outperforms most, particularly in explanatory 

ability. As we noted above, there is no objectively ‘best’ way of ranking models. We presented 

two ways of comparison: (1) rankings based on percentage of times a model comes first and 

(2) average rankings. Overall, the simplest version of DS presented in the main body of the 

paper performs better under (2). We could possibly conclude that one can judge its goodness 

of fit as being between the average ranking and those based on the percentage of times a 

model comes first.  

We also estimated two other stochastic specifications (versions A and B), both of which 

incorporate a simple editing phase (details can be found in Appendix D). In this editing phase, 

in order to decrease the cognitive cost the DM looks for dominance between lotteries. If one 

lottery first-order dominates the other, DM chooses the dominant one without mentally 

calculating the DS value of both. We incorporate this property, assuming the DM implements 

it with a tremble, by including a tremble probability in our estimations. In version A, the 

tremble probability is exogenously given; we see that DS outperforms all models. One might 

argue that the tremble element gives an unfair advantage to DS. Therefore, in version B, 

instead of an exogenously given tremble probability, we estimate it and penalize DS for this 

extra parameter. We see that DS maintains its outperforming position13.  

We would also like to attract attention to the simplification that we made when passing 

from (4) to (5): in (4) it was assumed that the pessimism  ( )S z is a function of skewness; in (5) 

we assumed a simple functional form:  ( ) 1 ( ) 2
S z

S z . Future work on developing different 

functional forms for  ( )S z , as well as incorporating other factors, such as the past experience 

of the DM, might improve the fit of DS and its predictive ability. 

We have shown (in Section 3.1) that our new theory can explain prominent standard 

‘anomalies’: the common consequence and common ratio effects, valuation gaps and 

                                                        
13 We agree that we could also incorporate an editing phase and a tremble in the other 

models, yet these models – except for the original version of RDUT (Prospect Theory) – did 

not include these things when they were first introduced. 
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preference reversals. More importantly, we have shown (in Section 3.2) that the theory can 

explain behavioural patterns observed in experiments, that the closest rival regarding 

empirical fit (RDUT) cannot accommodate, such as reverse common ratio effects, violations 

of ordinal independence/upper tail independence, violations of stochastic dominance and 

empirically observed compliance with lower distribution independence (See Section 3.2). We 

acknowledge the fact that RDUT is the closest rival of DS regarding the empirical fit especially 

in Version A, but we would like to emphasize the advantage of DS in explaining behavioural 

patterns that RDUT cannot accommodate.  

A clear advantage of the new model is its parsimony – having only one parameter 

more14 than EU. It is also behaviourally plausible, incorporating the fact that DMs take into 

account not only the expected utility of a lottery but also its dispersion and skewness; the 

vital elements of the distribution of the utility of outcomes is important to the DM.  

  

                                                        
14 Though this depends upon the Version. See Appendix D. 
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Appendix A: Estimated Preference Functionals 

1)EU: Expected Utility—subjects choose on the basis of expected utility: 

     2 2 3 3 4 4      V p u u pp p u   (17) 

Parameters estimated: u2, u3 and u4. 

2)DA: Disappointment Aversion—subjects choose on the basis of expected (modified) 

utility—where utility is modified ex post to take account of any disappointment or delight 

experienced: 

  1 2 3( )  min( ,  ,  )V p W W W   (18) 

            1 2 2 3 3 4 4 1 2 3  (1 ) (1 )W p u p u p u p p p   (19) 

        2 2 2 3 3 4 4 1 2  (1 )W p u p u p u p p   (20) 

    3 2 2 3 3 4 4 1  W p u p u p u p   (21) 

Parameters estimated u2, u3, u4 and  . 

3)DS: See Section 2. 

Parameters estimated u2, u3, u4 and k. 

4)PR: Prospective Reference—subjects choose on the basis of a weighted average of the 

expected utility calculated using the correct probabilities and the expected utility calculated 

using equal probabilities for all the non-null outcomes: 

        2 2 3 3 4 4 2 2 3 3 4 4( ) ( ) (1 )( )V p p u p u p u a u a u a u   (22) 

1 / ( )
i

a n p  and ( )n p  is the number of non-zero elements in p. 

Parameters estimated: u2, u3, u4 and  . 

