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ABSTRACT: Projected changes in the intensity of severe rain events over the North African Sahel—falling from large

mesoscale convective systems—cannot be directly assessed from global climate models due to their inadequate resolution

and parameterization of convection. Instead, the large-scale atmospheric drivers of these stormsmust be analyzed. Here we

study changes in meridional lower-tropospheric temperature gradient across the Sahel (DTGrad), which affect storm de-

velopment via zonal vertical wind shear and Saharan air layer characteristics. Projected changes inDTGrad vary substantially

among models, adversely affecting planning decisions that need to be resilient to adverse risks, such as increased flooding.

This study seeks to understand the causes of these projection uncertainties and finds three key drivers. The first is intermodel

variability in remote warming, which has strongest impact on the eastern Sahel, decaying toward the west. Second, andmost

important, a warming–advection–circulation feedback in a narrow band along the southern Sahara varies in strength be-

tween models. Third, variations in southern Saharan evaporative anomalies weakly affect DTGrad, although for an outlier

model these are sufficiently substantive to reduce warming here to below that of the global mean. Together these uncertain

mechanisms lead to uncertain southern Saharan/northern Sahelianwarming, causing the bulk of large intermodel variations

in DTGrad. In the southern Sahel, a local negative feedback limits the contribution to uncertainties in DTGrad. This new

knowledge of DTGrad projection uncertainties provides understanding that can be used, in combination with further re-

search, to constrain projections of severe Sahelian storm activity.
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1. Introduction

Mesoscale convective systems (MCSs) have a substantial

impact on the vulnerable population of the NorthAfrican Sahel.

On the one hand they bring the majority of rainfall required for

agriculture (e.g., Laurent et al. 1998; Laing et al. 1999; Lafore

et al. 2011), but on the other hand, the most intense events can

bring severe urban flooding (e.g., Engel et al. 2017; Lafore et al.

2017), damage to crops (e.g., Lobell and Gourdji 2012), and

enhanced erosion (Panagos et al. 2017). Panthou et al. (2014)

and Taylor et al. (2017) have found a substantial recent increase

in the frequency of these severe events, with other studies

showing a corresponding increase in flood frequency (Nka et al.

2015; Tazan et al. 2019; Wilcox et al. 2018). Globally, the fre-

quency of intense rainfall events is expected to continue to in-

crease as climate warms in response to rising anthropogenic

carbon emissions (e.g., Kharin et al. 2013; Kendon et al. 2019),

but at regional scales, the specific risks—measured for example

by a ‘‘defensible plausible range’’—are largely unknown. Yet

such information is critical for today’s decisionmakers whomust

incorporate future climate resilience into national, regional, and

urban planning.

A significant difficulty in the provision of such information is

that general circulation models (GCMs)—the primary tool for

regional climate projection—are incapable of resolving MCSs,

due to their coarse resolution and the complexity of deriving ro-

bust storm statistics within parameterized convection schemes.

This raises concerns about the suitability of GCMs for predicting

the changing risk in severe Sahelian storms; see for example

Crook et al.’s (2019) assessment of the resolution and parame-

terization dependence of storm life cycles. In future, availability of

an ensemble of convection-permitting models may overcome

these difficulties, but this remains a distant prospect, with cur-

rently only one short time slice projection available for Africa

(Kendon et al. 2019; Berthou et al. 2019; Fitzpatrick et al. 2020)

due to their immense computing requirements. Yet, analysis of

multiple models is essential to properly account for uncertainties

arising from the range of plausible representations of the climate

system.Hence, a scientifically robust risk-based approach, directly

founded on climate model output and incorporating information

on modeling uncertainty, is presently unfeasible.

In themeantime, a tractable solution couldbeanexpert-informed

downscaling approach, utilizing GCM-projected changes in a priori

identified large-scale drivers of MCS behavior. A multimodel

ensemble of these large-scale changes could thenbe transformed

to a plausible range of the future change in MCS behavior via

expert judgement of the relationships between large-scale and

storm-scale (thermo)dynamics. These large-scale drivers must

encompass a number of environmental factors determining the
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organization and intensity of Sahelian MCSs. One is the in-

creasing moisture content of a warmer atmosphere, widely

known to intensify stormdynamics (e.g., Collins et al. 2013; Berg

et al. 2013; Singleton and Toumi 2013). Another is the low-level

vertical wind shear below the African easterly jet (AEJ), which

enhances convective organization, amplifying MCS intensity

and longevity (e.g., Browning and Ludlam 1962; Mohr and

Thorncroft 2006; Alfaro 2017). A third environmental driver is

the influence of the midlevel warming and drying of the Saharan

air layer (SAL), which 1) enhances convective inhibition, al-

lowing greater accumulation of convective available potential

energy, and hence more intense MCSs once triggered (Takemi

2007, 2010), and 2) enhances rainfall evaporation, aiding cold

pool development, which is important forMCS organization and

dynamics (e.g., Szeto and Cho 1994; Weisman and Rotunno

2004; Provod et al. 2016). We note, however, that regarding this

last environmental driver, such detail in the thermodynamic

profile of GCMs may be confounded by their convective pa-

rameterization, raising concerns about the suitability of SAL

diagnostics as a large-scale driver.On the other hand, both shear

and SAL characteristics are associated with the meridional

gradient of lower tropospheric temperature across the Sahel,

through its impact on baroclinicity below the AEJ and on SAL

heat and moisture content above the Sahel, which is adiabati-

cally connected to the Saharan boundary layer (Cook 1999;

Parker et al. 2005; Pu and Cook 2010; Nicholson 2013).

