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ABSTRACT 7 

The continental terrestrial record preserves an archive of how ancient sedimentary systems 8 

respond to and record changes in global climate. A database-driven quantitative assessment 9 

reveals differences in the preserved sedimentary architectures of siliciclastic eolian systems 10 

with broad geographic and stratigraphic distribution, developed under icehouse versus 11 

greenhouse climatic conditions. Over 5,600 geological entities, including architectural 12 

elements, facies, sediment textures and bounding surfaces, have been analyzed from 34 13 

eolian systems of Paleoproterozoic to Cenozoic ages. Statistical analyses have been 14 

performed on the abundance, composition, preserved thickness, and arrangement of different 15 

eolian lithofacies, architectural elements and bounding surfaces. Results demonstrate that 16 

preserved sedimentary architectures of icehouse and greenhouse systems differ markedly. 17 

Eolian dune, sandsheet and interdune architectural elements that accumulated under icehouse 18 

conditions are significantly thinner relative to their greenhouse counterparts; this is observed 19 

across all basin settings, supercontinents, geological ages, and dune-field physiographic 20 

settings. However, this difference between icehouse and greenhouse eolian systems is 21 

exclusively observed for paleolatitudes <30°, suggesting that climate-induced changes in the 22 

strength and circulation patterns of trade winds may have partly controlled eolian sand 23 
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accumulation. These changes acted in combination with variations in water-table levels, sand 24 

supply and sand transport, ultimately influencing the nature of long-term sediment 25 

preservation. During icehouse episodes, Milankovitch-cyclicity resulted in deposits typified 26 

by glacial accumulation and interglacial deflation. Greenhouse conditions promoted the 27 

accumulation of eolian elements into the geological record due to elevated water tables and 28 

biogenic and chemical stabilizing agents, which could protect deposits from wind-driven 29 

deflation. In the context of a rapidly changing climate, the results presented here can help 30 

predict the impact of climate change on Earth surface processes. 31 

Keywords: Eolian, Database, Icehouse, Greenhouse, Climate 32 

INTRODUCTION 33 

The current rate of release of carbon dioxide into the atmosphere, largely through the 34 

anthropogenic combustion of fossil fuels, is occurring at a geologically unprecedented rate 35 

(Kidder and Worsley, 2011; Andrew, 2020; Peters et al., 2020). The associated changes in 36 

global climate, and the impact of such climate change in terms of its influence on Earth 37 

surface processes, has significant scientific and societal implications (e.g., IPCC, 2007 and 38 

references therein). Quantifying the response of Earth’s geosphere to changes in climate 39 

therefore represents one of the foremost issues faced in modern sedimentology (Hodgson et 40 

al., 2018). Given the paucity of long-term (> 100 years) instrumental records, analysis of the 41 

sedimentary record is critical for understanding the impact of climate change on Earth surface 42 

processes. The continental terrestrial record preserves an archive of how ancient sedimentary 43 

systems respond to, and record, changes in global climate, over time scales far beyond the 44 

range of human experience. Observational evidence from the ancient sedimentary record 45 

therefore provides a means to both quantify past responses and predict future responses of the 46 

Earth’s surface processes to shifts in global climate. 47 
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Throughout geological history, the Earth’s climate can be subdivided into periods 48 

characterized by the presence or absence of major continental ice-sheets and polar ice (Fig. 1) 49 

– two climate states referred to as icehouse and greenhouse, respectively (Frakes et al., 1992; 50 

Price et al., 1998; Cromwell, 1999). The preserved eolian sedimentary record, which spans 51 

over three billion years of Earth history from the Archean to the present day (Clemmensen, 52 

1985; Dott et al., 1986; Voss, 2002; Cather et al., 2008; Simpson et al., 2012; Rodríguez-53 

López et al., 2014) is a valuable archive of the continental landscape response to periodic 54 

fluctuations between icehouse and greenhouse worlds. 55 

A comprehensive global-scale quantitative comparison of the preserved architectures of sand-56 

dominated eolian sedimentary systems (ergs, sensu Wilson, 1973) accumulated and preserved 57 

under icehouse and greenhouse conditions has not been undertaken previously. Prior research 58 

on this topic has been primarily reported in the form of largely qualitative accounts, 59 

commonly for individual case studies or regions from eolian successions associated with 60 

either greenhouse (e.g., Crabaugh and Kocurek, 1993; Kocurek et al., 1992; Jones and 61 

Blakey, 1997; Benan and Kocurek, 2000; Kocurek and Day, 2018) or icehouse (e.g., Cowan, 62 

1993; Meadows and Beach, 1993; Clemmensen and Abrahamsen, 1983) climatic conditions. 63 

In addition to the effects of climate, eolian sedimentary systems are sensitive to a variety of 64 

additional forcings, including rate and type of sediment supply, sea level, tectonic 65 

configuration, basin setting and dune-field physiographic setting (e.g., Blakey and Middleton, 66 

1983; Blakey, 1988; Mountney et al., 1999; Kocurek et al., 2001; Nichols, 2005; Soria et al., 67 

2011). As such, isolating and quantifying the global effects of climate as a control on 68 

sedimentary systems is difficult, especially for individual case studies. To address this 69 

problem, this study uses a global dataset derived from 42 published articles associated with 70 

34 ancient eolian successions (Fig. 1). 71 
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The aim of this study is to quantify relationships between global climate states and preserved 72 

eolian sedimentary architecture at multiple scales of observation. This study addresses three 73 

main research questions: (i) How are the characters of preserved eolian and related 74 

architectural elements, and their bounding surfaces affected by fluctuations in global climate 75 

states? (ii) Does the prevailing global climate influence the sedimentology and stratigraphic 76 

architecture of preserved eolian sedimentary successions? (iii) Can the effects of icehouse 77 

and greenhouse conditions on preserved eolian sedimentary architectures be isolated from 78 

those of supercontinental setting, paleolatitude, basin setting and dune-field physiographic 79 

setting? 80 

Background: an Overview of the Icehouse and Greenhouse Earth 81 

Icehouse and greenhouse conditions account for approximately 15% and 85% of Earth 82 

history, respectively (Fig. 1; Frakes et al., 1992; Crowell, 1999; Link, 2009). Global shifts 83 

between icehouse and greenhouse conditions are caused by the cumulative effects of 84 

astronomical, biogeochemical and tectonic events, which interact with each other and lead to 85 

the development of feedback mechanisms that act to influence global climate. Icehouse and 86 

greenhouse conditions are respectively defined by the presence or absence of major polar ice-87 

sheets that calve marine icebergs (Kidder and Worsley, 2012). Greenhouse conditions can, 88 

however, be associated with seasonal sea ice, alpine glaciers and transient polar ice-caps 89 

(Frakes, 1992; Kidder and Worsley, 2012). 90 

Five major icehouse periods are recognized in Earth history (Fig. 1): the Huronian (2400-91 

2100 Ma; Coleman, 1907; Evans et al., 1997), the Cryogenian (720-635 Ma; Knoll and 92 

Walter, 1992; Bowring et al., 2003; Hoffman et al., 2004), the Late Ordovician and Early 93 

Silurian glaciations, also known as the Andean-Saharan (450-420 Ma; Brenchley et al., 94 

1994), the Late Paleozoic (360-260 Ma; Montanez and Poulsen, 2013; Goddéris et al., 2017), 95 

and the current Cenozoic icehouse conditions that persist today (since 33.9 Ma; Frakes et al., 96 
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1992). The five major icehouse intervals have each lasted for tens of millions of years and are 97 

each associated with mid-latitude glaciation down to sea level (Frakes et al., 1992; Cromwell, 98 

1999). Relative to greenhouse conditions, icehouse conditions are typically associated with: 99 

(i) lower atmospheric levels of carbon dioxide; (ii) lower sea levels and sea-surface 100 

temperatures; (iii) strong thermohaline deep-ocean circulation; (iv) strong marine polar-to-101 

equatorial thermal contrasts; (v) increased wind velocities at low-latitudes (< 30º) leading to 102 

higher wind shear and higher wind-related erosive power (Fig 2; Frakes et al., 1992; 103 

Cromwell, 1999; Forster et al., 2007; Kidder and Worsley, 2010, 2012). 104 

Within long-lived icehouse periods, climatic conditions are known to fluctuate between 105 

glacial and interglacial episodes, which give rise to the waxing and waning of continental 106 

glaciations; these cycles of glacial expansion and retreat are superimposed onto overall 107 

longer-term net icehouse conditions. In the most recent Cenozoic icehouse, glacial and 108 

interglacial cycles occur at quasi-100 kyr intervals, with shorter 41 kyr and 21 kyr quasi-109 

cycles superimposed (Shackleton et al., 1999). The cyclic regularity of glacial and 110 

interglacial periods is attributed dominantly to variations in the Earth’s orbital parameters – 111 

the so-called Milankovitch cyclicity. The effects on the sedimentation of glacial and 112 

interglacial oscillations are well documented in the deep-sea sedimentary record (e.g., Rea 113 

and Janeck, 1981; Hovan et al., 1991; Petit et al., 1991; Winckler et al., 2008). For example, 114 

eolian dust supply to the deep sea is greater under glacial conditions, relative to interglacial 115 

conditions (e.g., Woodard et al., 2011), as a consequence of heightened aridity and stronger 116 

wind strengths during glacial episodes. 117 

METHODOLOGY 118 

Case Studies and Associated Metrics 119 
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Thirty-four case studies, each representing an ancient eolian sedimentary succession (Fig. 1, 120 

Table 1), and associated with detailed datasets from 42 published articles, have been analyzed 121 

using the Database of Aeolian Sedimentary Architecture (DASA). DASA is a relational 122 

database that stores data on a variety of eolian and associated non-eolian entities relating to 123 

different scales, including architectural elements, lithofacies and bounding surfaces. DASA 124 

records both qualitative and quantitative attributes that characterize the type, geometry, 125 

spatial relations, hierarchical relations, temporal significance, and textural and petrophysical 126 

properties of eolian and related depositional units and their bounding surfaces. In this study, 127 

architectural elements, facies elements, textural properties and eolian bounding-surface types 128 

documented from the selected case-study examples are analyzed. 129 

For this investigation, of the 42 scientific articles considered, 24 provide accounts of systems 130 

developed under icehouse conditions and 18 of greenhouse systems. Of the 34 case studies, 131 

