UNIVERSITYW

This is a repository copy of The Pi-puck Ecosystem:Hardware and Software Support for
the e-puck and e-puck?2.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/170703/

Version: Accepted Version

Proceedings Paper:

Allen, Jacob, Joyce, Russell Andrew orcid.org/0000-0002-6773-3837, Millard, Alan
Gregory orcid.org/0000-0002-4424-5953 et al. (1 more author) (2020) The Pi-puck
Ecosystem:Hardware and Software Support for the e-puck and e-puck?2. In: Dorigo, Marco,
Stutzle, Thomas, Blesa, Maria J., Blum, Christian, Hamann, Heiko, Heinrich, Mary
Katherine and Strobel, Volker, (eds.) Swarm Intelligence. ANTS 2020. International
Conference on Swarm Intelligence, 26-28 Oct 2020 Lecture Notes in Computer Science .
Springer , ESP , pp. 243-255.

https://doi.org/10.1007/978-3-030-60376-2_19

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

The Pi-puck Ecosystem: Hardware and Software
Support for the e-puck and e-puck2

Jacob M. Allenl[0000_0001_9425_5917], Russell Joycel[0000—0002—6773—3837]7
Alan Q. Millard2[0000_0002_4424_5953], and Ian Grayl[0000—0003—1150—9905]

! Department of Computer Science, University of York, York, UK
{jma542,russell. joyce,ian.gray}@york.ac.uk
2 Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln, UK
amillard@lincoln.ac.uk

Abstract. This paper presents a hardware revision of the Pi-puck ex-
tension board that now includes support for the e-puck2. This Raspberry
Pi interface for the e-puck robot provides a feature-rich experimentation
platform suitable for multi-robot and swarm robotics research. We also
present a new expansion board that features a 9-DOF IMU and XBee
interface for increased functionality. We detail the revised Pi-puck hard-
ware and software ecosystem, including ROS support that now allows
mobile robotics algorithms and utilities developed by the ROS commu-
nity to be leveraged by swarm robotics researchers. We also present the
results of an illustrative multi-robot mapping experiment using new long-
range Time-of-Flight distance sensor modules, to demonstrate the ease-of
use and efficacy of this new Pi-puck ecosystem.

1 Introduction

The e-puck robot platform [15] is widely-used for mobile robotics research, and
is a popular choice for swarm robotics due to its size and commercial avail-
ability. Three hardware revisions of the original e-puck (v1.1-1.3) have been
released commercially by GCtronic and EPFL since it was first developed in
2004, followed by the release of the e-puck2 in 2018. Our Pi-puck® extension
board allows a Raspberry Pi single-board computer to be interfaced with an
e-puck or e-puck?2 to enhance its capabilities. It features a range of augmenta-
tions over the base e-puck design, including greater computational power, and
increased communication, sensing and interfacing abilities. The first prototype
design of the Pi-puck extension board was created by the York Robotics Labo-
ratory (YRL) at the University of York, and was published in 2017 [12], before
the release of the e-puck2. The latest version of the hardware was developed
as a collaboration between YRL and GCtronic to support both the e-puck and
e-puck2, and is available to purchase from GCtronic and its distributors.
Nedjah and Junior [17] argue that there is an urgent need to standardise many
aspects of swarm robotics research, so that faster progress can be made towards

3 https://www.york.ac.uk /robot-lab/pi-puck

2 J. M. Allen et al.

real-world applications. In particular, they call for standardisation of hardware
and software — the Pi-puck aims to provide a common hardware and software
ecosystem for researchers that wish to run embedded Linux and associated soft-
ware on e-puck robots. The board was designed to replace the now deprecated
Linux extension board developed by the Bristol Robotics Laboratory [9], and the
Gumstix Overo COM turret [2]. The recently published Xpuck [7] is an e-puck
extension that is similar in spirit to the Pi-puck — extending the e-puck with a
powerful ODROID-XU4 single-board computer through custom hardware. This
greatly enhances the robot’s computational capabilities, but comes at the cost of
size (the form factor of the XU4 is similar to that of the Raspberry Pi 3 or 4) and
power consumption, necessitating the use of an auxiliary battery. The Xpuck was
also developed prior to the release of the e-puck2, and its communication with
the robot relies on an SPI bus that is not present on the e-puck2’s expansion
connector. In contrast, the Pi-puck has been designed around the Raspberry Pi
Zero to provide a modest compute upgrade while minimising size and energy
usage, and primarily uses I2C for communication with the base robot, which is
compatible with both the e-puck and e-puck2.