5)RL: Rank dependent with Prelec weighting function—subjects choose on the basis of 

expected utility where the (cumulative) probabilities are distorted by a weighting function 

which takes the power function form: 

        2 3 4 2 3 4 3 2 4 4 3( ) ( ) ( )( ) ( )( )V p w p p p u w p p u u w p u u   (23) 

where (.)w  is the Prelec function      ( ) exp lnw p p .  

Parameters estimated u2, u3, u4,  and  .   

 

6)ST: Salience Theory—When choosing between (x,p) and (y,q) (each of which has at most 

four states) subjects consider the 16 possible states: with probability i j
p q (i=1..4, j=1..4) get i

x  
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if (x,p) chosen and get j
y if (y,q) chosen. Then decide on the basis of whether V is positive 

(choose (x,p)) or negative (choose (y,q)) where V is given by: 

 
 

 
4 4

1 1

( , )[ ( ) ( )]
i j i i i j

i j

V x y u x u y p q   (24) 

where 1( ) 0,u x 2 2( ) ,u x u 3 3( ) ,u x u and 4 4( ) ,u x u and
  ( , ) .x y x y  

This is the Salience Function. 

Parameters estimated: u2, u3, u4 and  . 

7)WU: Weighted Utility—subjects choose on the basis of expected weighted utility: 

 
 


  

2 2 2 3 3 3 4 4

1 2 2 3 3 4

( )
w p u w p u p u

V p
p w p w p p

  (25) 

Parameters estimated: u2, u3, u4, 2w and 3w . 
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Appendix B: Lotteries in the experiment 