20 represent icehouse conditions and 14 represent greenhouse conditions. In total, 5,598 132 

geological entities representing architectural and facies elements, textural observations and 133 

eolian bounding surfaces have been analyzed: 2,772 relate to sedimentary successions 134 

interpreted as having accumulated under the influence of icehouse climatic conditions; 2,826 135 

under greenhouse conditions. Observations can be further categorized as follows: (i) 2,578 136 

eolian and associated non-eolian architectural elements have been analyzed, of which 1,156 137 

and 1,422 architectural elements relate to icehouse and greenhouse case-study systems, 138 

respectively; (ii) 985 eolian facies units have been analyzed, of which 630 and 355 facies 139 

relate to icehouse and greenhouse case-study systems, respectively; (iii) 1,308 textural 140 

observations have been analyzed, of which 749 and 559 relate to icehouse and greenhouse 141 

case-study systems, respectively; (iv) 727 bounding surfaces have been analyzed, of which 142 

237 and 490 relate to icehouse and greenhouse systems, respectively. 143 
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Each examined case study has associated metadata describing its geological background and 144 

the boundary conditions present at the time of deposition; these metadata include the 145 

prevailing climate, basin setting, geologic age and paleosupercontinental setting. Metadata 146 

are derived from the original source work and additional published literature. 147 

Architectural elements are defined as distinct sedimentary bodies with characteristic 148 

sedimentological properties (e.g., internal composition, geometry), and are the products of 149 

deposition in a specific sub-environment (e.g., a dune, a wet interdune, or a fluvial channel; 150 

for definitions see Table 2). Facies elements are defined as sedimentary bodies differentiated 151 

on the basis of sediment composition, texture, structure, bedding geometry, fossil content, or 152 

by the nature of their bounding surfaces (cf. Colombera et al., 2012, 2016). 153 

At the scale of architectural and facies elements, each element is assigned an interpretation 154 

derived from the original source work (e.g., a dune set at the architectural-element scale, or 155 

adhesion strata at the facies-element scale). For each architectural and facies element, 156 

geometric properties (element thickness, length and width) are also recorded. However, in 157 

this investigation, the only geometric parameter considered in detail is the thickness of the 158 

deposit. 159 

The textural properties considered here are grain size, sorting and roundness. For all textural 160 

properties, if a numerical value is not assigned in the original source work, but a descriptive 161 

term is provided (e.g., fine-grained sand), classes are converted into numerical values 162 

according to the schemes of Folk and Ward (1957) for grain size and sorting, and to the 163 

Krumbein scale of roundness (Krumbein, 1941). 164 

The following types of qualitative data regarding super-bounding surfaces (supersurfaces) are 165 

considered here: (i) a classification of surface type (i.e., environmental significance) 166 

according to the schemes of Fryberger (1993) and Kocurek (1996); (ii) the association of 167 
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features (sedimentary structures) indicative of substrate conditions (e.g., dry, damp, wet) and 168 

associated with the state of the surface; and (iii) the occurrence of features indicative of 169 

surface stabilization (e.g., Ahlbrandt et al., 1978; Loope, 1988; Basilici et al., 2009, 2020; 170 

Dal' Bo et al., 2010; Krapovickas et al., 2016). 171 

Dating Ancient Eolian Successions 172 

Ancient eolian successions can be difficult to date in absolute terms due to a general paucity 173 

of features suitable for numerical age-dating (Rodríguez-López et al., 2014). As such, 174 

determining the time when an eolian succession accumulated can be challenging. Some 175 

eolian deposits closely associated with (i) extrusive volcanics, (ii) fossil-rich marine 176 

interbeds, or (iii) abundant micro-fossils present in the eolian deposits themselves, can be 177 

dated and assigned a geochronometric or biostratigraphic age. More commonly, however, 178 

only a relative age can be established, such that eolian successions might be interpreted in 179 

terms of sequence-stratigraphic or climate-stratigraphic contexts (e.g., Mountney and Howell, 180 

2000; Atchley and Loope, 1993; Jordan and Mountney, 2010, 2012). Many eolian 181 

successions contain surfaces that are thought to represent and record multiple long-lived 182 

depositional hiatuses in accumulation, associated with the formation of supersurfaces (e.g., 183 

Loope, 1985). For many eolian systems, the amount of time represented by such 184 

supersurfaces is likely significantly greater than that represented by the eolian accumulations 185 

themselves; eolian successions may be representative of only a small amount of the total 186 

geological time over which the eolian system was active (Loope, 1985; cf. Ager, 1993; 187 

Sadler, 1981). The preserved sedimentary record of eolian systems is highly fragmentary and 188 

age ranges of eolian deposits reported in the literature may be over- or under-estimates; 189 

accurately determining the ages of ancient eolian successions represents therefore an 190 

unavoidable caveat. 191 
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For this analysis, examined case studies have been assigned to a binary ‘icehouse’ or 192 

‘greenhouse’ classification scheme. Despite the above-discussed limitations on dating eolian 193 

successions, given that major icehouse and greenhouse episodes span (many) tens of millions 194 

of years, placing eolian successions within in an ‘icehouse’ or ‘greenhouse’ category can be 195 

achieved with confidence; this study requires only that the age-range of each eolian 196 

succession considered in the analysis generally falls within episodes classed as icehouse or 197 

greenhouse climate states (Frakes et al., 1992; Crowell, 1999; Link, 2009). As such, precise 198 

absolute ages for eolian successions considered in this analysis are not crucial. 199 

Determining the age-ranges of Precambrian eolian successions can, however, be more 200 

challenging, since their ages are typically more difficult to constrain (e.g., Pulvertaft, 1985; 201 

Simpson et al., 2012) and they cannot necessarily be reliably assigned to an ‘icehouse’ or 202 

‘greenhouse’ climate category. Only Precambrian eolian successions with age-ranges that fall 203 

into to an ‘icehouse’ or ‘greenhouse’ category have been included in the analysis. In the 204 

analysis and discussion all Precambrian icehouse examples are compared against all 205 

Precambrian greenhouse examples.  206 

There also exist eolian successions that record evidence of system development in a 207 

transitional state between icehouse and greenhouse worlds (see Eriksson et al., 2019). Such 208 

examples cannot readily be assigned to the binary icehouse-greenhouse classification scheme 209 

used in this study. Given that the focus of this study on the eolian sedimentary signature of 210 

climate extremes, examples of these “transitional" eolian successions have not been included 211 

in this investigation. 212 

Carbonate Eolian Systems 213 

In this investigation, siliciclastic-dominated eolian successions have been studied; carbonate-214 

dominated eolian successions are not considered. Carbonate-dominated eolian successions 215 
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(eolianites) most commonly develop along humid, mid-high latitude coasts, and along arid to 216 

semi-arid, mid-low latitude coasts that neighbor carbonate platforms (Clemmensen et al., 217 

1997; Brooke, 2001; Nielsen et al., 2004; Simpson et al., 2004; Frébourg et al., 2008; Fornós 218 

et al., 2009; Andreucci et al., 2010). Carbonate-dominated eolian successions commonly 219 

undergo early post-depositional modification, notably via the precipitation of early diagenetic 220 

calcitic cements, which can readily stabilize original dune topography (Pye, 1983; Simpson et 221 

al., 2004; Guern and Davaud, 2005). As such, processes of deflation, construction, 222 

accumulation and preservation in carbonate eolian systems are markedly different to those of 223 

most siliciclastic eolian systems. In particular, dune deflation can be retarded, and dune 224 

stabilization and accumulation can be enhanced by early diagenetic cementation. 225 

Mechanisms of preservation of carbonate-dominated eolian deposits in relation to prevailing 226 

climatic and sediment supply conditions differ considerably from those of siliciclastic-227 

dominated systems (Rodríguez- López et al., 2014). For these reasons, this study only 228 

considers siliciclastic-dominated eolian systems and their deposits. 229 

Statistical Analysis 230 

Quantitative data, including element thickness, grain size, sorting and grain roundness have 231 

been subject to statistical analysis. One-tail t-tests have been undertaken to determine if a 232 

significant difference exists between the means of icehouse and greenhouse groups. To test 233 

for statistical significance of differences among multiple groups (i.e. for the example 234 

considering multiple supercontinents under greenhouse conditions), analysis of variance 235 

(ANOVA) is applied. Post-hoc tests, using a Bonferroni correction, are applied to t-tests and 236 

ANOVA tests alike. An α value of 0.05 is considered for all statistical analyses; a family-237 

wise alpha is considered when applying the Bonferroni correction. 238 

RESULTS 239 
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Table 3 provides a summary of results of statistical analyses discussed in the text; this 240 

includes mean, median, standard deviation, and number of observations for variables of 241 

interest (eolian and related element thicknesses, grain size, sorting and roundness), and the 242 

results of statistical tests. In the text, for brevity only mean values are reported. 243 

Eolian Elements 244 

Differences in the characteristics of eolian and associated non-eolian architectural elements 245 

are considered first (Table 2). The relative proportion of types of eolian and non-eolian 246 

architectural elements is determined based on total element counts: eolian architectural 247 

elements form 63% and 62% of architectural elements in the studied successions accumulated 248 

under icehouse and greenhouse conditions, respectively (Fig. 3A). For all architectural 249 

elements classified as ‘eolian’ (Table 2), statistically significant differences in element 250 

thickness are found; icehouse eolian architectural elements are significantly thinner than 251 

greenhouse eolian elements, with mean values of element thickness of 2.36 m and 5.47 m, 252 

respectively (Fig. 4A; Table 3). 253 

Of the total recorded eolian architectural elements, the percentages of elements classified as 254 

‘dune set’, ‘sandsheet’ and ‘interdune’ are considered further (Fig. 3B; for definitions see 255 

Table 2). Dune sets form 62% and 82% of all recorded observations for icehouse and 256 

greenhouse eolian successions, respectively (Fig. 3B). Sandsheets form 20% and 12% of 257 

icehouse and greenhouse eolian successions, respectively (Fig. 3B). Interdunes form 18% and 258 

4% of the icehouse and greenhouse successions, respectively (Fig. 3B). All three major eolian 259 

architectural element types (dune sets, sandsheets and interdunes) show statistically 260 

significant differences in mean element thickness (Fig. 4B-D; Table 3). Under icehouse 261 

conditions, dune sets, sandsheets and interdunes have mean thicknesses of 3.67 m, 0.55 m 262 

and 0.88 m, respectively (Table 3). Under greenhouse conditions, dune sets, sandsheets and 263 
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interdunes have mean thicknesses of 5.93 m, 4.15 m and 2.00 m, respectively (Fig. 4B-D; 264 

Table 3). 265 

Interdune elements are considered further and subdivided into ‘wet’, ‘damp’, and ‘dry’ types 266 

(sensu Kocurek, 1981) (Fig. 5A; for definitions see Table 2). In successions developed under 267 

icehouse conditions, 15% of interdune elements are of wet type, 48% are of damp type, and 268 

37% are of dry type. In greenhouse successions, 60% of interdune elements are of wet type, 269 