Nedjah and Junior [17] also encourage the use of Robot Operating System
(ROS) [21] to facilitate standardisation. Although ROS has become the de facto
standard for robotics middleware in single-robot and multi-robot studies, the
swarm robotics research community has generally been reluctant to adopt it.
This can partly be attributed to the fact that many swarm hardware platforms
are microcontroller-based, so cannot run ROS on-board [24], however ROS in-
tegration can still be achieved via wireless communication and the rosserial
interface — see the Mona [25] and HeRo [22] swarm platforms. Additionally, the
ROS communication model is inherently centralised, which is antithetical to the
philosophy of many swarm algorithms.

Rudimentary ROS support was implemented for the previous version of the
Pi-puck [12], and the software infrastructure has now been updated to provide
ROS Melodic support for the latest hardware revision, opening the door to a large
body of existing work developed by the ROS community. This paper discusses
the ROS drivers and ecosystem developed for the Pi-puck platform, and how they
can be leveraged by other swarm robotics researchers. We recognise that the use
of ROS may not be appropriate in some cases, and Pi-puck users may instead opt
for lighter-weight software frameworks designed specifically for swarm robotics
research such as Buzz [19], OpenSwarm [24], or SwarmTalk [26]. For resource-
constrained experiments, the Pi-puck could be programmed to work with these
frameworks instead of ROS.

2 Hardware Changes

There have been several major changes to the design of the Pi-puck hardware
since it was first published in 2017 [12], which add new features, implement
support for the e-puck2, and improve the stability of the platform for large-scale
production. Many of these changes were made after consultation with members of

The Pi-puck Ecosystem 3

©

=
=
N
X
ol
o)
o
°

Fig. 1. Left: Pi-puck on e-puck2, with six Time-of-Flight distance sensor modules.
Centre: Pi-puck board with YRL Expansion Board, XBee, and OLED display. Right:
Pi-puck on e-puckl, with expansion board and e-ink pHAT showing an ArUco tag.

the swarm robotics community, and with GCtronic as the primary manufacturer
of the e-puck robot. Figure 1 shows the latest version of the Pi-puck extension
board connected to an e-puck robot, along with a further expansion board and
attached hardware (detailed in Section 2.1), as well as six Time-of-Flight (ToF)
distance sensor modules.

A full block diagram detailing the hardware of the Pi-puck platform is shown
in Figure 2, which includes the components added to the robot on the extension
board itself, as well as the major communication buses between the Raspberry
Pi, extension board hardware, and the base e-puck robot. The Raspberry Pi
Zero WH is specifically supported, due to its wide availability, low cost, minimal
power consumption, integrated wireless capabilities, and small physical footprint.
However, it is feasible that other Raspberry Pi and compatible boards could be
used with the Pi-puck if additional mechanical support and wiring were added.

Raspberry Pi Support: The first fundamental change is in the mounting
of the Raspberry Pi board, which is now face-down. This allows Raspberry Pi
boards with pre-soldered headers to be used, which are easier to acquire in large
quantities. A small micro-USB shim has been added to allow USB communica-
tion between the Raspberry Pi and Pi-puck extension board, and an integrated
USB hub allows up to three devices to utilise this connection simultaneously. The
Raspberry Pi UART is also accessible through a micro-USB port on the Pi-puck
board, via a USB-UART converter, allowing a text console on the Raspberry Pi
to be accessed without additional hardware.