L p1 p2 p3 p4 q1 q2 q3 q4 

1 0 0 0.875 0.125 0 0.125 0 0.875 

2 0 0 0.875 0.125 0 0.125 0 0.875 

3 0 0 0.875 0.125 0 0.125 0.5 0.375 

4 0 0 0.875 0.125 0 0.375 0 0.625 

5 0 0 0.875 0.125 0 0.375 0.125 0.5 

6 0 0 0.875 0.125 0 0.375 0.25 0.375 

7 0 0 0.875 0.125 0 0.625 0 0.375 

8 0 0.125 0.5 0.375 0 0.375 0 0.625 

9 0 0.125 0.5 0.375 0 0.375 0.125 0.5 

10 0 0.125 0.875 0 0 0.375 0 0.625 

11 0 0.125 0.875 0 0 0.375 0.125 0.5 

12 0 0.125 0.875 0 0 0.375 0.25 0.375 

13 0 0.125 0.875 0 0 0.375 0.5 0.125 

14 0 0.125 0.875 0 0 0.625 0 0.375 

15 0 0.125 0.875 0 0 0.875 0 0.125 

16 0 0.25 0.75 0 0 0.375 0 0.625 

17 0 0.25 0.75 0 0 0.375 0.125 0.5 

18 0 0.25 0.75 0 0 0.375 0.25 0.375 

19 0 0.25 0.75 0 0 0.375 0.5 0.125 

20 0 0.25 0.75 0 0 0.375 0.5 0.125 

21 0 0.25 0.75 0 0 0.625 0 0.375 

22 0 0.25 0.75 0 0 0.875 0 0.125 

23 0 0.375 0.5 0.125 0 0.625 0 0.375 

24 0 0.125 0.875 0 0 0.25 0.75 0 

25 0 0.375 0.125 0.5 0 0.375 0.25 0.375 

26 0 0 0.5 0.5 0.125 0 0.25 0.625 

27 0 0 0.5 0.5 0.125 0 0.25 0.625 

28 0 0 0.875 0.125 0.125 0 0.25 0.625 

29 0 0 0.875 0.125 0.125 0 0.625 0.25 

30 0 0 0.875 0.125 0.375 0 0.375 0.25 

31 0 0 0.875 0.125 0.5 0 0 0.5 

32 0 0 0.875 0.125 0.75 0 0 0.25 

33 0 0 1 0 0.125 0 0.25 0.625 

34 0 0 1 0 0.125 0 0.625 0.25 

35 0 0 1 0 0.375 0 0.375 0.25 

36 0 0 1 0 0.5 0 0 0.5 

37 0 0 1 0 0.75 0 0 0.25 

38 0 0 1 0 0.75 0 0 0.25 

39 0 0 1 0 0.75 0 0.125 0.125 

40 0.125 0 0.625 0.25 0.5 0 0 0.5 

41 0.25 0 0.75 0 0.375 0 0.375 0.25 

42 0.25 0 0.75 0 0.5 0 0 0.5 

43 0.25 0 0.75 0 0.75 0 0 0.25 

44 0.25 0 0.75 0 0.75 0 0.125 0.125 

45 0.375 0 0.375 0.25 0.5 0 0 0.5 

46 0.375 0 0.625 0 0.5 0 0 0.5 

47 0.375 0 0.625 0 0.75 0 0 0.25 

48 0.375 0 0.625 0 0.75 0 0.125 0.125 

49 0.25 0 0.75 0 0.375 0 0.625 0 

50 0.75 0 0 0.25 0.75 0 0.125 0.125 

51 0 0.75 0 0.25 0.25 0.375 0 0.375 

52 0 0.75 0 0.25 0.375 0.125 0 0.5 

53 0 0.75 0 0.25 0.625 0 0 0.375 

54 0 0.875 0 0.125 0.25 0.375 0 0.375 

55 0 0.875 0 0.125 0.375 0.125 0 0.5 

56 0 0.875 0 0.125 0.5 0.25 0 0.25 

57 0 0.875 0 0.125 0.625 0 0 0.375 

58 0 0.875 0 0.125 0.625 0.125 0 0.25 

59 0.125 0.75 0 0.125 0.25 0.375 0 0.375 

60 0.125 0.75 0 0.125 0.375 0.125 0 0.5 
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61 0.125 0.75 0 0.125 0.5 0.25 0 0.25 

62 0.125 0.75 0 0.125 0.625 0 0 0.375 

63 0.125 0.75 0 0.125 0.625 0.125 0 0.25 

64 0.125 0.875 0 0 0.25 0.375 0 0.375 

65 0.125 0.875 0 0 0.375 0.125 0 0.5 

66 0.125 0.875 0 0 0.5 0.25 0 0.25 

67 0.125 0.875 0 0 0.625 0 0 0.375 

68 0.125 0.875 0 0 0.625 0.125 0 0.25 

69 0.125 0.875 0 0 0.75 0.125 0 0.125 

70 0.125 0.875 0 0 0.875 0 0 0.125 

71 0.125 0.875 0 0 0.875 0 0 0.125 

72 0.25 0.375 0 0.375 0.375 0.125 0 0.5 

73 0.5 0.25 0 0.25 0.625 0 0 0.375 

74 0.5 0.25 0 0.25 0.625 0 0 0.375 

75 0 0.75 0 0.25 0.125 0.75 0 0.125 

76 0 0.75 0.25 0 0.125 0 0.875 0 

77 0 0.75 0.25 0 0.125 0.375 0.5 0 

78 0 0.75 0.25 0 0.375 0.125 0.5 0 

79 0 0.75 0.25 0 0.375 0.25 0.375 0 

80 0 0.75 0.25 0 0.5 0 0.5 0 

81 0 0.75 0.25 0 0.5 0.125 0.375 0 

82 0 1 0 0 0.125 0 0.875 0 

83 0 1 0 0 0.125 0.375 0.5 0 

84 0 1 0 0 0.25 0.625 0.125 0 

85 0 1 0 0 0.375 0.125 0.5 0 

86 0 1 0 0 0.375 0.25 0.375 0 

87 0 1 0 0 0.5 0 0.5 0 

88 0 1 0 0 0.5 0 0.5 0 

89 0 1 0 0 0.5 0.125 0.375 0 

90 0 1 0 0 0.75 0.125 0.125 0 

91 0.25 0.625 0.125 0 0.375 0.125 0.5 0 

92 0.25 0.625 0.125 0 0.375 0.25 0.375 0 

93 0.25 0.625 0.125 0 0.5 0 0.5 0 

94 0.25 0.625 0.125 0 0.5 0.125 0.375 0 

95 0.375 0.25 0.375 0 0.5 0 0.5 0 

96 0.375 0.25 0.375 0 0.5 0 0.5 0 

97 0.375 0.625 0 0 0.5 0 0.5 0 

98 0.375 0.625 0 0 0.5 0.125 0.375 0 

99 0.375 0.625 0 0 0.75 0.125 0.125 0 

100 0.375 0.125 0.5 0 0.5 0.125 0.375 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

31 

 

Appendix C 

Figure C1: Histogram of k values (Version C: No editing, Luce Error)  
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Appendix D: A Possible Editing Phase 

Ideally, we would prefer to include an editing phase conducted by the DM before the 

evaluation phase of the theory: in this editing phase, the DM looks to see if one lottery first-

order dominates the other. In such a case, the DM chooses the dominant option without 

proceeding with the evaluation phase of the theory. In the other problems the DM proceeds 

as in the theory.  