Understanding theGCM-projected changes and uncertainties in

this meridional temperature gradient will form the focus of this

study, laying some of the foundations required for further work

to constrain projections of Sahelian storm activity.

Recent work has shown that GCM projections exhibit

strongly enhanced warming over the Sahara. In the ensemble

mean, this is due to a ‘‘desert amplification’’ mechanism,

whereby limited surface latent heat release is compensated by

greater surface warming and enhanced longwave and sensible

heat release, alongside amplified moisture feedbacks due to

longwave radiative sensitivities to the fractional change in

water vapor (Zhou 2016). To our knowledge, intermodel var-

iability of these mechanisms has yet to be examined, but nev-

ertheless—in the ensemble mean at least—they induce an

obvious enhancement of temperature gradients southward

across the Sahel. Furthermore, this amplified Saharan warming

has already become apparent in recent decades (Cook and

Vizy 2015; Wei et al. 2017), with Vizy and Cook (2017) dem-

onstrating its seasonal peak coincides with the Sahelian wet

season. Taylor et al. (2017) have illustrated the consequential

impact on recent trends in meridional temperature gradient

across the Sahel and found this to be the major contributor to a

dramatic rise in the frequency of intense storms over the last 35

years. Here we focus on future possibilities, evaluating the

causes of intermodel variability in GCM projections of this

meridional temperature gradient.

The paper is structured as follows. Section 2 describes the

model data, defines the large-scale drivers ofMCS activity, and

quantifies their projection spread among models. To limit the

scope of this study, further analysis then focuses on under-

standing the causes of intermodel variations in the projected

change in low-level meridional temperature gradient across

the Sahel, this being (as discussed above) a critical driver of

MCS behavior. Understanding the causes of uncertainties in

regional moisture change will be addressed in a subsequent

paper. Section 3 explores the relative roles of remote and re-

gional drivers of the uncertainty in temperature gradient

change. Section 4 provides a more in-depth examination of the

roles of regional lower tropospheric and surface processes in

determining the intermodel variability, and section 5 concludes

the study.

2. Data, storm proxies, and intermodel spread

a. Model data

Three experiments undertaken during phase 5 of the Coupled

Model Intercomparison Project (CMIP5; Taylor et al. 2012) are

analyzedhere. Projection data are sourced from simulations forced

by the representative concentration pathway 8.5 (RCP8.5), an

emissions scenario with no specific climate mitigation targets, so

providing large signal-to-noise ratios, and run by a large number of

institutes, so providing good data availability. Reference data are

from the ‘‘historical’’ simulation driven by realistic anthropogenic

and natural forcings. Data from these experiments are averaged

over 2070–99 and 1950–99, respectively.Additionally, in section 2c,

the natural variability of each model is computed using its prein-

dustrial control experiment (‘‘piControl’’), in which all external

forcings (anthropogenic and natural) are fixed at preindustrial

conditions. In this case, the first 20 years of any spinup is removed,

and the remaining data (230–1031 years) detrended to remove any

long-term drift.

For models and experiments with an initial condition en-

semble, only the firstmember is analyzed for consistency across

models. Also, all data are interpolated to a 1.258 latitude 3
1.8758 longitude grid (that of HadGEM2-ES) and averaged

over July–September (JAS), which defines the Sahelian wet

season (e.g., Lafore et al. 2011; Nicholson et al. 2018). Vertical

discretization is determined by CMIP5’s archiving of standard

levels; in the lower troposphere these are 925, 850, 700, and

600 hPa.

Data are available for 40 models from the RCP8.5 and his-

torical simulations for the key variables required: atmospheric

temperature, near-surface air temperature, horizontal winds,

and sea level pressure (SLP). These models are listed in

Table 1. For other variables, some data from eight of these

models were not available; the remaining models are referred

to as the ‘‘32-model subset’’ in relevant figures, and aremarked

in the right-hand column of Table 1. Additionally, we have

assessed the impact of the nonindependence of models (cf.

Knutti et al. 2013; Sanderson et al. 2015), by repeating the

analyses of Figs. 5 and 7 (as examples) using subensembles

restricted to one model per institute. Almost identical patterns

were found, and thus the interpretation presented here is

unaffected.

b. Large-scale drivers of MCS activity

Following the discussion in section 1, three large-scale sea-

sonal mean drivers of the frequency of intense MCS events are

defined for initial analysis:
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1) Meridional lower-tropospheric temperature gradient across

the Sahel, hereafter TGrad. This will be the primary focus of

this study. For a given region, it is defined by the slope of the

linear regression between zonal mean 850-hPa temperature

and latitude (i.e., units of kelvin per degree of latitude). The

level 850 hPa is chosen to be representative of the mean

temperature below the 600-hPa AEJ and also representative

of the SAL.