Sensor Modules: Six 4-pin sockets are provided around the edge of the robot
for connecting optional I?C sensor modules, allowing for a range of flexible
options for experimentation. The mapping application detailed in Section 5
uses custom-designed, open-source? distance sensor boards based around the

4 https://github.com/yorkrobotlab /pi- puck-tof-sensor

4 J. M. Allen et al.

Raspberry Pi
= microSD card

Bluetooth UART 12C SPI usB

A y

Expansion header |<—— Status LEDs

’ USB UART ‘
USB-A port
ADC
Charging A
contacts Micro-USB Sensor Board RGB LEDs
Connectors
,,,,,,,,,,, y e-puck reset
! Auxiliary | Battery UART button
| battery | charger headers " FT903 <

A

Pi-puck Extension Board

’ Speaker

1S
microphone

ki

i

Other e-puck Extensions
Range and bearing board, ground sensor, etc.

R v \ | Distance sensor |__|
i eaker | - !) i
7777777777 1 e—pSckz only ‘;‘"’ Robot Microcontroller L___epuckzonly |

”””””””””” dsPIC (e-puck) IMU

! e-puck | . -
| battery ! Microphones f—* STM32 (e-puck2) | anaiogue (1.1&1.2) [«
”””””” l l ! I2C (1.3 & e-puck2)

’ Stepper ’ LEDs IR e-puck camera }—

motors sensors

Fig. 2. Overview of interfaces between the Raspberry Pi, Pi-puck extension board,
and e-puck hardware. Arrows show master to slave (IC/SPI), host to device (USB), or
data/power direction. Dashed lines indicate hardware and connections that are optional
or not available on all e-puck revisions.

VL53L1X ToF laser-ranging module (4 m range) — similar to the VL53L0X dis-
tance sensor on the front of the e-puck2 (with a 2m range).

Battery Power: The Pi-puck extension board can be powered from either
the standard e-puck battery, an auxiliary battery connected through a JST-PH
socket, or from both batteries simultaneously. When powered from an 1800 mAh
e-puck battery, an idling Pi-puck with no expansion hardware will drain its
battery in approximately 5 hours. An active Pi-puck that is performing a simple
obstacle avoidance algorithm controlled from the Raspberry Pi, while fitted with
the extensions shown in Figure 1 (including an XBee, OLED display and six ToF
sensors), has been measured to last around 1.5 hours. Both of these times could
be increased significantly by attaching an auxiliary battery to augment the power
provided by the e-puck battery.

The Pi-puck has two battery charging circuits on-board, to allow for charging
each of the two batteries independently. Batteries can be charged either by con-
necting a 5V power supply to the sprung charging contacts on the front of the
robot (e.g. via an external charging wall), or through the integrated micro-USB

The Pi-puck Ecosystem 5

Navigation . ; t : XBee reset
[| [] [| |

A A AT

’ MU ‘ ’GP'O expander =—— | | L____ ->{ USB UART H Status LEDs

12C SPI usB
Pi-puck Expansion Header

Fig. 3. Overview of interfaces between the Pi-puck and YRL Expansion Board. Arrows
show master to slave (I*C/SPI), host to device (USB), or data direction. Dashed lines
indicate hardware and connections that are optional.

socket. Additionally, both battery voltages can be measured in real-time from the
Raspberry Pi using an on-board analogue-to-digital converter (ADC), allowing
automatic shutdown or recharging behaviours to be triggered in software.

Camera Interface: An FTDI FT903 MCU is used to convert the e-puck’s
parallel camera interface to a USB Video Device Class (UVC) peripheral to make
it accessible from the standard Linux kernel and applications on the Raspberry
Pi. Like the Xpuck [7], the Pi-puck can capture 640x480 resolution video at
15 frames per second, enabling improved on-board image processing over the
resource-constrained e-puck microcontroller. The Raspberry Pi configures the
camera sensor via I2C, then the FT903 creates the UVC device and streams
the image. The FT903’s firmware can easily be updated over USB using the
Device Firmware Upgrade (DFU) standard, and its UART interface is broken
out to header pins, to allow for customisation of the microcontroller firmware
and support for potential future e-puck camera sensor design changes.