30% are of damp type, and 10 % are of dry type (Fig. 5A). 270 

Non-Eolian Architectural Elements 271 

The percentage of recorded non-eolian architectural elements reported for the studied 272 

successions is similar across icehouse and greenhouse successions, forming 37% and 38% of 273 

recorded observations, respectively (Fig. 3C). Under both icehouse and greenhouse 274 

conditions, alluvial and fluvial deposits are the most common non-eolian element types. 275 

Greenhouse successions are associated with a greater percentage of sabkha elements (14% vs 276 

1%). Across icehouse and greenhouse successions, there is no statistically significant 277 

difference in the mean thickness of non-eolian architectural elements of any type (Table 3). 278 

Eolian Facies Elements 279 

In greenhouse successions, interdune elements of any type are most likely composed of 280 

adhesion strata (92%) and plane-bed lamination (8%) (Fig. 5B). In icehouse successions, a 281 

greater variety of facies-element types are recorded, including adhesion strata (38%), 282 

subaqueous ripples (27%), plane-bed lamination (19%), wind-ripple lamination (14%) and 283 

deflation-lag strata (2%). Icehouse sandsheet elements are dominated by adhesion strata 284 

(30%), deflation-lag strata (28%) and wind-ripple strata (27%), whereas greenhouse 285 

sandsheet elements mostly comprise wind-ripple strata (61%) and interfingered strata (30%) 286 

(Fig. 5C; interfingered strata comprise intercalated deposits of wind-ripple, grainflow, 287 
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grainfall and/or plane-bed strata in varying proportions – Table 2). In icehouse successions, 288 

facies elements of any type are significantly thinner than those in greenhouse successions 289 

(mean thickness of 2.20 m vs 7.53 m; Fig. 4E; Table 3). For descriptions of facies units see 290 

Table 2. 291 

Eolian Texture 292 

The textural properties of all eolian architectural and facies elements are now considered. 293 

Systems developed under icehouse and greenhouse conditions have mean values of modal 294 

grain size of 0.34 mm and 0.36 mm (both medium sand; Fig. 6A); the difference between 295 

these values is not statistically significant (Table 3). Icehouse systems are characterized by a 296 

higher median value of modal grain size of 0.38 mm (medium sand), relative to 0.25 mm 297 

(fine-to-medium sand) for greenhouse systems (Fig. 6A). 298 

In both icehouse and greenhouse systems, eolian sands are, on average, moderately well 299 

sorted (icehouse = 0.57 σ, greenhouse = 0.58 σ; Fig. 6B); there is no statistically significant 300 

difference between mean values of sorting (Table 3). There is, however, a statistically 301 

significant difference in mean values of grain roundness between icehouse (mean = 0.57 K: 302 

rounded) and greenhouse (mean = 0.77 K: well-rounded) eolian sands (Fig. 6C) (Table 3). 303 

Thus, greenhouse conditions are associated with increased sand-grain textural maturity 304 

relative to icehouse conditions. 305 

Eolian Surfaces 306 

Eolian supersurfaces are recorded from 12 systems; 6 each represent icehouse and 307 

greenhouse conditions. 308 

Supersurface Spacing 309 

The average supersurface spacing is calculated by measuring the vertical distance between 310 

two successive supersurfaces. Under icehouse conditions the mean spacing is 16.34 m 311 
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(standard deviation = 12.70 m; Table 3); under greenhouse conditions the mean spacing in 312 

9.07 m (standard deviation = 6.34 m; Table 3). This indicates that supersurfaces are more 313 

widely spaced under icehouse conditions relative to greenhouse conditions; however, 314 

icehouse supersurfaces exhibit greater variability in supersurface spacing. 315 

Supersurface Descriptions 316 

Supersurfaces present in icehouse successions are classified dominantly as deflationary 317 

(88%) and subordinately as bypass surfaces (12%) (Fig. 7A). In greenhouse systems, 318 

deflationary and bypass supersurfaces form 67% and 33% of recorded supersurfaces, 319 

respectively (Fig. 7A). The nature of the substrate associated with the supersurfaces also 320 

varies considerably between icehouse and greenhouse examples. Icehouse supersurfaces are 321 

dominantly associated with features indicative of a wet surface (86%) and only rarely of a 322 

damp (6%) or dry (8%) surface. By contrast, in greenhouse successions, dry, damp and wet 323 

surface types are associated with 12%, 24% and 64% of recorded supersurfaces, respectively 324 

(Fig. 7B). When the nature of stabilization of supersurfaces is considered, 62% of icehouse 325 

supersurfaces are classified as unstabilized and 38% as stabilized; for greenhouse conditions, 326 

unstabilized and stabilized supersurfaces comprise 85% and 15% of recorded supersurfaces, 327 

respectively (Fig. 7C). 328 

Non-Climatic Controls 329 

In addition to climate, other controls might influence the preserved style and geometry of 330 

sedimentary architectures in eolian systems (e.g., Blakey and Middleton, 1983; Blakey, 1988; 331 

Mountney et al., 1999; Kocurek et al., 2001; Nichols, 2005; Soria et al., 2011). To better 332 

discriminate the influence of icehouse and greenhouse conditions, these other factors must be 333 

considered. To this end, where data are available, comparisons between icehouse and 334 

greenhouse conditions are made for: (i) specific paleogeographical configurations and 335 
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geological age, (ii) basin setting, (iii) paleolatitude, and (iv) dune-field (erg) physiographic 336 

setting. In the following analyses, the thicknesses of eolian architectural elements (cross-337 

strata packages, dune sets, dune cosets, dune compound sets, sandsheets and interdunes) are 338 

considered. 339 

Paleogeography and Geological Age 340 

Two supercontinental paleogeographic configurations spanned both icehouse and greenhouse 341 

times: those associated with Precambrian supercontinents (Rodinia and Columbia), and 342 

Pangea; the number of case studies falling into these categories are 6 and 11, respectively. 343 

When evaluated separately for the Precambrian and Pangean supercontinental settings, 344 

statistically significant differences between the mean thickness of eolian architectural 345 

elements deposited under icehouse and greenhouse conditions are seen (Table 3). The mean 346 

thickness of Precambrian architectural elements is 1.43 m and 5.03 m for icehouse and 347 

greenhouse successions, respectively (Fig. 8A), whereas the mean thickness of Pangean 348 

architectural elements is 3.41 m and 6.85 m for icehouse and greenhouse conditions, 349 

respectively (Fig. 8A; Table 3). 350 

Basin Setting 351 

Of the case-study examples examined in this study, eolian systems deposited under icehouse 352 

and greenhouse conditions are both recognized in the infill of sedimentary basins classified as 353 

intracratonic (sag) basins, continental rifts, and foreland basins (for definitions see Table 2); 354 

the number of case studies falling into these categories are 17, 4, and 3, respectively. For each 355 

of these basin types, there exists a statistically significant difference between the mean values 356 

of the thicknesses of eolian architectural elements deposited under icehouse and greenhouse 357 

conditions (Table 3). Architectural elements accumulated under icehouse conditions in 358 

intracratonic, rift and foreland basins yield mean thickness values of 1.73 m, 0.70 m and 2.11 359 
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m, respectively (Fig. 8B). Greenhouse architectural elements in intracratonic, rift and 360 

foreland basins instead return mean thickness values of 7.63 m, 2.48 m and 4.23 m, 361 

respectively (Fig. 8B; Table 3). 362 

Paleolatitude 363 

Paleolatitudes of eolian systems in this study are subdivided into the following categories: 0-364 

15°, 16-30°, 31-45°, and 46-60°; the number of case studies falling into these categories are 365 

11, 12, 5, and 4, respectively. A statistically significant difference is seen between icehouse 366 

and greenhouse eolian architectural element thicknesses for both paleolatitude ranges of 0-367 

15° and 16-30° (Table 3). The mean thickness of eolian architectural elements deposited in 368 

paleolatitudes of 0-15° are 2.60 m and 6.38 m for icehouse and greenhouse systems, 369 

respectively (Fig. 8C, 9). The mean thickness of eolian architectural elements deposited in 370 

paleolatitudes of 16-30° are 2.72 m and 6.40 m for icehouse and greenhouse systems, 371 

respectively (Fig. 8C, 9). However, for systems from paleolatitudes >30°, no statistically 372 

significant difference is seen in mean eolian architectural element thickness (Table 3). 373 

Dune-Field (Erg) Physiographic Setting 374 

Major sand seas (ergs) can be subdivided into three generalized environmental sub-375 

components: back-, central- and fore-erg (sensu Porter, 1986); the number of case studies 376 

falling into these categories are 8, 10, and 4, respectively. When these three dune-field 377 

settings are separately analyzed, a statistically significant difference in mean eolian 378 

architectural element thickness is observed in each erg-setting between icehouse and 379 

greenhouse conditions (Table 3). Back-erg settings record mean eolian architectural element 380 

thicknesses of 1.65 m and 2.92 m for icehouse and greenhouse conditions, respectively (Fig. 381 

8D). Central-erg settings record mean eolian architectural element thicknesses of 3.39 and 382 

12.83 m for icehouse and greenhouse conditions, respectively (Fig. 8D). Fore-erg settings 383 
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record mean eolian architectural element thicknesses of 1.87 m and 6.36 m for icehouse and 384 

greenhouse conditions, respectively (Fig. 8D). 385 

DISCUSSION 386 

Prevailing climatic conditions influence the caliber of sediment and the rate of its supply, 387 

sediment availability for eolian transport, water-table fluctuations, and wind regimes 388 

(variability and strength), all of which themselves control resultant eolian sedimentary 389 

architecture (Kocurek, 1998; Clarke and Rendell, 1998; Mountney et al., 1999; Nichols, 390 

2005). The observed differences in preserved eolian-element thickness are interpreted to arise 391 

from the prevailing climatic conditions associated with icehouse and greenhouse worlds. The 392 

relative thicknesses of eolian successions are also dependent on the availability of 393 

accommodation, and the rate at which it is created whilst a system is active. Different basin-394 

types are associated with variable rates of accommodation generation (Gregory, 1894; 395 

Rosendahl, 1987; Middleton, 1989; Schlische, 1993; Einsele, 2013); the effects of basin type 396 

and accommodation is discussed in section ‘Basin Configuration’ below. 397 

Icehouse Conditions 398 

When dune sets, sandsheets and interdunes are considered, all are significantly thinner in 399 

successions accumulated under icehouse conditions, relative to those relating to greenhouse 400 

conditions. Icehouse conditions are associated with orbitally controlled oscillations 401 

(Milankovitch cycles: Milankovitch, 1941; Wanless and Shepard, 1936; Dickinson et al., 402 

1994) between drier and windier glacials, favoring eolian-dune construction (Loope, 1985; 403 