While we think that this editing phase is an important feature of our theory, we want 

to be fair to the other theories in our ‘horse-race’. It seems that the only other theory which 

also has an explicit editing phase is Rank Dependent Expected Utility, at least in its earliest 

incarnation – Prospect Theory. However, recent descriptions of both it and the other theories 

seem to omit descriptions of such an editing phase – perhaps regarding it as implicit. 

So, to be fair to the other theories, we omit any editing phase in any of the models in 

all the econometric analyses reported in the main body of the paper. For those readers 

interested in the effects of the incorporation of an editing phase in DS we include Appendices 

E and F which report the results. There are two Versions reported there: Version A in which 

the DM trembles in the dominating problems with an exogenous probability; and Version B 

in which the DM trembles in the dominating problems with an endogenous probability. Not 

surprisingly DS does much better with this editing phase included. These are in addition to 

the model without editing, which is referred to as Version C. 
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Appendix E: Estimations of versions which has editing phase: A and B with Luce model 

 

Table E1a: % of the times that each model comes first; Version A; Luce Model 

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 8 9 38 8 17 11 9 

2nd_100 4 6 51 4 23 2 13 

3rd 100 9 9 40 4 23 6 9 

4th 100 8 8 36 11 21 0 17 

5th 100 9 6 26 9 30 4 15 

all 500 0 4 72 2 17 2 4 

1st 400 0 2 74 0 15 2 8 

1st 300 0 6 70 0 13 4 8 

1st 200 0 2 60 2 25 4 8 

        

Bayesian Criterion        
1st 100 30 9 28 8 8 11 6 

2nd_100 40 4 36 4 13 4 2 

3rd 100 32 9 34 2 9 6 8 

4th 100 30 8 36 11 8 2 6 

5th 100 40 4 26 9 9 4 8 

all 500 2 2 77 2 11 2 4 

1st 400 2 2 79 0 11 2 4 

1st 300 4 4 74 2 9 4 4 

1st 200 17 2 58 4 11 6 2 

        

Predictive Ability        
1st 400 4 9 45 6 19 6 11 

1st 300 0 9 49 4 17 8 15 

1st 200 2 9 55 4 13 11 6 

1st 100 9 9 43 4 13 13 8 
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Table E1b: Average Rankings; Version A; Luce Model 

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 4.4 4.8 1.8 4.0 3.5 5.0 4.5 

2nd_100 4.3 4.6 1.8 4.2 3.4 5.5 4.2 

3rd 100 4.3 4.7 2.1 4.0 3.4 5.0 4.3 

4th 100 4.4 4.8 2.2 3.9 3.2 5.6 3.9 

5th 100 4.2 4.8 2.4 3.9 3.0 5.6 4.1 

all 500 5.3 5.0 1.4 4.3 2.8 5.5 3.6 

1st 400 5.4 4.9 1.4 4.2 2.9 5.5 3.7 

1st 300 5.2 4.9 1.5 4.3 2.9 5.3 3.9 

1st 200 4.9 4.8 1.5 4.2 3.1 5.2 4.3 

        

Bayesian Criterion        
1st 100 3.1 4.6 2.0 3.8 4.4 4.8 5.2 

2nd_100 2.7 4.3 1.9 3.9 4.5 5.2 5.2 

3rd 100 2.9 4.4 2.3 4.0 4.5 4.9 5.1 

4th 100 3.2 4.5 2.0 3.6 4.2 5.5 4.9 

5th 100 2.9 4.6 2.3 3.7 4.1 5.4 5.0 

all 500 4.4 4.9 1.3 4.0 3.5 5.4 4.5 

1st 400 4.2 4.8 1.3 3.9 3.5 5.4 4.8 

1st 300 4.2 4.8 1.4 4.0 3.7 5.1 4.8 

1st 200 3.5 4.6 1.5 3.9 4.2 5.0 5.2 

        

Predictive Ability        
1st 400 5.0 4.4 2.0 4.2 3.1 5.4 3.8 

1st 300 5.2 4.4 2.0 4.1 3.1 5.3 3.9 

1st 200 4.7 4.2 2.0 4.3 3.8 4.9 4.0 

1st 100 4.3 3.9 2.3 4.0 3.9 4.8 4.6 
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Table E2a: % of the times that each model comes first; Version B; Luce Model 