Additional I/O: The Raspberry Pi is connected directly to an I2S microphone
on the Pi-puck extension board, as well as an audio amplifier and speaker. The
Pi-puck board has three additional RGB LEDs that can be individually con-
trolled over the I2C interface, via the FT903 microcontroller. A vertical USB-A
port allows the connection of an additional USB device to the Raspberry Pi,
through the on-board USB hub, and a further USB channel is attached to a
general-purpose expansion header, which also breaks out the I?C and SPI buses
along with power and other signals. Both e-puckl and e-puck2 UART interfaces
are broken-out to pins on the Pi-puck board, to allow for easier debugging of the
robot’s microcontroller firmware using modern 3.3 V signals.

2.1 YRL Expansion Board

To complement the base Pi-puck platform, we have developed an additional
board that connects to the expansion header on the top of the robot. This board

6 J. M. Allen et al.

has a similar form-factor to the Raspberry Pi Zero, and is physically mounted
to the Raspberry Pi while being electrically connected to the Pi-puck board (see
Figure 1). An overview of the expansion board hardware is shown in Figure 3,
including its I?C, SPI and USB interfaces to the base Pi-puck, and additional I/O
options. The hardware designs for the expansion board are fully open source®,
allowing it to be used as a basis for other custom expansion boards if desired.

The expansion board hosts an LSM9DS1 9-DOF IMU, which provides a 3-
axis accelerometer, gyroscope, and magnetometer to the Raspberry Pi over an
I?C interface, and is an essential addition for certain robotics applications such
as SLAM algorithms. This is useful primarily when using the e-puckl, which
only has either a 3-DOF accelerometer connected to the dsPIC, or a 6-DOF
I2C accelerometer and gyroscope (depending on the specific hardware revision),
compared to the e-puck2 which has a built-in MPU-9250 9-DOF IMU.

The expansion board also provides a socket for an XBee radio module, ac-
cessible through a USB-UART interface to the Raspberry Pi, and LEDs for
showing the radio status. Using a generic set of headers for the XBee interface
allows multiple generations and specifications of XBee modules to be used, as
long as they comply to the standard pinout. The Pi-puck’s XBee interface en-
ables peer-to-peer, point-to-point, or mesh networking between robots, and can
be used for transmitting data with higher bandwidth than infrared transceivers,
as well as estimating the distance of neighbouring robots by measuring received
signal strength (see Figure 4). In addition to robot-to-robot communication, the
Pi-puck’s XBee module could also be integrated with XBee-enabled experimental
infrastructure like the IRIDIA Task Abstraction Module [1].

One benefit of the Pi-puck is the ability to leverage the Raspberry Pi ecosys-
tem, which is taken further by the expansion board’s 24-pin Raspberry Pi com-
patible header, allowing the robot to be extended with a large variety of existing
hardware. Figure 1 shows the Pi-puck with the off-the-shelf Inky pHAT e-ink
display from Pimoroni [18], which can be used in a swarm context for very
low power dynamic agent identification through ArUco tags [3], and additional
human-swarm interaction possibilities [14], as well as enabling simpler integra-
tion with tools like ARDebug [13]. This is achieved easily though using existing
software packages with minimal modification, and without the need for custom
Linux kernel drivers or firmware.

3 Software Ecosystem

This section describes the software ecosystem that supports the Pi-puck ex-
tension board hardware, including our customised Linux distribution, e-puck
microcontroller firmware, and software interfaces to other e-puck extensions.

Linux Distribution: There are currently two main Linux distributions for the
Pi-puck — one supported by GCtronic® (included on the Pi-puck’s microSD card

® https://github.com/yorkrobotlab /pi-puck-expansion-board
5 https://www.gctronic.com/doc/index.php?title=Pi-puck

The Pi-puck Ecosystem 7

RSSI range (—dB)

| | | | |
10 50 100 150 200 250 300 350

Distance between Pi-pucks (cm)

Fig. 4. Reported range of XBee packet RSSI (Received Signal Strength Indicator)
values with varying transmission distance between a pair of Pi-pucks.

when purchased from them), and one created by YRL, which is detailed in this
paper. This allow us to provide support for different features of the platform,
while targeting different users and alternative approaches for packaging software.