Mountney, 2006) – and more humid interglacials, favoring dune deflation (Rea and Janeck, 404 

1981; Hovan et al., 1991; Petit et al., 1991; Kocurek, 1999; Kocurek and Lancaster, 1999; 405 

Winckler et al., 2008; Woodard et al., 2011). The observation of consistently thinner eolian 406 

deposits in the icehouse stratigraphic record, relative to their greenhouse counterparts, is 407 



 

18 

 

attributed to the interactions between these constructive and destructive phases, which 408 

operate on timescales of ca. 100-400 kyr (Wanless and Shepard, 1936; Loope, 1985; 409 

Dickinson et al., 1994). 410 

A Sequence of Eolian Accumulation and Deflation 411 

Eolian accumulation and deflation during icehouse times can be described as follows. 412 

Globally, shifts from interglacial to glacial periods tend to be associated with the 413 

establishment of more arid conditions, an increase in wind speeds at trade-wind latitudes, and 414 

a relative fall in the level of regional water tables (Figs. 2, 10A; Rea and Janeck, 1981; Hovan 415 

et al., 1991; Petit et al., 1991; Winckler et al., 2008; Woodard et al., 2011). During the initial 416 

phase of glacial waxing and associated marine regression (i.e. equivalent to a falling-stage 417 

systems tract; Plint and Nummedal, 2000), large volumes of sediment are made available for 418 

potential eolian transport due to the exposure of areas of the continental shelf, and due to 419 

water-table falls that favor the eolian remobilization of continental deposits (Loope, 1985; 420 

Kocurek et al., 2001). The combination of an increase in the availability of sediment for 421 

eolian transport and an increase in the potential sand-carrying capacity of the wind brought 422 

about by increased wind velocity promotes an initial phase of eolian system construction and 423 

accumulation (Kocurek, 1999; Kocurek and Lancaster, 1999). At this stage, accumulating 424 

eolian systems tend to be dominated by sandsheets, associated with intermittent high-speed 425 

wind conditions (Clemmensen, 1991), and by relatively thin dune sets, produced by the 426 

repeated cannibalization of trains of dunes climbing at relatively low angles (Fig. 10A; 427 

Mountney, 2006). Thus, sandsheets are expected to form a significantly greater percentage 428 

(20% vs 12%) of observed icehouse eolian elements, relative to greenhouse successions. 429 

As glacial conditions continue (at a time equivalent to that of the lowstand systems tract; cf. 430 

Van Wagoner et al., 1990), the increasing aridity drives a further lowering of the water table 431 
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and the progressive loss of vegetation (in eolian systems deposited after the evolution of 432 

vascular land plants). This leads to the exposure of even larger sediment volumes, which are 433 

made available for entrainment and transport by strong trade winds with high sediment-434 

carrying capacities (Kocurek, 1998). The relative increase in aridity and windiness controls 435 

both the availability of sediment for eolian transport and the transport capacity of the wind 436 

(Fig. 2; cf. Sarnthein 1978; Anton 1983; Mainguet and Chemin 1983; Lancaster 1989, 1990; 437 

Kocurek and Lancaster, 1999). Given these conditions, eolian sediment transport (flux) is 438 

large. As sand-saturated air decelerates within a sedimentary basin in which unfilled 439 

accommodation is available, large volumes of sand may be deposited rapidly; this promotes 440 

the accumulation of thicker dune-sets, relative to those deposited at the onset of an eolian 441 

accumulation episode (Fig. 10B; Wilson, 1971, 1973; Middleton and Southard, 1984; 442 

Kocurek, 1991; Mountney, 2006). However, the ultimate preservation potential of these 443 

thicker dune-sets may be relatively limited (see below). 444 

As a glacial episode continues further, the upwind supply of sand is eventually exhausted 445 

(Loope, 1985; Mountney, 2006). An upwind exhaustion of the sediment supply results in the 446 

under-saturation of the airflow with respect to its potential sand-carrying capacity. This, in 447 

combination with the highly erosive trade winds (which can be up to 60% more erosive than 448 

they are under greenhouse conditions; Fig. 2; Kidder and Worsley, 2010, 2012) causes a 449 

switch to net deflationary conditions around a time of maximum aridity when water tables are 450 

low (Fig. 10C; Loope, 1985; Rubin and Hunter, 1982; Kocurek and Havholm, 1993; 451 

Kocurek, 1999). Erosional conditions result in the commencement of erg deflation and 452 

destruction (Wilson, 1973; Pye and Lancaster, 2009; Mountney, 2006; Bállico et al., 2017). 453 

During the initial phase of glacial waning and associated onset of marine transgression, eolian 454 

deflation of the dune-sets comprising the uppermost units of an accumulated eolian 455 

succession continues (Fig. 10D; timing equivalent to that of the transgressive systems tract; 456 
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cf. Van Wagoner et al., 1990). The onset of interglacial conditions is associated with a 457 

relative rise in sea level, a rise in the water table and re-colonization of the accumulation 458 

surface by vegetation. Cumulatively, these factors, in combination with weakened trade-wind 459 

strengths, reduce the volume of sediment susceptible to deflation, and the sediment transport 460 

capacity of the wind (Kocurek, 1991; Mountney, 2006). Water tables rise above the level of 461 

the thin dune sets and sandsheet deposits forming the lower parts of glacial eolian successions 462 

(Fig. 10D), thereby enhancing their long-term preservation potential. 463 

As the interglacial proceeds (timing equivalent to that of the highstand systems tract; cf. Van 464 

Wagoner et al., 1990), the strength of trade winds continues to decrease (Fig. 2). The overall 465 

reduction in both sediment-transport capacity and sediment supply rates make interglacial 466 

eolian systems both supply- and transport-limited (cf. Kocurek and Lancaster, 1999). 467 

Deflation progresses to the level of the water table (Stokes, 1968), generating a supersurface 468 

(equivalent to a sequence boundary; cf. Van Wagoner et al., 1990), potentially associated 469 

with surface stabilization resulting from colonization by vegetation or microbial 470 

communities, by chemical precipitates, or by fluvial inundation (Fig. 10D; Loope, 1988; 471 

Kocurek, 1991; Dott, 2003; Basilici et al., 2009, 2020; Eriksson et al., 2000; Dal' Bo et al., 472 

2010; Simpson et al., 2013). The timing of eolian supersurface formation can span a 473 

protracted length of time, and its culmination can vary in timing from late in a glacial episode 474 

to a point of maximum humidity during an ensuing interglacial episode (i.e. associated with 475 

the highstand systems tract). Thus, the timing of supersurface formation may contrast with 476 

that of sequence boundary formation in marine environments, which typically occurs during 477 

the falling-stage and early lowstand systems tracts (cf. Mitchum, 1977). 478 

As the interglacial continues, eolian accumulation remains limited. This is due to the 479 

cumulative effects of elevated water tables and increased vegetation cover (in eolian systems 480 

deposited after the evolution of vascular land plants), which act to limit sediment availability 481 
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(Fryberger et al., 1990; Kocurek and Havholm, 1993; Kidder and Worsley, 2010), and 482 

weaker wind strengths, which act to limit sediment transport capacity (Kocurek, 1999). This 483 

cycle of eolian accumulation recommences when climatic conditions tip back into windier, 484 

more arid glacial conditions (Fig. 10E-G). 485 

The process of deflation preferentially erodes the lager dune sets occurring in the upper part 486 

of eolian successions that accumulated during glacial episodes; the thinner dune-sets and 487 

sandsheets forming the lower parts of such successions are less prone to deflation, since the 488 

concomitant rise in the water table can lead to their permanent preservation in the 489 

stratigraphic record (Fig. 10D; Kocurek and Havholm, 1993; Mountney and Russell, 2009; 490 

Mountney 2006). The preservation of relatively thicker dune-sets, associated with peak 491 

aridity during glacial times, may be limited to times and tectonic contexts of rapid 492 

subsidence. On the basis of this evolutionary model, the significantly reduced thickness of 493 

icehouse – relative to greenhouse – eolian architectural elements (i.e. dune-sets, sandsheets 494 

and interdunes) in the geological record is explained by their reduced preservation potential 495 

over Milankovitch timescales (100-400 kyr). 496 

Icehouse Deflation 497 

During icehouse glacial episodes, generally more arid landscapes are associated with 498 

relatively depressed water tables. As such, accumulating eolian successions are less likely to 499 

be permanently sequestered beneath the water table, and are therefore prone to deflation by 500 

strengthened low-latitude trade winds (Kocurek and Havholm, 1993). Such episodes are also 501 

generally associated with a reduced presence of stabilizing agents on the Earth’s surface (e.g., 502 

vegetation and biogenic and evaporitic crusts), leaving eolian deposits exposed to potential 503 

erosion (Loope, 1988; Kocurek, 1991; Basilici et al., 2009, 2020; Dal' Bo et al., 2010). 504 
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The propensity of icehouse conditions to drive significant wind erosion following the 505 

cessation of eolian accumulation is supported by the dominance of deflationary 506 

supersurfaces, which are more common under icehouse conditions, relative to greenhouse 507 

conditions (deflationary supersurfaces represent 88% and 67% of classified supersurfaces in 508 

icehouse and greenhouse systems, respectively). The formation of deflationary supersurfaces 509 

with associated wet-surface features indicates that conditions of net accumulation are related 510 

to cyclic changes to net-erosional conditions, associated with eolian cannibalization and 511 

deflation down to the water table (Stokes, 1968; Loope, 1985; Mountney and Jagger, 2004; 512 

Mountney, 2006). This is the case for the icehouse Cedar Mesa Sandstone and many other 513 

Permo-Carboniferous deposits across North America, in which erg sequences are capped by 514 

regionally extensive deflationary, supersurfaces with associated sedimentary structures that 515 

indicate deflation to the paleo-water table (Loope, 1985; Fryberger, 1993; Mountney and 516 

Jagger, 2004; Mountney, 2006). 517 

Greater rates of eolian winnowing under icehouse conditions are indicated by the higher 518 

number of observations of sandsheet elements. Sandsheets can represent remnants of eroded 519 

landforms of originally higher relief; their occurrence can reflect eolian deflation, whereby 520 

the winnowing of finer-grained sand leaves behind a coarser lag (Nielsen and Kocurek, 1986; 521 

Pye and Tsoar, 1990; Mountney and Russell, 2004, 2006). It is therefore significant that 522 

deflationary lag strata form a common facies type in icehouse sandsheet deposits, but are a 523 

comparatively rare component of greenhouse sandsheet deposits. The evidence of heightened 524 

eolian deflation of sandsheets accumulated under icehouse conditions suggests that in this 525 

global climate regime the cannibalization of eolian deposits was more common, in accord 526 

with the preservation of relatively thinner eolian architectural elements (dune sets, 527 

sandsheets, interdunes). The preferential cannibalization of eolian systems under icehouse 528 
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conditions indicates a propensity for these systems to develop a negative sediment budget 529 