2) Vertical zonal wind shear. This is shear below the AEJ and

is computed as 925-hPa minus 600-hPa zonal winds, aver-

aged over a given region. We expect changes in this driver

to be well correlated across models with changes in TGrad

(verified below) and so we choose to focus attention on

TGrad because it additionally encompasses influences of the

SAL (section 1) as well as being the underlying cause of the

vertical shear.

3) Total column-integrated water vapor (TCW). Again, this

large-scale driver is defined as a spatial average over a given

region, but after brief analysis here will be more extensively

pursued in a parallel study.

The Sahel is split into three subregions, motivated by pre-

vious work showing distinct behavior of the projections of

seasonal mean rainfall between the western and the combined

central and eastern Sahel, either side of approximately 58W
(e.g., Biasutti 2013; James et al. 2014; Rowell et al. 2016). It

TABLE 1. CMIP5 models’ projected change in large-scale drivers of intense Sahel storms: meridional 850-hPa temperature gradient

(DTGrad), 925–600-hPa vertical zonal wind shear (DShear), and total column-integrated water vapor (DTCW). Data are averaged over the

West, Central, and East Sahel (W, Cen, and E, respectively) and over July–September. TCW data are missing for EC-EARTH and

HadGEM2-AO, andmodels are ordered by Cen DTGrad. The right-hand columnmarks the 32-model subset for which all variables used in

this article are available. Expansions of model acronyms are available at http://www.ametsoc.org/PubsAcronymList.

Model name/version DTGrad (W, Cen, E) DShear (W, Cen, E) DTCW (W, Cen, E) Data available for all variables