The YRL Pi-puck software distribution offers a foundation for research and
education, with a focus on open-source packages that are easy to modify, build
and distribute. The core of the distribution is supplied as a set of Debian packages
that are hosted in a package repository online”, and are available in source format
for modification if desired®. These packages cover the full Linux set-up of the
Pi-puck hardware, as well as providing utilities for controlling and programming
various devices on the robot. Distributing this software via Debian packages
allows for easy installation on any Debian-based Linux distribution, automatic
resolution of any dependencies, and straightforward updates.

To accelerate the initial configuration of each robot, the Pi-puck Debian
packages are built into the Pi-puck Raspbian microSD card image?, which is
created using the pi-gen tool from the Raspberry Pi Foundation. This image
is based on the standard Raspberry Pi Foundation Raspbian Buster image, but
with additional build stages added to include the Pi-puck packages, and to mod-
ify the default Linux configuration to better support a swarm of robots. This
image is supplied both in source form and as a file system image that can be
directly copied onto a microSD card for use with the Raspberry Pi. Additional
files for assisting with the deployment of a swarm of robots are included on the
FAT32 boot partition of the SD card, allowing users to configure parameters
such as Wi-Fi connection details and a unique robot hostname before the image
is first booted. Users can also add additional packages and files into the pi-gen
build system, in order to create a custom Raspbian distribution for a specific
experiment or application.

" https:/ /www.cs.york.ac.uk/pi-puck/
8 https://github.com/yorkrobotlab/pi- puck-packages
9 https://github.com/yorkrobotlab/pi-gen

8 J. M. Allen et al.

e-puck Microcontroller Firmware: Alongside the Linux software for the Pi-
puck, the e-puckl dsPIC firmware has been re-written to support controlling the
robot entirely over I2C, and to update the code to work with modern Microchip
XC16 compilers and the MPLAB X IDE. Firmware for the e-puck2 is currently
provided and supported by GCtronic.

The Pi-puck hardware enables users to program the e-puckl firmware HEX
file directly from Linux running on the Raspberry Pi, allowing any changes to the
firmware to be easily programmed onto a swarm of robots over an SSH connec-
tion. We provide a new dsPIC bootloader firmware that must be programmed
to each e-puck once using a standard PIC in-circuit debugger to enable this
feature, after which all subsequent programming can be done directly from the
Raspberry Pi, using provided programming scripts. Due to hardware differences,
the same method of firmware programming does not work with the e-puck2’s mi-
crocontrollers, however they could be programmed from the Raspberry Pi using
Bluetooth, Wi-Fi or USB (with the use of an additional cable) instead.

Other e-puck Extensions: The Pi-puck hardware allows the Raspberry Pi to
communicate with any devices on the e-puck’s I?C bus, including other e-puck
extension boards, such as the range and bearing turret [5] and ground sensors
module. Python software has been written to demonstrate how to interface with
the range and bearing turret directly from the Raspberry Pi (with both the
standard and DEMIURGE firmware!?), without requiring any input from the
e-puck’s microcontroller, and is provided as an example in the Pi-puck software
repository. Python code for communicating with the e-puck ground sensors ex-
tension from the Raspberry Pi is also provided, allowing for this to be included
in high-level robot control applications.

4 Robot Operating System (ROS) Support

The base e-puckl is able to provide limited ROS support via Bluetooth and an
external computer, and the e-puck2 extends this functionality with the option
of using Wi-Fi instead of Bluetooth [4]. The Pi-puck allows ROS nodes to be
executed directly on the robot instead, thanks to the Raspberry Pi’s embedded
Linux operating system. ROS integration for the Pi-puck is implemented by the
pi_puck_driver package, which contains a series of Python nodes!! that support
the features listed in this section. The Pi-puck ROS repository has been created
for ROS Melodic (supported until May 2023), and has been tested on Raspbian
Buster on the Raspberry Pi.