(likely due to exhaustion of an upwind eolian sediment supply). 530 

The greater propensity for icehouse eolian systems to experience post-depositional deflation 531 

is supported by the textural analysis of icehouse and greenhouse deposits. Overall, analysis of 532 

sediment textures reveals that icehouse deposits are less texturally mature, have higher mean 533 

values of modal grain sizes, are relatively more poorly sorted, and have grains that are 534 

significantly more angular. The reduced textural maturity of icehouse sediments may be 535 

attributed to the relatively coarse and angular nature of grains that constitute a winnowed lag 536 

left being during the development of sandsheet elements (Nielsen and Kocurek, 1986; Pye 537 

and Tsoar, 1990; Mountney and Russell, 2004, 2006). However, the differences in grain size 538 

and sorting are not sufficiently large to be considered statistically significant; this finding is 539 

congruous with the highly discriminant nature of sediment transport by wind (Bagnold, 540 

1941), which may generate a relatively well-sorted sediment source prior to deflation. 541 

Greenhouse Conditions 542 

The fact that dune-set, sandsheet and interdune architectural elements are significantly thicker 543 

in successions accumulated under greenhouse conditions, relative to those relating to 544 

icehouse conditions (Fig. 4) is attributed to their greater preservation potential over 100-400 545 

kyr timescales. Relative to icehouse conditions, greenhouse Earth provides favorable 546 

conditions for the rapid incorporation of eolian elements into the geological record. 547 

Greenhouse conditions are associated with high eustatic levels and more-humid conditions, 548 

which generally promote elevated water tables situated close to the accumulation surface 549 

(Kocurek et al., 2001; Cowling, 2016). 550 

Although the greenhouse geological record testifies to temporal variations in humidity (e.g., 551 

Sames et al., 2020), the greenhouse Earth did not generally experience large-magnitude shifts 552 
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in global climate, relative to the glacial-interglacial oscillations of icehouse periods. As such, 553 

greenhouse conditions are generally associated with consistently elevated water tables, which 554 

experience only minor temporal changes in elevation relative to the accumulation surface 555 

(Fig. 11). Consistently elevated water tables can effectively sequester eolian successions; 556 

accumulating eolian successions are rapidly buried beneath the level of the water table, in 557 

response to progressive but gradual subsidence, and are accordingly protected from potential 558 

deflation by the wind, leading to the long-term accumulation of eolian systems (Fig. 11; 559 

Kocurek and Havholm, 1993; Mountney and Russell, 2009). Elevated water-table conditions 560 

are supported by the greater proportion of ‘wet’ interdune and ‘sabkha’ elements in 561 

greenhouse eolian successions (Evans, et al., 1964; Purser and Evans, 1973; Fryberger et al., 562 

1990; Kocurek and Havholm, 1993; Garcia-Hidlago, 2002). 563 

Elevated water tables interact with the accumulation surface to generate damp and wet 564 

substrates that inhibit the deflation of eolian sand deposits; greater threshold velocities are 565 

required to entrain wet or damp sand due to capillary water tension (Chepil, 1956; Bisal and 566 

Hsieh, 1966; Azizov, 1977). Humid, shallow water-table conditions may also promote the 567 

colonization of eolian substrates by vegetation or biogenic films or crusts in some 568 

paleoenvironmental settings (Basilici et al., 2020). Vegetation can limit the mobility of 569 

channelized river systems, which can potentially erode contiguous adjacent eolian deposits 570 

(Davies and Gibling, 2010; Reis et al., 2020; Santos et al., 2017, 2020). Moreover, vegetation 571 

can play a crucial role in dune construction and stabilization; vegetation disrupts primary 572 

airflows in the near-surface layer, decelerating winds and leading to the fall-out from the 573 

airflow of airborne sand grains (Kocurek and Nielsen, 1986), thereby promoting deposition; 574 

once deposited, vegetation can effectively trap eolian sediment, protecting it from re-575 

suspension and potential erosion (Byrne and McCann, 1990; Ruz and Allard, 1994). The 576 
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precipitation of early diagenetic cements around plant-root structures in eolian sand can 577 

further stabilize eolian surfaces (Mountney 2006). 578 

The role of vegetation is only relevant for icehouse and greenhouse systems deposited after 579 

ca. 420 Ma, when vascular land plants became widespread (Gifford and Foster, 1989; 580 

Rainbird, 1992; Long, 2006; Davies and Gibling, 2010). However, the statistically significant 581 

difference in mean eolian architectural element thickness for icehouse and greenhouse 582 

conditions is also present in pre-vegetation Precambrian settings (see section ‘Precambrian 583 

Supercontinent’). It can therefore be inferred that vegetation may play a contributing, but not 584 

crucial, role in determining eolian element thickness. Prior to the evolution of land plants, 585 

other biotic stabilizing agents likely played a role in limiting eolian winnowing, notably the 586 

presence of microbial films and crusts (e.g., Basilici et al., 2020). 587 

The inference of the role played by stabilizing agents and higher water tables in minimizing 588 

eolian deflation is supported by the nature of supersurfaces seen in greenhouse systems, 589 

which are less likely to be deflationary than those formed under icehouse conditions (Fig. 590 

7A). Greenhouse supersurfaces may be more likely to develop due to changes in depositional 591 

environment, such as fluvial inundation (Fig. 11), or the development of sabkha elements. 592 

The close proximity of the water table to the surface is interpreted to result in more closely 593 

spaced supersurfaces in greenhouse eolian successions. 594 

Non-Eolian Elements 595 

Non-eolian elements, which interdigitate with eolian elements to varying degrees, and which 596 

form over a third of all recorded element types by number of occurrences (comprising 37% 597 

and 38% of icehouse and greenhouse successions, respectively) in otherwise eolian-598 

dominated successions, do not show a statistically significant difference in mean thickness 599 

between icehouse and greenhouse conditions. This might indicate that, within dominantly 600 
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eolian systems, the thicknesses of interdigitated non-eolian elements are not primarily 601 

controlled by factors that are inherent to icehouse and greenhouse climatic conditions. This 602 

supports the idea that variations in eolian element thicknesses noted between icehouse and 603 

greenhouse systems are largely due to the effects of changes in wind strength as a driver of 604 

eolian accumulation and deflation. Many non-eolian elements are associated, to varying 605 

degrees, with deposition in aqueous environments and are therefore unaffected or slightly 606 

affected by changes in wind speed, strength and erosive power. 607 

Other Boundary Conditions 608 

Supercontinental Setting 609 

The paleogeographic configuration and distribution of land masses has influenced sea level, 610 

global temperatures and patterns of atmospheric circulation. Only two paleogeographic states 611 

have existed in Earth history than spanned both icehouse and greenhouse conditions: the 612 

Precambrian and Pangean supercontinental configurations. When icehouse and greenhouse 613 

conditions are separately compared for these two supercontinental settings, the same 614 

statistical differences in eolian element thicknesses persist, such that eolian deposits 615 

associated with icehouse conditions are significantly thinner than those associated with 616 

greenhouse conditions. This suggests that the prevailing global climate regime may have 617 

influenced the development and preservation of eolian systems across different 618 

supercontinental configurations. The Precambrian and Pangean supercontinents are 619 

considered below. 620 

Precambrian Supercontinents Evidence of Precambrian glaciogenic deposits have 621 

been recorded from many continental land masses, including those originally placed at 622 

tropical paleolatitudes (Shrag, 2002; Kirschvink, 1992). Precambrian icehouse conditions are 623 

attributed to attenuated solar luminosity, the albedo caused by continental landmasses located 624 
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at low-latitudes, and relatively low levels of atmospheric carbon dioxide (Hoffman et al., 625 

1998; Kirschvink, 1992). 626 

In rocks of Precambrian age, icehouse eolian deposits are significantly thinner relative to 627 

their greenhouse counterparts (Fig. 8A). Changes in the strength and erosive power of the 628 

trade winds are likely equally relevant for eolian deposits of Precambrian age, as Hadley cell 629 

circulation is shown to have been active since the Proterozoic (Hoffman and Grotzinger, 630 

1993). As such, the greater strength and erosive power of icehouse winds (Fig. 2) may be 631 

responsible for enhanced winnowing and deflation of Precambrian icehouse eolian 632 

architectural elements. Precambrian icehouse conditions are considered to have been amongst 633 

the most extreme of all recorded icehouse periods; wind strength and erosive power are 634 

interpreted to have been amongst the highest in Earth history (Fig. 2; Kirschvink, 1992; Allen 635 

and Hoffman, 2005). 636 

Several of the studied Precambrian successions are associated with deposition in intracratonic 637 

basins, which are preferentially developed in the interiors of stable ancient cratons (e.g., 638 

Shaw et al., 1991; Aspler and Chiarenzelli, 1997; Deb and Pal, 2015), and which act as sites 639 

where relatively thin eolian elements can accumulate and be preserved, through episodic 640 

deposition between long periods of sediment bypass, controlled in part by relatively slow 641 

rates of subsidence and accommodation generation (e.g., Bethke, 1985; Aspler and 642 

Chiarenzelli, 1997). However, the differences in eolian element thickness between icehouse 643 

and greenhouse successions cannot be ascribed to the basin setting that hosts them (Fig. 12). 644 

In this study, greenhouse Precambrian deposits are all associated with accumulation in 645 

intracratonic basins, however, their icehouse counterparts are largely associated with 646 

deposition in continental rift and peripheral foreland basin settings; Fig. 12). Even though a 647 

bias in this study exists whereby the studied Precambrian greenhouse eolian deposits were all 648 

deposited in slowly subsiding intracratonic basins, the elements that make up these deposits 649 
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are still significantly thicker than their Precambrian icehouse counterparts (Fig. 8A). This 650 

suggests that the climatic influence on eolian element thickness overrides the potential 651 

control on preservation of accommodation generation and basin morphology. 652 

Pangean Supercontinent The Late Paleozoic is associated with a transition from 653 

icehouse to greenhouse conditions and changes in global atmospheric circulation (e.g., 654 

Rowley et al., 1985; Cecil, 1990; Parrish, 1993; West et al., 1997; Gibbs et al., 2002). The 655 

Late Paleozoic global climate change was closely associated with the formation of the 656 

Pangean supercontinent. The assemblage of Pangea resulted in the aggregation of large 657 

volumes of continental landmasses centered on the South Pole (Smith et al., 1973; 658 