MIROC5 20.02, 20.04, 0.02 0.32, 0.02, 1.38 13.1, 15.4, 16.5 ✓

CESM1(CAM5) 0.06, 0.02, 0.00 1.57, 0.93, 0.65 11.9, 13.6, 14.3

FGOALS-g2 0.01, 0.03, 0.11 1.12, 0.75, 2.14 11.5, 11.9, 13.8

BNU-ESM 20.02, 0.05, 0.15 20.10, 0.75, 0.88 18.0, 19.9, 20.6 ✓

CNRM-CM5 0.08, 0.06, 0.10 1.31, 0.98, 1.05 10.5, 11.6, 11.1 ✓

GFDL-ESM2G 0.02, 0.07, 0.12 1.25, 1.94, 1.88 13.4, 12.0, 9.8 ✓

EC-EARTH 0.11, 0.10, 0.11 1.67, 1.45, 0.84 —–, —–, —–

GISS-E2-R 0.12, 0.12, 0.09 2.34, 1.56, 1.12 8.7, 10.5, 8.4 ✓

GFDL-ESM2M 0.06, 0.12, 0.04 1.47, 1.81, 1.06 13.0, 10.2, 8.2 ✓

CCSM4 0.11, 0.13, 0.15 1.96, 1.60, 1.32 10.5, 12.9, 12.5 ✓

GISS-E2-H-CC 0.11, 0.13, 0.10 2.29, 1.73, 1.34 10.0, 11.1, 9.6 ✓

GISS-E2-H 0.10, 0.14, 0.12 2.15, 1.86, 1.01 10.1, 12.0, 9.0 ✓

MPI-ESM-LR 0.14, 0.14, 0.05 1.85, 1.29, 0.96 12.1, 13.4, 9.9 ✓

CESM1(BGC) 0.12, 0.14, 0.17 2.10, 1.70, 1.19 10.3, 12.7, 12.5 ✓

BCC-CSM1.1 0.18, 0.15, 0.11 2.33, 0.54, 20.21 9.8, 9.1, 8.4 ✓

GISS-E2-R-CC 0.12, 0.15, 0.11 2.59, 1.95, 1.03 8.8, 10.9, 8.6 ✓

CSIRO-Mk3.6.0 0.28, 0.15, 0.11 2.78, 1.04, 0.74 10.6, 13.1, 11.9 ✓

GFDL CM3 0.11, 0.15, 0.23 2.66, 2.40, 2.30 20.1, 20.7, 18.5 ✓

FIO-ESM 0.11, 0.15, 0.13 2.26, 1.60, 0.78 8.9, 7.6, 6.7

MPI-ESM-MR 0.14, 0.16, 0.10 1.84, 1.74, 1.34 13.2, 15.3, 11.9 ✓

BCC-CSM1.1(m) 0.11, 0.16, 0.14 1.38, 0.99, 0.71 9.2, 10.9, 10.8 ✓

IPSL-CM5B-LR 0.17, 0.16, 0.15 3.18, 2.17, 1.53 9.3, 10.8, 9.7 ✓

MRI-ESM1 0.15, 0.16, 0.13 1.98, 1.60, 0.86 11.5, 11.2, 9.3 ✓

MRI-CGCM3 0.16, 0.17, 0.15 2.12, 1.67, 1.15 10.6, 10.6, 9.1 ✓

CMCC-CESM 0.17, 0.17, 0.15 1.82, 1.67, 1.02 13.8, 14.7, 12.1

IPSL-CM5A-LR 0.12, 0.17, 0.22 1.81, 1.60, 1.66 15.4, 16.8, 14.6 ✓

INM-CM4 0.13, 0.17, 0.20 1.75, 1.58, 1.38 3.5, 6.1, 6.7 ✓

CMCC-CM 0.15, 0.18, 0.16 2.29, 1.85, 1.58 13.2, 17.0, 14.8

CMCC-CMS 0.13, 0.18, 0.15 2.11, 1.91, 1.22 15.5, 18.8, 15.2

CanESM2 0.12, 0.19, 0.20 2.35, 2.09, 3.01 12.1, 18.5, 18.6 ✓

IPSL-CM5A-MR 0.11, 0.20, 0.31 1.84, 2.25, 2.80 15.5, 18.6, 17.2 ✓

MIROC-ESM 0.04, 0.22, 0.24 2.41, 3.35, 2.19 20.8, 22.7, 21.6 ✓

MIROC-ESM-CHEM 0.05, 0.23, 0.27 2.43, 3.64, 2.42 22.0, 24.1, 22.3

NorESM1-ME 0.20, 0.25, 0.23 3.00, 2.73, 1.72 10.8, 12.5, 11.8 ✓

NorESM1-M 0.20, 0.25, 0.22 3.18, 3.03, 1.86 11.3, 12.8, 11.8 ✓

HadGEM2-ES 0.20, 0.30, 0.33 2.96, 3.08, 2.90 11.6, 16.0, 15.3 ✓

ACCESS1.0 0.20, 0.31, 0.35 2.61, 2.89, 2.42 11.6, 15.1, 13.0 ✓

HadGEM2-AO 0.19, 0.32, 0.35 3.27, 3.48, 3.13 —–, —–, —– ✓

HadGEM2-CC 0.21, 0.32, 0.36 3.12, 3.58, 3.05 12.3, 16.5, 15.1 ✓

ACCESS1.3 0.27, 0.34, 0.33 3.70, 3.62, 2.30 13.4, 14.6, 13.8 ✓
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may be that similar zonal asymmetries are also apparent in the

mechanisms and uncertainties of the large-scale storm drivers.

These regions encompass a latitude range with grid-box cen-

ters from 108 to 208N. The ‘‘West Sahel’’ region herein spans

longitudes 158W–5.6258W, the ‘‘Central Sahel’’ spans 3.758W–

13.1258E [so together theWest and Central Sahel are similar to

Taylor et al.’s (2017) TGrad region], and the ‘‘East Sahel’’ spans

158–33.758E (grid box centers). These regions are illustrated in

Fig. 1. In the context of this paper, their definitions are also

supported by—and indeed partly founded on—the further

analysis discussed in section 3.

A final data processing issue is that many GCM simulations do

not archive the subdaily resolution data that would ideally be re-

quired for quantifying the prestorm environment. Furthermore,

and in any case, these models poorly represent the strong diurnal

cycle of MCS occurrence (e.g., Yang and Slingo 2005; Marsham

et al. 2013). We are thus obliged to analyze GCMs’ all-day means,

making the assumption that future changes in thesemeans arewell

correlated across models with changes in a more discriminating

measure of prestorm environment. We suspect this assumption is

likely valid—that is, that the first-order component of a model’s

change in prestorm environment is its change in mean state, not

least because of large intermodel variations in these changes in

mean state (see below). However, this assumption can only be

confirmed (or refuted) once multimodel projection ensembles

become available with much improved tropical diurnal cycles.

c. Intermodel spread

Figure 2 shows late twenty-first-century projected changes in

each of the large-scale drivers of intense Sahelian storms (data

association to specific models is recorded in Table 1). Modeling

uncertainty is substantial for all three drivers, and much larger

than natural variability (estimated for 30-yr minus 50-yr differ-

ences, from each model’s piControl data, emulating the period

lengths defined in section 2a). These large ranges emphasize the

extent of resilience options that must be built into adaptation

decisions (cf. van Aalst et al. 2008; Kniveton et al. 2015), and

conversely the value offered by efforts to reduce these climate

modeling uncertainties. Note also that the distributions of Fig. 2

are not dominated by any outliers that would offer the prospect of

large uncertainty reductions via evidenceof unreliable behavior of

just a few models (cf. Rowell 2019). Rather, each distribution is

more or less continuous, apart from a few slight outliers with

smaller changes inWest Sahel shear (BNU-ESM andMIROC5),

East Sahel shear (BCC-CSM1.1), and West Sahel TCW (INM-

CM4). Application of this analysis in a risk-based approachwould

note high vulnerability at the upper end of these distributions, and

might for example consider adaptation measures resilient to the

full projection range or to say the central 90%.

The rangeofTGrad changes extend fromnear-zero to 0.35Kper

degree of latitude. As expected, these are well correlated with

intermodel variations in the change in shear (Fig. 3, top row),

justifying our focus on DTGrad (hereafter, D denotes RCP8.5-

minus-historical anomalies). Note also that DTGrad uncertainty

appears similar in the new CMIP6 ensemble (based on 16 models

readily available at the time of writing, forced by the Shared

Socioeconomic Pathway 5–8.5 that closely follows RCP8.5).

Uncertainties in DTCW roughly span a factor of 4 (Fig. 2).

These, perhaps not surprisingly, aremoderately to well correlated

across models with projected changes in JAS mean Sahel rainfall

(Fig. 3, lower row). Since a parallel study (K. Sheen andD. Rowell,

unpublished manuscript) aims to understand intermodel variations

in seasonal Sahel rainfall change, and also includes analysis of

DTCW, these uncertainties are not further pursued here.