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 15 9 17 8 23 15 13 

2nd_100 15 9 21 8 30 4 17 

3rd 100 17 9 19 9 28 9 9 

4th 100 15 9 9 13 26 6 21 

5th 100 11 6 17 11 38 4 15 

all 500 0 4 68 2 17 2 8 

1st 400 0 2 66 2 21 2 8 

1st 300 0 8 57 2 19 8 8 

1st 200 2 6 45 6 28 4 9 

        

Bayesian Criterion        
1st 100 40 9 6 8 15 17 6 

2nd_100 55 8 8 8 13 6 6 

3rd 100 32 11 9 15 15 9 9 

4th 100 38 9 8 15 15 4 11 

5th 100 42 4 11 11 21 6 8 

all 500 11 6 53 4 17 4 6 

1st 400 11 6 45 6 17 8 8 

1st 300 17 9 32 8 17 9 8 

1st 200 34 8 15 13 15 11 4 

        

Predictive Ability        
1st 400 4 9 47 6 19 6 11 

1st 300 0 6 55 4 17 8 15 

1st 200 2 9 55 4 13 11 6 

1st 100 8 9 49 4 11 11 8 
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Table E2b: Average Rankings; Version B; Luce Model 

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 4.1 4.7 2.9 3.7 3.3 4.9 4.3 

2nd_100 4.0 4.5 2.8 4.0 3.2 5.4 3.9 

3rd 100 4.1 4.5 3.1 3.8 3.2 4.9 4.2 

4th 100 4.1 4.7 3.1 3.7 3.0 5.5 3.8 

5th 100 4.0 4.7 3.3 3.7 2.7 5.5 4.0 

all 500 5.3 5.0 1.5 4.3 2.8 5.5 3.6 

1st 400 5.4 4.9 1.6 4.1 2.8 5.5 3.7 

1st 300 5.2 4.8 1.7 4.3 2.8 5.3 3.8 

1st 200 4.8 4.7 1.9 4.1 3.0 5.2 4.2 

        

Bayesian Criterion        
1st 100 2.9 4.2 4.0 3.2 4.2 4.6 5.0 

2nd_100 2.5 3.8 4.1 3.3 4.2 5.0 4.9 

3rd 100 2.8 3.9 4.1 3.5 4.1 4.7 4.8 

4th 100 3.0 4.2 4.1 3.0 3.8 5.3 4.6 

5th 100 2.7 4.2 4.2 3.2 3.6 5.2 4.8 

all 500 4.3 4.8 1.7 4.0 3.3 5.4 4.4 

1st 400 4.1 4.7 1.9 3.8 3.3 5.3 4.8 

1st 300 3.9 4.7 2.3 3.8 3.6 5.1 4.7 

1st 200 3.2 4.3 3.1 3.5 4.0 4.8 5.1 

        

Predictive Ability        
1st 400 5.0 4.4 1.9 4.2 3.2 5.4 3.8 

1st 300 5.2 4.4 1.8 4.1 3.2 5.3 3.9 

1st 200 4.8 4.2 1.9 4.2 3.9 4.9 4.0 

1st 100 4.3 3.9 2.2 4.0 3.9 4.9 4.6 
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Appendix F: Results with white noise/Fechner Error Specification: Version A, B and C 

Table F1a: % of the times that each model comes first; Version A with White Noise  

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 9 9 34 6 17 15 9 

2nd_100 4 6 49 6 19 6 13 

3rd 100 9 9 40 4 23 6 9 

4th 100 9 9 38 11 19 0 13 

5th 100 9 4 28 8 30 8 13 

all 500 0 4 70 0 21 0 6 

1st 400 0 4 68 0 19 0 9 

1st 300 0 6 66 0 17 4 8 

1st 200 0 2 51 4 26 8 9 

        

Bayesian Criterion        
1st 100 26 9 26 6 11 15 6 

2nd_100 38 4 38 4 11 6 2 

3rd 100 30 11 34 4 9 6 6 

4th 100 28 11 32 11 9 2 6 

5th 100 38 2 28 9 8 8 8 

all 500 2 2 77 0 15 0 4 

1st 400 2 4 79 0 11 2 2 

1st 300 2 6 74 2 8 6 4 

1st 200 15 4 55 4 13 8 2 

        