McElhinny et al., 1981; Ziegler et al., 1983), which experienced widespread continental 659 

glaciation from ca. 360 to 300 Ma. The spread of continental glaciation was halted by 660 

increasing levels of atmospheric carbon dioxide and the northward drift of the continents: 661 

after ca. 300 Ma, the Earth tipped back into greenhouse climatic conditions (Parrish, 1993). 662 

The Pangean supercontinent disrupted zonal atmospheric circulation, leading to the 663 

development of the Pangean megamonsoon, which is comparable to the East Asian Monsoon 664 

and was characterized by a seasonal reversal of winds (Kutzbach and Gallimore, 1989; 665 

Parrish, 1993). The megamonsoon was active in the Permian, intensified into the Triassic, 666 

and continued on the Gondwanan supercontinent until the beginning of the Cretaceous 667 

(Parrish, 1993; Scherer and Goldberg, 2007; Scherer et al., 2020). 668 

The megamonsoon and its associated seasonal reversals in wind direction are widely 669 

documented in the eolian record and have likely influenced the architecture of eolian deposits 670 

(e.g., Loope et al., 2001). It can thus be hypothesized that the megamonsoon may have also 671 

governed accumulated eolian element thickness, perhaps in a way that would have 672 

overprinted the effects of the controls exerted by icehouse and greenhouse conditions. 673 

However, despite the additional control imposed by megamonsoon conditions, icehouse 674 
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eolian architectural elements (i.e. dune-sets, sandsheets and interdunes) remain significantly 675 

thinner than greenhouse architectural elements in stratigraphies of this age (Fig. 8A). 676 

Moreover, the mean thickness of greenhouse Pangean architectural elements (i.e. those 677 

deposited under peak megamonsoon conditions) does not differ significantly from 678 

greenhouse architectural elements deposited under comparable supercontinental settings (Fig. 679 

13; Table 3). The impact of the megamonsoon on accumulated eolian element thickness is 680 

therefore considered to have been secondary compared to the climatic influence of icehouse-681 

greenhouse oscillations. However, a limitation exists in this analysis, since icehouse 682 

conditions only prevailed on Pangea during its initial accretion, and the Pangean climate was 683 

dominated by greenhouse conditions for the majority of its existence. 684 

Basin Configuration 685 

The long-term preservation of eolian systems in the geological record requires the 686 

development of accommodation in which eolian deposits can accumulate. The basin 687 

morphology and rate of accommodation generation varies significantly between the basin 688 

types considered here (intracratonic, rift and foreland basins; see Table 2). Despite this, 689 

statistical differences between the thicknesses of icehouse and greenhouse architectural 690 

elements are noted for all basin types considered in this study (Fig. 8B), whereby eolian 691 

architectural elements associated with icehouse periods are significantly thinner than those of 692 

greenhouse periods. This suggests that the climatic influence on eolian element thickness 693 

overrides the potential controls of accommodation generation and basin morphology. 694 

Paleolatitude 695 

The preserved architecture of eolian systems is influenced by the latitude at which the eolian 696 

systems developed (Fig. 8C). The existence of the icehouse/greenhouse signature at low 697 

latitudes (<30°), and the absence of this signature at higher latitudes (>30°), supports the 698 
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previous assertion that the differences in eolian element thicknesses are governed by 699 

atmospheric circulation at low latitudes, caused by icehouse/greenhouse modulation of the 700 

Hadley circulation, and associated with changes in the strength of the trade winds (Chandler, 701 

1992; Lu et al., 2007; Hasegawa et al., 2011). Outside the zone of influence of the trade 702 

winds (>30° latitude), the icehouse-greenhouse signature is apparently not evident in the 703 

geological record; this suggests that the effects of global climate oscillations are overprinted 704 

by other forcing mechanisms in that context, such as rate and type of sediment supply, 705 

tectonic configuration, basin setting and dune-field physiographic setting. 706 

Dune-field (Erg) Physiographic Setting  707 

Across the different dune-field settings of eolian sand seas (i.e. back, center and fore erg-708 

settings), variations in eolian element thickness are seen, with central-erg eolian architectural-709 

elements being on average thicker than fore- and back-erg elements. However, across all 710 

environments of eolian sand seas, statistically significant differences in eolian architectural 711 

element thickness are seen between icehouse and greenhouse successions, such that icehouse 712 

eolian elements are consistently thinner relative to greenhouse architectural elements (Fig. 713 

8D). The fact that this difference is seen across all dune-field physiographic settings 714 

corroborates the idea that the differences in eolian element thickness are the result of large-715 

scale circulation patterns, which overprint signatures associated with localized and autogenic 716 

controls. 717 

CONCLUSIONS 718 

The continental terrestrial record has here been shown to preserve a valuable archive of how 719 

ancient sedimentary systems respond to and record changes in global climate. This study 720 

provides the first integrated global-scale quantitative investigation into the effects of climatic 721 

oscillations on eolian sedimentary architecture. More than >5,600 geological entities 722 
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extracted from 34 case studies, spanning a variety of spatio-temporal settings, have been 723 

analyzed (Fig. 1). Icehouse and greenhouse conditions exert a fundamental and statistically 724 

detectable influence on preserved eolian dune-set, sandsheet and interdune thicknesses (Fig. 725 

4; Table 3), such that icehouse eolian architectural elements are significantly thinner than 726 

greenhouse architectural elements. This statistical signature is present regardless of (i) basin 727 

type, (ii) paleogeographic configuration, and (iii) dune-field (erg) physiographic setting (Fig. 728 

8; Table 3). However, the icehouse-greenhouse signature is only present at paleolatitudes 729 

<30°; it is absent in systems from higher paleolatitudes (Fig. 8C). Differences in eolian 730 

element thicknesses are interpreted in terms of changes in the pattern of circulation of low-731 

latitude trade winds (Fig. 2), which operate at latitudes <30°. 732 

Under icehouse conditions, Milankovitch-driven cycles of eolian accumulation and deflation 733 

result in the preservation of thin eolian architectural elements (i.e. dune sets, sandsheets and 734 

interdunes Figs. 4, 10); as an icehouse glacial initiates, thin dune sets and sandsheets are 735 

deposited under high wind strengths. As the glacial proceeds, higher trade-wind strengths 736 

result in the deposition of relatively thicker dune-sets, until upwind sources are exhausted 737 

(Fig. 10). The thick glacial dune-sets have limited preservation potential due to depressed 738 

water tables and the highly erosive nature of the strengthened trade winds. During interglacial 739 

periods, relative rises in the water-table enable the preservation of the thin basal dune-sets 740 

and sandsheets (Fig. 10). 741 

Relative to greenhouse conditions, icehouse conditions are also associated with (i) a greater 742 

proportion of deflation-lag facies in sandsheet and interdune elements; (ii) relatively more 743 

observations of sandsheet strata, indicative of higher wind strengths; and (iii) a higher 744 

proportion of deflationary supersurfaces (Fig. 7). Consistently and significantly thicker 745 

greenhouse deposits are attributed to relatively elevated water tables (associated with wet 746 

interdunes and sabkha elements), which exhibit only minor temporal variations in level 747 
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relative to the accumulation surface, and enhanced surface stabilization by vegetation or other 748 

biotic agents, all of which inhibit eolian deflation. Relative to icehouse conditions, 749 

greenhouse conditions are associated with: (i) eolian architectures dominated by an increased 750 

occurrence of dune-set elements, with fewer recorded sandsheet and interdune elements (Fig. 751 

3B); (ii) interdunes that, where present, are more likely to be of a damp or wet type (Fig. 5A); 752 

(iii) a greater proportion of interdigitating sabkha elements (Fig. 3C). 753 

This study presents a quantitative assessment of how the influence of icehouse and 754 

greenhouse climates on Earth surface processes is archived in the continental stratigraphic 755 

record. The results presented here provide novel insights into the fundamental boundary 756 

conditions that govern eolian sedimentary architectures, and have been used to develop 757 

idealized eolian icehouse and greenhouse facies models based on the most likely association 758 

of eolian and associated non-eolian architectural elements and bounding surfaces. The 759 

architectures of low-latitude eolian systems are fundamentally influenced by the prevailing 760 

global climate, and the way this influence has been translated into the stratigraphic record has 761 

been consistent through geological time. Results presented here help quantify and understand 762 

sedimentary responses to fundamental processes that operate on the surface of the Earth as a 763 

consequence of changes in global climate. In the context of human-induced climate change, 764 

these findings may be valuable for future predictions of the response of the terrestrial 765 

geosphere to fundamental changes in global climate. 766 
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FIGURE CAPTIONS 1761 

 1762 

1. A) Distribution of case studies used in this investigation, coloured according to icehouse 1763 

(blue) and greenhouse (orange) conditions (this colour scheme applies throughout this 1764 

account). The shape of the marker indicates the paleosupercontinental setting of the case 1765 

study. B) Geological time-scale showing the five major icehouse periods (labelled A-E) 1766 

and the distribution of the supercontinents. For all icehouse case-studies, the marker 1767 

contains a letter (A-E) denoting the associated icehouse period. 1768 

2. Factors commonly associated with icehouse and greenhouse conditions. Boxes A-E are 1769 

theoretical. F) Low latitude sea surface temperatures (based on estimates in Forster et al., 1770 

2007). G) Estimates of pCO2 (based on values in Shaviv and Veizer, 2003). H) Pole to 1771 

equator thermal contrast. I) Planetary windbelt speed (V = velocity). J) Wind shear (V
2
= 1772 

wind velocity squared). K) Wind erosive power (V
3
= wind velocity cubed). Boxes H-K 1773 

are based on the estimates of Kidder and Worsley (2010); the units for boxes I-K are 1774 

expressed as fractions of the maximum (e.g., 0.67 would be 2/3 of the maximum). Figure 1775 

adapted in part from Kidder and Worsley (2012). 1776 

3. Percentages of: A) eolian and non-eolian architectural elements, B) dune set, sandsheet 1777 

and interdune elements, and C) non-aeolian elements, deposited under icehouse and 1778 
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greenhouse conditions. Percentages of eolian and non-eolian architectural elements are 1779 

determined based on total element counts. For descriptions of eolian and non-eolian 1780 

architectural element types see Table 2. 1781 

4. Box and whisker plots showing distributions in element thickness for icehouse and 1782 

greenhouse conditions: A) all eolian elements; B) dune sets; C) sandsheets; D) interdunes; 1783 

E) all eolian facies. For descriptions of eolian architectural element types see Table 2. 1784 

5. Percentages of: A) wet, dry, and damp interdunes; and the distribution of facies in B) 1785 

interdunes and C) sandsheets. The percentages are determined based on the total element 1786 

count. For descriptions of interdune types and facies element types see Table 2. 1787 