Therefore, we now focus exclusively on understanding the

causes of intermodel variations in the projected changes in 850-

hPa meridional temperature gradient DTGrad.

3. Remote versus regional contributions to uncertainty

Intermodel variability in local temperature change in the

lower troposphere is likely strongly related to the models’

global mean temperature change; compare Macadam et al.’s

(2020) analysis of near-surface air temperature anomalies or

the temporal regional–global relationships used for pattern

scaling (e.g., Mitchell 2003). In contrast, if we consider that

changes in the gradient of regional temperature are the dif-

ferential warming between two adjacent regions, then this re-

mote influencemay be partly—but not wholly—negated. Thus,

uncertainties inDTGrad may be relativelymore impacted by the

uncertain representation of processes in the immediate region.

The drivers of intermodel variability ofDTGrad can therefore

be classified into two distinct sets. The first set is remote drivers,

which derive from diverse uncertainties in slow ocean warming,

sea ice feedbacks, atmospheric feedbacks, land surface interac-

tions, and so on. These drivers affect intermodel variability in

North African warming via planetary-scale atmospheric mixing,

and could—hypothetically—dominate regional uncertainties in

DTGrad on the condition that the pattern of regional amplifica-

tion of remote warming is consistent across models. The second

set of drivers is then the intermodel variability in these regional

processes and feedbacks. This could either manifest 1) through

uncertainty in the regional pattern of the amplification of remote

warming (e.g., land–sea contrasts), evolving slowly with the pro-

gressive warming of the global oceans, and/or 2) via uncertain

FIG. 1. The ‘‘West Sahel,’’ ‘‘Central Sahel,’’ and ‘‘East Sahel’’ aver-

aging regions shown as boxes, overlaid on topographic height (m).
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regional responses entirely independent of global warming, which

may encompass amix of ‘‘slowprocesses’’ (indirect anthropogenic

effects, dependent on the pattern of ocean warming) and ‘‘fast

processes’’ driven by direct responses to anthropogenic emissions.

To help decompose the remote and regional sets of drivers of

uncertainty in Sahel DTGrad, each left-hand panel of Fig. 4 shows

correlations across models between a sub-Sahel DTGrad index and

the projected change in near-surface air temperature computed at

each location. This elucidates the role of remote drivers, with the

use of near-surface data emphasizing the role of surface coupling in

many of the key processes. The largest impact of remote warming

is on uncertainties in the East Sahel (lower left), with notable

contributions from uncertain slow global ocean warming, the

tropical east Pacific, and northern continental warming. Farther

west, these remote impacts diminish, mostly becoming negligible

for theWest Sahel.Regardingpotential regional drivers, variability

in DTGrad is dominated by uncertainty in processes over the

southern Sahara (at both the surface and 850 hPa, left and right

panels, respectively), with substantially less influence from uncer-

tainties farther south. This is also reflected in substantially larger

intermodel variance of local warming over the northern Sahel and

southern Sahara (surface and 850 hPa; not shown).

The zonal asymmetry of remote influence is examined fur-

ther in Fig. 5, which computes the correlation across models

between projected changes in DTGrad and global mean near-

surface air temperature (DTGlo), where DTGrad is computed

over a sliding 11.258 longitudinal window. Like Fig. 4, this

illustrates a moderate impact of global warming uncertainties

on DTGrad over the East Sahel, then diminishing toward the

West Sahel. Thus Fig. 5 also supports the section 2 definitions

of the West, Central, and East Sahel (marked on Fig. 5) as

regions of distinct strength of relationship with DTGlo.

FIG. 2. Projected change in large-scale drivers of intense Sahel storms, with models (each dot) in rank order for each panel. (top)

Meridional 850-hPa temperature gradient (TGrad); (middle) 925–600-hPa vertical zonal wind shear (Shear); (bottom) total column-

integratedwater vapor (TCW).Data are averaged over the (left)West Sahel, (center) Central Sahel, and (right) East Sahel, and over July–

September. Vertical lines show62 standard deviations of natural variability, exceptMRI-ESM1 for which piControl data are unavailable.

All TCW data are missing for EC-EARTH and HadGEM2-AO. Gray dots and lines show models absent from the 32-model subset.
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Further analysis of the uncertainties in regional processes and

their influence on DTGrad must now be separated from the uncer-

tain influence of global mean warming on the Central and East

Sahel. This is achieved by removing the linear intermodel regres-

sion between DTGlo and the East or Central Sahel DTGrad (but

retaining the DTGrad mean), and similarly for all other variables

related to these DTGrad indices (full field data are used for West

Sahel DTGrad analysis, which is not impacted by DTGlo) These re-

gional components of projected anomalies are now denoted by the

prefix DR. Note that if this approach is applied to a variable and

location already independent of DTGlo, then it has minimal impact.

The remainder of this study focuses on elucidating the causes

of uncertainty in these regional drivers of DRTGrad. Prior to

detailed analysis in section 4, it is useful to examine intermodel

consistency of DTGrad between the three Sahel subregions.