Predictive Ability        
1st 400 6 9 49 4 17 9 9 

1st 300 0 9 51 2 13 9 15 

1st 200 4 8 47 6 13 15 8 

1st 100 6 9 45 6 13 13 8 
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Table F1b: Average Rankings; Version A with White Noise 

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 4.4 4.7 1.9 4.1 3.5 4.8 4.5 

2nd_100 4.4 4.5 1.9 4.2 3.4 5.4 4.1 

3rd 100 4.5 4.4 2.2 4.0 3.4 5.1 4.4 

4th 100 4.4 4.6 2.2 3.9 3.2 5.6 4.0 

5th 100 4.2 4.8 2.2 4.0 3.0 5.5 4.2 

all 500 5.3 4.8 1.5 4.3 2.9 5.3 3.8 

1st 400 5.5 4.7 1.6 4.2 2.8 5.3 3.8 

1st 300 5.3 4.9 1.6 4.3 2.8 5.2 3.8 

1st 200 5.1 4.7 1.9 4.1 3.0 5.2 4.0 

        

Bayesian Criterion        
1st 100 3.3 4.6 2.0 4.0 4.3 4.6 5.2 

2nd_100 2.9 4.2 2.0 3.9 4.5 5.2 5.2 

3rd 100 3.2 4.2 2.2 3.9 4.3 5.0 5.2 

4th 100 3.3 4.3 2.2 3.7 4.0 5.6 4.8 

5th 100 3.1 4.5 2.2 3.8 4.1 5.3 4.9 

all 500 4.7 4.8 1.4 4.1 3.4 5.2 4.5 

1st 400 4.6 4.6 1.4 4.0 3.4 5.2 4.7 

1st 300 4.4 4.7 1.5 4.1 3.6 4.9 4.8 

1st 200 3.7 4.5 1.8 4.0 4.0 5.0 5.0 

        

Predictive Ability        
1st 400 5.2 4.2 2.0 4.5 3.0 5.2 3.8 

1st 300 5.2 4.5 1.9 4.1 3.2 5.1 3.9 

1st 200 4.5 4.2 2.2 4.2 3.7 4.6 4.1 

1st 100 4.5 4.1 2.2 3.7 3.8 5.0 4.4 
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Table F2a: % of the times that each model comes first; Version B with White Noise  

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 13 11 15 8 21 19 13 

2nd_100 13 11 17 9 28 6 19 

3rd 100 15 9 26 9 25 8 9 

4th 100 17 11 11 13 25 4 19 

5th 100 13 4 19 9 36 8 13 

all 500 0 8 60 0 23 2 8 

1st 400 0 4 64 2 21 0 9 

1st 300 0 6 55 4 23 6 8 

1st 200 2 2 43 6 30 8 9 

        

Bayesian Criterion        
1st 100 28 11 9 6 17 23 6 

2nd_100 51 11 6 13 11 6 4 

3rd 100 32 13 13 13 13 9 8 

4th 100 38 13 8 15 15 2 9 

5th 100 38 6 13 11 15 9 8 

all 500 11 8 49 0 23 2 8 

1st 400 11 9 43 2 19 8 8 

1st 300 13 9 32 8 19 11 8 

1st 200 28 11 15 9 19 13 4 

        

Predictive Ability        
1st 400 6 9 51 4 17 9 9 

1st 300 0 9 51 2 13 9 15 

1st 200 4 8 47 6 13 15 8 

1st 100 6 11 43 6 13 13 8 
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Table F2b: Average Rankings; Version B with White Noise 

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 4.2 4.6 2.9 3.8 3.4 4.8 4.3 

2nd_100 4.2 4.3 2.7 4.0 3.2 5.4 3.9 

3rd 100 4.3 4.3 2.9 3.8 3.2 5.1 4.2 

4th 100 4.2 4.5 3.2 3.7 3.0 5.6 3.8 

5th 100 4.0 4.6 3.2 3.8 2.8 5.5 4.0 

all 500 5.3 4.8 1.7 4.3 2.8 5.3 3.7 

1st 400 5.5 4.7 1.7 4.2 2.8 5.3 3.8 

1st 300 5.3 4.9 1.8 4.2 2.7 5.2 3.8 

1st 200 5.1 4.7 2.1 4.1 2.9 5.1 3.9 

        