6. Box and whisker plots of icehouse and greenhouse textural properties. A) modal grain-1788 

size; B) sorting; C) grain roundness. 1789 

7. Percentages of supersurface descriptions. A) Bypass and deflation surfaces; B) surface 1790 

‘wetness’; C) surface stabilization. Percentages are calculated based on numbers of 1791 

occurrences in vertical sections. For full descriptions of surface types and associated 1792 

attributes see Table 2. 1793 

8. Box and whisker plots of element thickness for elements grouped by: A) Proterozoic and 1794 

Pangean paleosupercontinental settings; B) rift, foreland and intracratonic basin settings; 1795 

for descriptions of basin types see Table 2; C) different paleolatitudes; and D) different 1796 

dune-field physiographic settings. 1797 

9. Scatterplot showing values of icehouse and greenhouse eolian element thicknesses for 1798 

different paleolatitudes with mean and median overlain. 1799 

10. Cycles of eolian accumulation and deflation under icehouse glacials and interglacials with 1800 

accompanying sequence stratigraphic terminology. A) Deposition of thin sandsheet and 1801 

dune-set elements associated with the onset of glacial conditions. B) Deposition of thick 1802 

dune sets associated with strong trade-wind strengths and high rates of sediment supply in 1803 
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an arid setting. Both A and B show a relative fall in the level of the water table. C) Onset 1804 

of deflation as a sediment source is exhausted. D) As interglacial conditions proceed, 1805 

deflation continues to the level of the water table. Both C and D show a rise in the relative 1806 

level of the water table, associated with more humid interglacial conditions. The rise in 1807 

the level of the water table protects the lower part of the aeolian succession from erosion. 1808 

E-G the start of a new glacial/interglacial cycle. The indicative lateral and vertical scales 1809 

in Part A apply to all box models. 1810 

11. Deposition of an eolian sequence under greenhouse conditions. The temporal sediment 1811 

supply remains relatively static (A-D). An elevated water table associated with relatively 1812 

humid conditions promotes the preservation of eolian dune sets by protecting them from 1813 

potential wind erosion; accumulated dune sets are sequestered into the geological record 1814 

(B-D). The generation of supersurfaces is most likely to be associated with fluvial 1815 

inundation or due to a transition from eolian to sabkha deposition (C). The indicative 1816 

lateral and vertical scales in Part A apply to all box models. 1817 

12. Percentages of different basin-setting types (continental rift, foreland and intracratonic) 1818 

for Proterozoic age case studies, subdivided into icehouse and greenhouse conditions. 1819 

13. Box and whisker plots showing eolian architectural element thicknesses for Proterozoic, 1820 

Pangean and Gondwanaland paleosupercontinenal settings. 1821 

 1822 

TABLE CAPTIONS 1823 

 1824 

1. List of the case studies used in this investigation. The geographic location of each case 1825 

study is outlined in Figure 1 (identified via the case number). The reference refers to the 1826 

original source material from which quantitative metrics were derived.  1827 
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2. Definitions of eolian and non-eolian architectural element types, facies element types, 1828 

surface types, and basin types discussed in the text. 1829 

3. Results of statistical analysis; SD: standard deviation; P(T<=t): one tail t-test; ANOVA: 1830 

analysis of variance. All results are reported to two decimal places, where appropriate. 1831 

For all statistical calculations see Supplementary Information. 1832 

 1833 

 1834 
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Table 1: Case study details 

Case 

Number 

Icehouse or 

Greenhouse 

Age (Ma) Case Study Name Location Reference(s) 

1 Greenhouse ca. 1320 - 1000  Eriksfjord Formation Greenland Clemmenesen (1988) 

2 Icehouse ca. 259 - 254 Hopeman Sandstone Scotland, UK Clemmensen (1987) 

3 Icehouse ca. 290 - 240 Arran Red Beds Isle of Arran, 

Scotland, UK 

Clemmensen and 

Abrahamsen (1983) 

4 Icehouse ca. 252 - 242 Sherwood Sandstone UK (Onshore and 

Offshore England and 

Northern Ireland) 

Cowan (1993); 

Meadows and Beach 

(1993) 

5 Icehouse ca. 299 - 252 Rotliegendes 

Sandstone 

Germany, Poland, 

Denmark, Baltic Sea, 

Netherlands 

Ellis (1993); Newell 

(2001) 

6 Icehouse < 1 Boxtel Formation Netherlands, 

Germany, Denmark, 

Poland 

Schokker and Koster 

(2004) 

7 Icehouse ca. 38 - 34 Sable de Fontainbleau 

Formation 

France Cojan and Thiry 

(1992) 

8 Icehouse ca. 5 Escorihuela Formation NE Spain Liesa et al. (2016) 

9 Greenhouse ca. 132 Etjo Formation Namibia Mountney and 

Howell (2000) 

10 Icehouse ca. 23 - 3 Tsondab Sandstone Namibia Kocurek et al. (1999) 

11 Icehouse ca. 2500 - 2250 Egalapenta Formation India Biswas (2005); 

Dasgupta et al. (2005) 

12 Icehouse ca. 430 - 420 Tumblagooda 

Formation 

Australia Trewin (1993) 

13 Icehouse ca. 3 Tamala Limestone Australia Semeniuk and 

Glassford (1988) 

14 Greenhouse ca. 140 - 125 Sao Sebastio 

Formation 

Brazil Formola Ferronatto et 

al. (2019) 

15 Greenhouse ca. 148 - 144 Sergi Formation Brazil Scherer et al. (2007) 

16 Greenhouse ca. 1800 - 1600 Mangabeira Formation Brazil Ballico et al. (2017) 

17 Icehouse ca. 298 - 272 Caldeirao Formation Brazil Jones et al. (2015) 

18 Greenhouse ca. 1800 - 1700 Bandeirinha Formation Brazil Simplicio and Basilici 

(2015) 

19 Greenhouse ca. 163 - 145 Guara Formation Brazil Scherer and Lavina 

(2005) 

20 Icehouse ca. 260 Piramboia Formation Brazil Dias and Scherer 

(2008) 

21 Greenhouse ca. 129 - 125 Huitrin Formation Argentina Strömbäck et al. 

(2005) 

22 Greenhouse ca. 130 - 129 Agrio Formation Argentina Veiga et al. (2002) 

23 Icehouse ca. 10 - 4 Rio Negro Formation Argentina Zavala and Frieje 

(2001) 

24 Icehouse ca. 720 - 640 Copper Habor Michigan, USA Taylor and Middleton 



Formation (1990) 

25 Greenhouse ca. 250 - 245 Chugwater Formation Wyoming, USA Irmen and Vondra 

(2000) 

26 Icehouse ca. 23 - 16 Arikaree Formation Wyoming, Nebraska, 

USA 

Bart (1977) 

27 Icehouse ca. 299 - 280 Ingleside Formation Colorado, Wyoming, 

USA 

Pike and Sweet 

(2018) 

28 Icehouse ca. 299- 280 Lower Cutler Beds Utah, USA Jordan and Mountney 

(2010) 

29 Icehouse ca. 286 - 245  Cedar Mesa Sandstone Utah, Colorado, New 

Mexico, Arizona, 

USA 

Loope (1985); 

Mountney and Jagger 

(2004); Mountney 

(2006) 

30 Greenhouse ca. 201 - 191 Navajo Sandstone Nevada, Arizona, 

Colorado, Utah, USA 

Loope and Rowe 

(2003) 

31 Greenhouse ca. 166 - 163 Entrada Sandstone Wyoming, Utah, 

Arizona, New 

Mexico, Texas, USA 

Crabaugh and 

Kocurek (1993); 

Benan and Kocurek 

(2000); Kocurek and 

Day (2018) 

32 Icehouse ca. 2500 - 2250 Big Bear Formation California, USA Stewart (2005) 

33 Greenhouse ca. 227 - 210 Wolfville Formation Nova Scotia, Canada Leleu and Hartley 

(2018) 

34 Greenhouse ca. 170 - 166 Page Sandstone Arizona, Utah, 

Wyoming, USA 

Jones and Blakey 

(1997); Kocurek et al. 

(1992) 

 

Table 1: List of the case studies used in this investigation. The geographic location of each case study is outlined 

in Figure 1 (identified via the case number). The reference refers to the original source material from which 

quantitative metrics were derived.  



Table 2: List of definitions used in the text 

Eolian Architectural Element Types 

Cross-strata 

package 

Packages of aeolian stratification (typically composed of wind-ripple, grainflow and 

grainfall strata; Hunter 1977, 1981); form parts of dune sets; packages of cross-strata 

are typically separated by reactivation surfaces (Brookfield, 1977; Kocurek, 1996). 

Dune set  Dune-sets form the fundamental unit of deposition of an eolian sand dune; dune-sets are 

formed of packages of cross-strata (Sorby, 1859; Allen, 1963; Rubin and Hunter 1982; 

Chrintz and Clemmensen, 1993); if dune sets migrate over each other, cross-stratified 

packages are truncated, delineating sets that are bounded by erosional surfaces 

(Brookfield, 1977; Kocurek, 1996).  

Dune coset Two or more genetically related dune sets that occur in vertical succession; both the 

coset and its contained sets are separated by bounding surfaces (Brookfield, 1977; 

Kocurek, 1996). 

Dune compound 

set 

A specialized class of coset wherein the contained sets record the migration of 

formative bed forms of a common type, for example where dunes migrate over the 

flanks of a parent megabedform (draa) which is itself migrating to leave an 

accumulation; both the compound set and its contained sets are separated by bounding 

surfaces (Brookfield, 1977; Kocurek, 1996). 

Sandsheet  Sandsheet deposits are low-relief accumulations of eolian sediment in areas where 

dunes are generally absent (Nielsen and Kocurek, 1986; Brookfield, 1992; Rodríguez-

López et al., 2012); sandsheets can also comprise low-relief bedforms such as zibars. 

Interdune Interdune deposits are formed in the low-relief, flat, or gently sloping areas between 

dunes; neighboring dunes are separated by interdunes (Hummel and Kocurek, 1984). 

Dry interdune  Dry interdunes are characterized by deposits that accumulate on a substrate where the 

water table is well below the ground surface, such that sedimentation is not controlled 

by and is largely not influenced by the effects of moisture (Fryberger et al., 1990). 

Damp interdune  Damp interdunes are characterized by deposits that accumulate on a substrate where the 

water table is close to the ground surface, such that sedimentation is influenced by the 

presence of moisture (Fryberger et al., 1988; Lancaster and Teller, 1988; Kocurek et al., 

1992). 

Wet interdune  Wet interdunes are characterized by deposits that accumulate on a substrate where the 

water table is elevated above the ground surface such that the interdune is episodically 

or continuously flooded with water (Kocurek and Havholm, 1993; Loope et al., 1995; 

García-Hidalgo et al., 2002). 