Correlations across models between Central Sahel DRTGrad and

East Sahel DRTGrad or West Sahel DTGrad are 0.86 and 0.76,

respectively. This implies that the regional drivers of intermodel

variability are likely similar between subregions, and therefore

subsequent sections will focus primarily on the Central Sahel,

followed by brief comparisons with the East and West Sahel.

Last, we compare the strength of influence of remote and

regional drivers on uncertainties in this severe storm proxy.

Intermodel correlations between DTGrad and DTGlo are 0.06,

0.37, and 0.56 for the West, Central, and East Sahel (mirroring

Fig. 5, and assuming linearity with minimal contribution of

North African effects to the global mean), whereas correla-

tions between DRTGrad and local southern Saharan DRT
850

maximize at 0.87, 0.83, and 0.70, respectively. This suggests that

regional drivers have a larger impact on intermodel variability

of DTGrad than the remote set of drivers.

Nevertheless, regarding the secondary impact of remote uncer-

tainties—most relevant in the East Sahel—we note that the re-

search community has devoted, and continues to devote, significant

effort to probing and constraining this driver (e.g., Armour 2017;

Booth et al. 2017; Myhre et al. 2015; Stevens et al. 2016).

Subsequent research should therefore integrate this understanding

of global uncertainties with the outcomes of our current study.

4. Regional drivers of uncertainty in lower tropospheric
warming

Figure 6 summarizes the processes that will be shown to

determine the intermodel variability of projected changes in

Central Sahelian meridional temperature gradient and the

southern Saharan warming that was identified above as the

FIG. 3. Scatterplots of projected changes in (top) meridional temperature gradient vs vertical zonal wind shear and (bottom) total

column-integrated water vapor vs seasonal rainfall. Data are averaged over the (left) West, (center) Central, and (right) East Sahel, and

over July to September. The dashed line is the best linear fit, and printed values are intermodel correlations. Gray dots showmodels absent

from the 32-model subset.
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immediate regional source of DTGrad uncertainties. Illustrating

these research outcomes upfrontmay provide a reference point

during the following detailed description of the analysis from

which it derives; we will return to this schematic in the con-

cluding section. At the center of Fig. 6 (highlighted by blue

boxes) are the twin ‘‘target indices’’ that we wish to under-

stand, Sahelian DTGrad and southern Saharan DT. The primary

driver of their uncertainties will be shown to be intermodel

variations in the strength of a regional lower tropospheric

warming–advection–circulation feedback (Fig. 6, top right);

the underpinning analysis and more detailed interpretation is

described in section 4a. Local land surface interactions will also

be shown to be important, but with limited coherence across

models with the exception of a weak evaporative effect (lower

part of Fig. 6); further detail is presented in section 4b.

Additionally, as already discussed in section 3, important sec-

ondary roles are played by uncertain remote, often global-

scale, processes (Fig. 6, top left).

To introduce the process-based regional uncertainty analysis

of this section, Fig. 7 shows intermodel correlations between

Central Sahel DRTGrad and projected changes in sources of

lower tropospheric heating. Over the southern Sahara—where

thermal anomalies are most strongly correlated with uncer-

tainty in warming gradients (section 3)—Fig. 7 shows the

dominant drivers of this uncertain local warming to be uncer-

tain changes in thermal advection (DRV �=T; examined further

in section 4a, where V is the horizontal wind vector) as well as

uncertainties in longwave (LW) heating from the southern

Saharan surface (examined further in section 4b). A parallel

regression analysis (Fig. S1 in the online supplemental mate-

rial) shows that the intermodel variability of thermal advection

is more influential toward the surface, evidenced by larger

regression slopes at 925 hPa. Vertical mixing presumably

transports the 925-hPa thermal anomalies to higher levels.

Much of the ensuing analysis therefore focuses on circulation

change at 925 hPa rather than at the 850-hPa proxy for the

FIG. 4. Intermodel index-to-point correlations between the projected change in meridional temperature gradient

for each Sahelian region (from top to bottom) and the projected change in either (left) local near-surface air

temperature or (right) 850-hPa temperature. Correlations are computed across 40 models at each grid point using

near-surface or 850-hPa temperature data at that point, and all data are averaged over July–September. Boxes show

the three Sahel regions, and right panels include contours at intervals of 0.2.
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surface-to-AEJ layer mean. Section 4a does however suggest

an explanation for the weaker 850-hPa–DRTGrad relationship.

Farther south, those models with larger Sahelian DRTGrad are

associated with larger influx of cool moist air (primarily at 925

hPa; Fig. 7 center left), which will be shown in section 4a to

have little feedback onto DRTGrad. Last, uncertainties in

anomalous surface sensible heat flux and low cloud (for which

the net cloud radiative effect, NetCRE, is a proxy; Webb et al.

2006) have little coherent impact on DRTGrad across models.

For the East Sahel, broadly similar conclusions are drawn

(Fig. S5), although surface effects via upward LW flux are less

coherent across models, and the relative impact of 850- versus

925-hPa thermal advection is closer (regression analysis not

shown). For the West Sahel, uncertainties in cloud effects play

an additional secondary role (Fig. S9). We have also examined

the relative importance of these drivers on the vertical profile of

the meridional gradient of warming uncertainties (not shown).