Motors: The motors node communicates with a robot controller by subscribing
to wheel speeds and publishing the step counts of the e-puck’s stepper motors.
This node interfaces with the e-puck’s microcontroller via I?C to request step

10 https://github.com/demiurge-project/argos3-epuck/tree/master/erab_firmware
1 https://github.com/yorkrobotlab/pi- puck-ros

The Pi-puck Ecosystem 9

counts and set the speed of each wheel independently, allowing for precise move-
ment and turning. The motors node also publishes nav_msgs/0Odometry mes-
sages, containing the robot’s pose and linear/angular velocity, estimated from
the motor step counts using dead reckoning.

A base_controller node is also provided to convert geometry msgs/Twist
messages (containing the desired linear and angular velocity of the robot) into
control signals for the motors. This allows control of the robot to be abstracted
away from specifying individual wheel speeds, and the implementation auto-
matically scales the wheel speeds to account for combined linear and angular
velocities exceeding physical limits.

Sensors: The short_range_ir node interfaces with the e-puck’s analogue IR
transceivers, and publishes their readings as eight separate sensor_msgs/Range
messages (reflected IR, offset by ambient IR), so they can be used as proximity
sensors. The raw IR readings are mapped to distances between 5 mm and 40 mm
by applying a logarithmic least error fit to experimentally-measured sensor data.
The long range_ir node similarly interfaces with the Pi-puck’s optional long-
range ToF distance sensors (via STMicro’s pre-built closed-source driver), and
publishes their readings as up to six separate sensor msgs/Range messages (de-
pending on the number of sensor modules installed).

Many existing ROS SLAM packages (such as GMapping) require distance
data to be presented as sensor_msgs/LaserScan messages rather than the point
cloud that is obtained from the individual distance and ToF sensors. To solve
this, a transform is provided that re-exposes a sensor_msgs/Range message as
a sensor_msgs/LaserScan of three points, denoting the edges and centre of the
field of view of the range sensor. Additionally, for sensor measurements to be
mapped correctly onto the world, the reference frames for the sensors and the
Pi-puck itself must be broadcast as a series of transforms, either statically or
dynamically depending on whether the reference frame can move in relation to
other reference frames. A Unified Robot Description Format (URDF) model is
provided for this purpose, which contains a list of reference frames, and a list of
static transforms between those reference frames. This also allows the Pi-puck
sensor readings to be visualised on a 3D model in RViz.

Power, IMU, and OLED: The power node interfaces with the Pi-puck’s
ADC to obtain the voltages of the e-puck and auxiliary batteries, and publishes
them, along with metadata such as whether the battery is currently charging,
as sensor_msgs/BatteryState messages.

Additional support is provided for features of the YRL Expansion Board,
such as the LSM9DS1 IMU and accessories using the 24-pin header. The imu
node interfaces with the IMU on the expansion board, and publishes the ac-
celerometer and gyroscope readings as sensor_msgs/Imu messages. Magnetome-
ter readings are published as sensor_msgs/MagneticField messages, and the
robot’s pose is subsequently derived from these two message types using Madg-
wick’s IMU and AHRS (Attitude and Heading Reference System) algorithm [10].

10 J. M. Allen et al.

Fig. 5. Results of single-robot and multi-robot mapping experiments. From left to
right: test arenas, single-robot mapping with obstacle avoidance, single-robot mapping
with frontier exploration, and swarm mapping.

Calibration scripts are also provided in order to account for magnetic inter-
ference from the robot’s motors and speaker. The oled node interfaces with
the optional Adafruit PIOLED display, and subscribes to std_msgs/String and
sensor_msgs/Image messages published by other nodes, allowing text and im-
ages to be displayed (e.g. robot ID, or status).

5 Environment Mapping

As an initial application case study, we present experimental results from an
environment mapping task to demonstrate the applicability of the Pi-puck ROS
platform for swarm experimentation. The focus here is on the integration of the
Pi-puck drivers with existing third-party ROS packages, to highlight the com-
patibility and ease of use of the platform. The currently available experimental
environments are quite small, limiting the maximum swarm size due to practi-
cal working limitations, but experimentation with larger environments and more
robots is planned once possible.