Eolian Facies Element Types  

Wind-ripple strata Wind-ripple lamination forms when wind-blown, saltating grains strike sand-grains 

obliquely and propel other grains forward (Bagnold, 1941; Hunter, 1977). The foreset 

laminae of wind-ripple strata are occasionally preserved (rippleform laminae), however, 

the internal laminae of wind-ripple strata are often indistinguishable due to grain size 

uniformity (translatent wind-ripple stratification; Hunter, 1977).  

Grainflow strata Grainflow strata form where a dune slipface undergoes gravitational collapse (Hunter, 

1977; Bristow and Mountney, 2013). Grainflow deposits are typically erosionally based 

and are devoid of internal structure, forming discrete tongues or wide sheets of inclined 

strata on the lee-slope of dunes, which wedge-out towards the base of the dune. 

Individual grainflow strata may be indistinguishable, resulting in amalgamated 

grainflow units (Howell and Mountney, 2001). 

Grainfall strata Grainfall strata are gravity-driven deposits that occur when the wind transports saltating 

clouds of grains beyond a dune brink; grains settle onto the upper portions of lee slopes 

as wind transport capacities reduce in the lee-side depressions (Nickling et al., 2002). 

Grainfall laminae are typically thin (<1 mm), drape existing topography, else may have 

a wedge-shaped geometry; grainfall lamination is generally composed of sand and silt 

or (rarely) clay sizes grains (Hunter, 1977). 



Interfingered 

strata 

Interfingered strata represent intercalated packages of wind-ripple, grainflow, grainfall 

and plane-bed strata; two or more of the aforementioned stratal types may be present. 

This composite facies type is used only in cases where it is not possible to differentiate 

individual wind-ripple, grainflow, grainfall or plane-bed facies elements. Interfingered 

strata can occur in a variety of eolian settings and are especially common on dune lee 

slopes (Hunter, 1977; Hunter, 1981).  

Adhesion strata Adhesion strata results from the adhesion of moving grains to a damp surface, such as a 

damp interdune (Hummel and Kocurek, 1984). Adhesion strata typically are low relief 

(several mm in height) and exhibit sub-horizontal structures with irregular surfaces. 

Adhesion strata can comprise adhesion plane beds, adhesion ripples (Kocurek and 

Fielder, 1982) and adhesion warts (Olsen et al., 1989).  

Plane-bed strata Plane-bed lamination forms when wind velocities are too high to form ripples (Hunter 

1977, 1981). Plane-bed lamination is composed of (sub)horizontally laminated sand, 

which typically dips at angles of between 0 and 15° (Pye, 2009). Plane-bed laminae are 

typically millimeter-scale, with sharp or gradational contacts (e.g., Clemmensen and 

Abrahamsen, 1983) and form sets typically up to 100 mm (Pye, 2009). 

Subaqueous ripple 

strata 

Subaqueous ripple lamination is generated by tractional processes and are produced by 

the action of waves or currents on a sediment surface (Allen, 1978). 

Non-Eolian Element Types 

Fluvial/Alluvial Deposits arising from or relating to the action of rivers/streams and sediment gravity-

flow processes (cf. Melton, 1965). 

Marine Deposits arising from or relating to accumulation in marine environments. 

Lacustrine Deposits arising from or relating to accumulation in perennial lakes. 

Sabkha/Playa Sabkhas and playa lakes describe low-relief flats where evaporites, and in some cases 

carbonates, accumulate. The terms sabkha and playa lake were originally used to 

describe coastal and inland settings, respectively (Evans, et al., 1964; Purser and Evans, 

1973); however, the terms are now commonly used interchangeably. 

Other Any depositional element that differs in origin from those above. 

Surface Types 

Supersurface Surfaces resulting from the cessation of eolian accumulation; occurs where the sediment 

budget switches from positive to negative (cannibalization of eolian system) or neutral 

(zero angle of climb), resulting in deflation (deflationary supersurface) or bypass 

(bypass supersurface) of the eolian system, respectively. Supersurfaces are also 

generated by changes in depositional environment, such as transition from eolian to 

fluvial, or eolian to marine deposition (e.g., Glennie and Buller, 1983; Chan and 

Kocurek, 1988). 

Wet-type 

supersurface 

Supersurface associated with deflation down to the water-table (also known as a Stokes 

surface). Wet-type supersurfaces may be associated with aqueous inundation by a non-

eolian source (e.g., fluvial/marine deposits). 

Damp-type 

supersurface 

Supersurface associated with bypass/deflation; the level of the water table is interacting 

with the surface. 

Dry-type 

supersurface 

Supersurface associated with bypass/deflation; the level of the water table is 

significantly below the surface. 

Basin Types 

Intracratonic (sag) 

basins 

An intracratonic (sag) basin is a depressed or persistently low area occurring in the 

interior of cratonic blocks or on stable continental crust (Middleton, 1989); they are 

characterized by generally low rates of accommodation generation, and host 

sedimentary infills that can be >10 km in thickness and that typically embody over 200-

800 Myr (Einsele, 2013). 

Rift basin A continental rift is an elongate graben or half-graben trough (ca. 103-104 km2) bounded 

by normal faults, associated with active lithospheric extension and thinning (Gregory, 

1894); rift basins are characterized by high rates of accommodation generation (e.g., 

Rosendahl, 1987; Schlische, 1993; Morley, 1995; Withjack et al., 2002). 

Foreland basins  A foreland basin is here defined as a depression generated by flexure of the continental 

crust in front of a fold-and-thrust mountain belt (Einsele, 2013) and are characterized by 

intermediate rates of accommodation generation. 



 

Table 2: Definitions of eolian and non-eolian architectural elements, facies elements, surface types, and basin 

types discussed in the text.   



 

Table 3: Results of statistical analyses 

ARCHITECTURAL AND FACIES ELEMENT THICKNESS 

 

EOLIAN ARCH. EL. NON-EOLIAN ARCH. EL. FACIES ELEMENTS 

ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE 

MEAN 2.36 5.47 5.18 4.88 2.20 7.53 

MEDIAN 1.00 2.50 2.00 2.00 1.00 3.75 

SD 4.48 8.40 10.07 12.24 3.93 10.23 

N 789 903 367 519 630 355 

P(T<=t) 0.00 0.35 0.00 

SIGNIFICANT? TRUE FALSE TRUE 

SPECIFIC EOLIAN ELEMENTS 

 

DUNE SET SANDSHEET INTERDUNE 

ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE 

MEAN 3.67 5.93 0.55 4.15 0.88 2.00 

MEDIAN 2.00 3.00 0.20 2.00 0.25 1.50 

SD 5.54 7.94 0.88 10.33 1.74 2.75 

N 440 705 183 171 166 27 

P(T<=t) 0.00 0.00 0.00 

SIGNIFICANT? TRUE TRUE TRUE 

EOLIAN TEXTURE 

 

GRAIN SIZE SORTING ROUNDNESS 

ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE 

MEAN 0.34 0.36 0.57 0.58 0.57 0.77 

MEDIAN 0.38 0.25 0.50 0.50 0.49 0.85 

SD 0.27 0.25 0.19 0.19 0.22 0.12 

N 496 310 140 179 113 70 

P(T<=t) 0.14 0.43 0.00 

SIGNIFICANT? FALSE FALSE TRUE 

EOLIAN ARCHITECTURAL ELEMENTS BY SUPERCONTINENTAL SETTING 

 

PROTEROZOIC SUPERCONTINENTS PANGEA 

ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE 

MEAN 1.43 5.04 3.41 6.85 

MEDIAN 0.80 1.50 2.00 3.86 

SD 2.41 14.44 5.31 7.87 

N 98 84 347 176 

P(T<=t) 0.02 0.00 



SIGNIFICANT? TRUE TRUE 

EOLIAN ARCHITECTURAL ELEMENTS BY BASIN SETTING 

 INTRACRATONIC BASIN CONTINENTAL RIFT BASIN FORELAND BASIN 

 ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE 

MEAN 1.73 7.63 0.70 2.48 2.11 4.23 

MEDIAN 1.00 3.50 0.15 1.00 2.00 2.50 

SD 2.24 10.77 2.00 3.69 1.44 4.47 

N 507 595 138 180 191 126 

P(T<=t) 

0.00 

 

0.00 0.00 

SIGNIFICANT? TRUE TRUE TRUE 

EOLIAN ARCHITECTURAL ELEMENTS BY PALAEOLATITUDE 

 

0-15 DEGREES 16-30 DEGREES 

ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE 

MEAN 2.60 6.38 2.72 6.40 

MEDIAN 1.00 3.75 1.10 3.00 

SD 4.84 7.08 4.57 9.82 

N 416 261 276 845 

P(T<=t) 0.00 0.00 

SIGNIFICANT? TRUE TRUE 

 

31-45 DEGREES 46-60 DEGREES 

ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE 

MEAN 1.53 1.75 3.39 3.50 

MEDIAN 0.30 1.50 2.00 2.00 

SD 2.42 1.21 3.92 4.76 

N 168 35 57 142 

P(T<=t) 0.30 0.44 

SIGNIFICANT? FALSE FALSE 

EOLIAN ARCHITECTURAL ELEMENTS BY ERG DISTALITY 

 BACK ERG CENTER ERG FORE ERG 

 ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE ICEHOUSE GREENHOUSE 

MEAN 1.65 2.92 3.39 12.83 1.87 6.36 

MEDIAN 0.75 2.00 1.50 10.00 1.20 3.00 

SD 2.79 3.22 5.96 11.75 1.81 7.37 

N 152 467 252 268 41 205 



P(T<=t) 0.00 0.00 0.00 

SIGNIFICANT? TRUE TRUE TRUE 

COMPARISONS OF GREENHOUSE PANGEAN DEPOSITS WITH OTHER GREENHOUSE SUPERCONTINENTAL SETTINGS 

 

GREENHOUSE ONLY GREENHOUSE ONLY 

PANGEA GONDWANALAND PANGEA PROTEROZOIC SUP. 

MEAN 6.85 6.70 6.85 4.26 

MEDIAN 3.88 3.00 3.88 1.50 

SD 7.87 9.43 7.87 12.63 

OBSERVATIONS 176 691 176 84 

ANOVA 0.85 0.04 

SIGNIFICANT? FALSE FALSE 

SUPERSURFACE SPACING 

 ICEHOUSE GREENHOUSE 

MEAN 16.34 9.07 

MEDIAN 16.00 9.00 

SD 12.70 6.34 

OBSERVATIONS 25 7 

 

Table 3: Results of statistical analyses; SD: standard deviation; P(T<=t): one tail t-test; ANOVA: analysis of variance. All results 

are reported to two decimal places, where appropriate. For all statistical calculations see Supplementary Information.  
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