Although broadly reflecting the above analysis of 850-hPa

warming uncertainties, total cloud cover is also important at

925 hPa (cf. SWradiative effects on the surface to be discussed in

section 4b), and uncertainty in low cloud effects (NetCRE) be-

comemore important at 700 hPawhere there is likely less impact

of the vertical transport of warming from low-level thermal

advection. So, although 850 hPa is most suitable for defining a

DTGrad driver of MCS activity—as the CMIP level closest to the

midpoint of the surface-to-600-hPa layer and most representa-

tive of the SAL—further examination of vertical sensitivities to

its underlying drivers should be an area for further research.

a. Lower-tropospheric sources of uncertainty

Here we aim to understand the critical role of uncertainties in

the projected change in low-level thermal advection revealed

above. Figure 8 presents a composite analysis of low-level cir-

culation and temperature anomalies that together determine the

thermal advection anomalies. Models are classified by their

projected change in Central Sahel DRTGrad, then averaging the

14models (;33%) with highestDRTGrad and the 14models with

lowest DRTGrad. The ensemble mean historic climatology (top

left, using all 40 models) illustrates the mean position of the

monsoon trough, the West African monsoon (WAM) south-

westerly flow into the Sahel, and the opposing northeasterly flow

from the Sahara. Climatological thermal advection (top center)

is predominantly negative at 925 hPa (offsetting strong heating

from the desert surface) but is substantially weaker along the

southern edge of the Sahara, or weakly positive along the

western and eastern extremities of the southern Sahara. This

band approximately follows the thick dashed line, which marks

FIG. 6. Simplified schematic of the uncertain mechanisms driving intermodel variability of

projected changes in Central Sahelian meridional temperature gradient (DTGrad) and southern

Saharan surface temperature (DT). Illustrated as a comparison between models with high vs

low DTGrad and DT. Blue boxes emphasize the focus on DTGrad and DT, blue arrows show

inferred causal direction, with thickness suggesting relative importance, and black arrows in

boxes show projected increases or decreases. See text for full discussion.

FIG. 5. Intermodel index-to-index correlations between the

projected changes in meridional temperature gradient and global

mean near-surface air temperature. Temperature gradients are

averaged over a sliding 11.258 longitudinal window, and data from

the 40 models are each averaged over July–September.
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the climatological location of the ensemble mean monsoon

trough (latitudes of minimum SLP), identically placed in all

panels for consistent orientation.

Future projections in both composites exhibit intense Saharan

warming due to ‘‘desert amplification’’ (Fig. 8 right column, rows

2–5; locally up to 68C averaged over all models). Southward

movement of this more strongly heated desert air, by the cli-

matological northeasterly flow, is however impeded by the op-

posing monsoon flow, with the result that DRTGrad intensifies

(right column, rows 4 and 5). In the southern Sahara, the com-

bination of climatological northeasterlies and enhancedDRTGrad

leads to a band of further local warming by enhanced thermal

advection (center column, rows 4 and 5). This warming (and the

wider Saharan warming), seen in both composites, then causes a

reduction in surface pressure over the desert (left column, rows 4

and 5), and hence a deepening and slight northward shift of the

monsoon trough (left column, rows 2 and 3).

Focusing on the individual composites and their differences,

the high composite models, by definition, exhibit larger DRTGrad

than the low composite models, with these gradient anoma-

lies also extending farther south. Hence, the high composite

models exhibit a stronger and more southward band of pos-

itive thermal advection anomalies (cf. rows 4 and 5, center

column of Fig. 8, and similarly Fig. S2, which is a zoom of

Fig. 8), again impeded by the opposing monsoon flow. This

amplifies the southern Saharan warming in high versus low

composite models (i.e., describes a stronger warming–

advection feedback; Fig. 8 and Fig. S2, lower right). This is

then exacerbated by further deepening of the monsoon

trough in high composite models, strengthening the flow of

desert air on its northern side (Fig. S2, lower left) across the

climatological temperature gradient, further enhancing the

warming via thermal advection, and then in turn also causing

further deepening of the monsoon trough.

FIG. 7. Maps of index-to-point intermodel correlations between projected changes in Central Sahel meridional

temperature gradient and changes in local values of potential drivers of lower-tropospheric heating; see panel titles.

Correlations are computed across 32 models at each grid point, data are averaged over July–September, and the

effects of global processes have been removed. Grid boxes with more than 50% of models below the topographic

surface are masked. The box marks the Central Sahel.
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FIG. 8. Compositemaps of (left) sea level pressure (SLP; hPa) and 925-hPawinds (V925), (center) 925-hPa thermal advection (TAdvec;

K day21), and (right) 925-hPa temperature (T; 8C). (row 1) Historic climatology averaged over all 40 models; (row 2) future projection for

low composite models; (row 3) future projection for high composite models; (row 4) projection anomalies (future minus historic) for low

composite models; (row 5) projection anomalies for high composite models; (row 6) projection anomalies for high minus low composites.

Low and high composites are computed as averages over the 14 models with lowest and highest Central Sahel anomalous (future minus

historic)meridional temperature gradient.All data are averaged over July–September. The effects of global processes have been removed

and to attain a consistent baseline for the projection composites (rows 2 and 3), these composites are recomputed by adding their
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In summary, this characterizes a warming–advection–circu-

lation feedback whereby the southwestward advection of

thermally amplified desert air is inhibited by the opposing

WAM, forming a narrow warming–advection band, further

exacerbated by a deepeningmonsoon trough (Fig. 6, top right).