Single-robot Mapping: Single-robot SLAM has previously been implemented
by GCtronic, both using a real e-puck and an e-puck model simulated in Webots
[11]. This was achieved via the e-puck’s Bluetooth ROS driver, the Webots ROS
interface, and the OpenSLAM GMapping package. However, this approach used
the e-puck’s analogue IR sensors, so the mapping range was limited to around
40 mm. Longer-range mapping has since been achieved through the use of ToF
sensor modules via an Arduino interface and custom hardware [16].

To test the compatibility of the Pi-puck ROS drivers with other ROS pack-
ages, we integrated them with the GMapping package [23] (running on a separate

The Pi-puck Ecosystem 11

computer) and the default ROS navigation stack. We used a single Pi-puck to
map the two arenas shown in Figure 5, controlled both via an obstacle avoidance
controller, and with the explore_lite frontier exploration package [6]. Both of
these environments were successfully mapped, as shown in Figure 5.

Multi-robot Mapping: Kegeleirs et al. [8] recently investigated the effect of
different random walk behaviours on an e-puck swarm’s ability to map simple
environments. Their work was implemented using ROS Indigo support for the
e-puck’s Gumstix Overo COM turret and the GMapping package, along with the
multirobot map merge package [6] for combining the maps produced by each
robot. Results from their initial experiments in the ARGoS robot simulator [20]
were quite promising, but unfortunately the maps produced by the real e-puck
robots were far less faithful to the true environment. This can be attributed
to the limited range and high noise of the base e-puck’s IR sensors, as well as
compound odometry errors.

To test the ability of the Pi-puck ROS drivers to work in an environment
where multiple robots are operating together on the same ROS network, a small
swarm of four robots was used to perform mapping (without localisation) using
GMapping while avoiding obstacles. The four individual maps were then com-
bined in real-time using the multirobot_map_merge package. The Pi-puck swarm
was able to successfully map the environments (as shown in Figure 5), thanks to
the improved IMU on the expansion board and the longer-range, higher-accuracy
ToF sensor modules. Initial robot positions were randomised, not known to the
swarm, and were not coordinated in any way.

6 Conclusion

The Pi-puck is an open-source extension for the e-puck and e-puck2 robot plat-
forms that expands their capabilities by interfacing with the Raspberry Pi — a
popular single-board computer. This paper has detailed the latest hardware re-
vision of the Pi-puck, as well as the software infrastructure developed to support
it, including Raspbian and ROS integration. This affords access to the Debian
and ROS ecosystems, allowing for easy use of standard algorithms for tasks such
as navigation and SLAM.

We hope that the hardware presented in this paper will facilitate experi-
mentation with swarm algorithms that were previously either not possible or
inconvenient to implement, and that the evolving software infrastructure con-
tinues to support the efforts of other researchers. Full documentation and source
code for the Pi-puck platform and associated extensions is available online'?, in
addition to the resources on the GCtronic Wiki [4].

12 https:/ /pi-puck.readthedocs.io

12 J. M. Allen et al.
References
1. Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M.,

10.

11.

12.

13.

14.

15.

16.

Birattari, M.: The TAM: abstracting complex tasks in swarm robotics research.
Swarm Intelligence 9(1), 1-22 (2015)

Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Université Libre de Bruxelles, Tech. Rep.
TR/IRIDIA /2015-004 (2015)

Garrido-Jurado, S., Munoz Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.:
Generation of fiducial marker dictionaries using mixed integer linear programming.
Pattern Recognition 51 (10 2015)

GCtronic: GCtronic Wiki, https://www.gctronic.com/doc/index.php?title=
GCtronic_Wiki

Gutiérrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open e-puck range & bearing miniaturized board for local communica-
tion in swarm robotics. In: International Conference on Robotics and Automation.
pp. 3111-3116. IEEE (2009)

Horner, J.: Map-merging for multi-robot system. Bachelor’s thesis, Charles Uni-
versity in Prague, Faculty of Mathematics and Physics, Prague (2016)

Jones, S.; Studley, M., Hauert, S., Winfield, A.F.T.: A Two Teraflop Swarm. Fron-
tiers in Robotics and AL: Multi-Robot Systems 5(11), 1-19 (2018)