Bayesian Criterion        
1st 100 3.0 4.1 3.9 3.3 4.1 4.5 5.0 

2nd_100 2.7 3.7 4.1 3.3 4.2 5.0 4.9 

3rd 100 3.0 3.8 3.9 3.4 4.1 4.8 4.9 

4th 100 3.2 3.9 4.2 3.1 3.6 5.3 4.5 

5th 100 2.8 4.1 4.0 3.4 3.7 5.2 4.7 

all 500 4.5 4.7 1.9 4.1 3.2 5.1 4.4 

1st 400 4.4 4.6 2.0 4.0 3.2 5.1 4.6 

1st 300 4.1 4.6 2.4 3.9 3.4 4.9 4.7 

1st 200 3.5 4.2 3.2 3.6 3.8 4.9 4.8 

        

Predictive Ability        
1st 400 5.2 4.2 1.8 4.5 3.0 5.3 3.9 

1st 300 5.2 4.5 1.9 4.1 3.2 5.1 3.9 

1st 200 4.5 4.2 2.2 4.2 3.7 4.6 4.1 

1st 100 4.5 4.1 2.2 3.8 3.8 5.0 4.4 
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Table F3a: % of the times that each model comes first; Version C with White Noise  

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 13 11 17 8 21 19 13 

2nd_100 13 9 23 8 25 8 19 

3rd 100 17 11 17 9 26 8 11 

4th 100 19 11 9 13 25 4 19 

5th 100 15 4 17 11 34 8 13 

all 500 28 28 25 25 57 21 28 

1st 400 9 13 9 9 45 4 11 

1st 300 9 11 13 9 40 8 11 

1st 200 8 13 19 9 36 8 9 

        

Bayesian Criterion        
1st 100 26 11 19 6 15 19 6 

2nd_100 45 6 28 4 11 8 2 

3rd 100 34 13 21 8 11 8 6 

4th 100 38 13 17 11 11 2 8 

5th 100 40 4 21 9 11 9 8 

all 500 34 26 32 26 47 21 25 

1st 400 17 13 23 9 23 8 9 

1st 300 15 15 25 11 17 11 8 

1st 200 30 13 23 8 17 9 2 

        

Predictive Ability        
1st 400 9 13 15 8 40 9 13 

1st 300 0 8 9 15 34 11 23 

1st 200 9 17 11 15 28 13 8 

1st 100 15 13 11 11 19 19 11 
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Table F3b: Average Rankings; Version C with White Noise 

 EU DA DS PR RL ST WU 

Akaike Criterion        
1st 100 4.2 4.5 2.8 3.9 3.4 4.8 4.4 

2nd_100 4.2 4.5 2.6 4.2 3.1 5.2 4.0 

3rd 100 4.2 4.4 2.9 3.8 3.2 5.1 4.3 

4th 100 4.2 4.4 3.2 3.7 3.2 5.5 3.8 

5th 100 3.9 4.5 3.2 3.7 2.9 5.4 4.1 

all 500 4.4 3.9 2.6 3.5 2.2 4.6 3.1 

1st 400 5.3 4.4 2.9 4.0 2.4 5.4 3.6 

1st 300 5.1 4.7 2.9 3.9 2.5 5.2 3.6 

1st 200 4.8 4.4 2.8 3.9 2.9 5.2 3.9 

        

Bayesian Criterion        
1st 100 3.1 4.4 2.7 3.7 4.2 4.6 5.2 

2nd_100 3.0 4.2 2.3 3.9 4.4 5.0 5.1 

3rd 100 2.9 4.2 2.7 3.7 4.3 4.9 5.1 

4th 100 3.3 4.1 2.9 3.5 4.0 5.5 4.8 

5th 100 2.9 4.2 3.0 3.5 3.9 5.3 4.9 

all 500 3.8 3.8 2.2 3.4 2.6 4.5 3.8 

1st 400 4.2 4.3 2.5 3.8 3.2 5.2 4.7 

1st 300 4.2 4.5 2.5 3.8 3.5 4.9 4.7 

1st 200 3.5 4.2 2.6 3.7 3.9 5.0 5.0 

        

Predictive Ability        
1st 400 5.1 3.9 3.4 4.1 2.5 5.1 3.7 

1st 300 5.1 4.3 3.2 3.7 2.8 5.1 3.6 

1st 200 4.2 3.8 3.5 3.7 3.5 4.7 4.0 

1st 100 4.1 4.0 3.5 3.5 3.5 4.8 4.2 

 