Kegeleirs, M., Ramos, D.G., Birattari, M.: Random walk exploration for swarm
mapping. In: Annual Conference Towards Autonomous Robotic Systems. pp. 211—
222. Springer (2019)

. Liu, W., Winfield, A.F.T.: Open-hardware e-puck Linux extension board for exper-

imental swarm robotics research. Microprocessors and Microsystems 35(1), 60-67
(2011)

Madgwick, S.O.H., Harrison, A.J.L., Vaidyanathan, R.: Estimation of IMU and
MARG orientation using a gradient descent algorithm. In: IEEE International
Conference on Rehabilitation Robotics (2011)

Michel, O.: Cyberbotics Ltd. Webots: professional mobile robot simulation. Inter-
national Journal of Advanced Robotic Systems 1(1), 5 (2004)

Millard, A.G., Joyce, R., Hilder, J.A., Flegeriu, C., Newbrook, L., Li, W., McDaid,
L.J., Halliday, D.M.: The Pi-puck extension board: a Raspberry Pi interface for
the e-puck robot platform. In: International Conference on Intelligent Robots and
Systems (IROS). pp. 741-748. IEEE (2017)

Millard, A.G., Redpath, R., Jewers, A.M., Arndt, C., Joyce, R., Hilder, J.A., Mc-
Daid, L.J., Halliday, D.M.: ARDebug: an augmented reality tool for analysing
and debugging swarm robotic systems. Frontiers in Robotics and AI: Multi-Robot
Systems 5(87), 1-6 (2018)

Millard, A.G., Joyce, R., Gray, I.: Human-swarm interaction via e-ink displays. In:
ICRA Human-Swarm Interaction Workshop (2020)

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magne-
nat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed
for education in engineering. In: Conference on Autonomous Robot Systems and
Competitions. vol. 1, pp. 59-65 (2009)

Moriarty, D.: Swarm Robotics — Mapping Using E-Pucks: Part II, https://
medium.com/@DanielMoriarty /swarm-robotics- mapping- using- e- pucks- part-ii-
aclbchbd62e3

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

The Pi-puck Ecosystem 13

Nedjah, N., Junior, L.S.: Review of methodologies and tasks in swarm robotics
towards standardization. Swarm and Evolutionary Computation 50, 100565 (2019)
Pimoroni: Inky pHAT EPD Display for Raspberry Pi. https://shop.pimoroni.com/
products/inky-phat

Pinciroli, C., Beltrame, G.: Buzz: An extensible programming language for het-
erogeneous swarm robotics. In: International Conference on Intelligent Robots and
Systems (IROS). pp. 3794-3800. IEEE (2016)

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Di Caro, G., Ducatelle, F., et al.: ARGoS: a modular, parallel,
multi-engine simulator for multi-robot systems. Swarm intelligence 6(4), 271-295
(2012)

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA workshop on
open source software (2009)

Rezeck, P.A., Azpurua, H., Chaimowicz, L.: HeRo: An open platform for robotics
research and education. In: Latin American Robotics Symposium (LARS) and
Brazilian Symposium on Robotics (SBR). pp. 1-6. IEEE (2017)

ROS Contributors: gmapping - ROS Wiki, http://wiki.ros.org/gmapping
Trenkwalder, S.M., Lopes, Y.K., Kolling, A., Christensen, A.L., Prodan, R., Gro8,
R.: OpenSwarm: An event-driven embedded operating system for miniature robots.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 4483-4490. IEEE (2016)

West, A., Arvin, F., Martin, H., Watson, S., Lennox, B.: ROS integration for
miniature mobile robots. In: Annual Conference Towards Autonomous Robotic
Systems. pp. 345-356. Springer (2018)

Zhang, Y., Zhang, L., Wang, H., Bustamante, F.E., Rubenstein, M.: SwarmTalk —
Towards Benchmark Software Suites for Swarm Robotics Platforms. In: Proceed-
ings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems. pp. 1638-1646 (2020)

	The Pi-puck Ecosystem: Hardware and Software Support for the e-puck and e-puck2