This feedback functions more strongly in some models than

others, presumably partly dependent on each model’s thermal

dissipation processes in this region, such as mixing from the

low-level cyclonic circulation (Nicholson 2013) or African

easterly waves. Importantly, although this feedback is initiated

by the Saharan warming, it does not represent intermodel

variability in the strength or extent of the desert amplification

mechanism, but rather its relative strength among models is

determined more by local processes specific to the southern

Sahara. This is evidenced by 1) the absence of high intermodel

correlations between DTGrad and local DT in the central

Sahara, indicating that variations in central Saharan DT cannot

be the main driver of DTGrad, and 2) negative intermodel

correlations between collocated changes in low-level temper-

ature and humidity over the southern Sahara (Fig. 9, left),

contrary to the reliance of the desert amplification mechanism

on concomitant increases in temperature and humidity (Zhou

2016; Vizy and Cook 2017), with these negative correlations

instead being consonant with the proposed role of advection of

hot dry desert air.

For the southern Sahel, in the majority of models, the primary

consequence of the deeper trough and enhanced temperature

gradient is an enhancedWAM (Fig. 8, left column, rows 4 and 5).

This response is amplified in high DRTGrad models, and then af-

fects intermodel variability of local warming via two competing

processes. One is that these models exhibit larger increases in

lower tropospheric humidity (Fig. 10, top left), acting to enhance

the downward LW flux (Fig. 10, top right) (noting that DRq
925 is

plotted here as a percentage change; e.g., Wei et al. 2017), so

contributing to surface warming, enhanced upward LW flux and

potentially lower tropospheric warming. The second, offsetting,

process is larger increases in cool air advection in the highDRTGrad

models (Fig. 8, center column, rows 4–6). Since the upward LW

flux and thermal advection are anticorrelated across models

(Fig. 9, right; due to the opposing moisture and thermal effects of

changes in WAM strength), the net result is a tendency for can-

cellation between these two processes, and so little coherent net

impact on the regional component of southern Sahel lower tro-

pospheric warming (Fig. 8 lower right and Fig. 10 center left). So

overall, southern Sahelian processes neither enhance nor notably

reduce the impact of the southern Saharan warming–advection–

circulation feedback, and hence this southern Saharan feedback

becomes the dominant regional lower-tropospheric source of

uncertainty that drives intermodel variability in DRTGrad (Fig. 10,

center left).

A somewhat similar view emerges from analysis of 850-hPa

thermal advection and temperature (Fig. S3), except that the

thermal advection differs less between composites, concomitant

with its weaker relationshipwithDRTGrad noted above. Thismay

be because the circulation component of the southern Saharan

feedback is absent (Fig. S3, lower left), which in turn derives

from the role of the thermal low, which exhibits positive en-

semble mean anomalies at 850 hPa (i.e., subsidence; not shown)

in contrast to negative height and pressure anomalies near the

surface. Farther south, cool air advection is climatologically and

 
respectivemodels’ projection anomalies to the 40-modelmean historic climatology.Wind vectors are plotted at alternate grid points, and grid

points withmore than 50%ofmodels below the topographic surface aremasked. The boxmarks theCentral Sahel, dotted lines highlight zero

contours, and for consistent orientation across all panels the thick dashed line marks the climatological monsoon trough.

FIG. 9. Maps of point-to-point intermodel correlations (left) between projected changes in 925-hPa temperature

and specific humidity and (right) between projected changes in 925-hPa thermal advection and upward surface LW.

Correlations are computed across 32 models, with both variables collocated at the same grid point. All data are

averaged over July–September, the effects of global processes have been removed, and projection anomalies are

computed as future-minus-historical, except that specific humidity anomalies are scaled by the historic climatology.

For tropospheric data, grid boxes withmore than 50%ofmodels below the topographic surface aremasked, and the

box marks the Central Sahel.
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anomalously substantially weaker than at 925 hPa, and pene-

trates less far north, so that 850-hPa processes over the southern

Sahel again have little impact on intermodel variability of

DRTGrad.

These findings are all very similar for the East andWest Sahel

(Figs. S6, S7, S10, S11), except that for both regions the opposing

processes in the southern Sahel are both weaker than for the

Central Sahel. We also note strong coastal gradients in the far

west, further suggesting the dominant role of uncertain land-

based, rather than marine-based, climate change mechanisms.

b. Land surface interactions over the southern Sahara

Figure 7 showed that uncertainties in Central Sahel DRTGrad

are partly driven by intermodel variations in the surface

warming (DTSurf) of the southern Sahara. Hence, Fig. 11 and

Fig. S4 examine the causes of this surface intermodel vari-

ability, that is, the role of latent and sensible heat fluxes,

downward LW flux, net shortwave (SW) flux, and the clear-sky

and cloudy components of the surface radiative fluxes. These

are primarily balanced by intermodel variations in LW emis-

sions from the land surface (Fig. 7 top left). Data are averaged

over the same longitudes as the Central Sahel, but a latitude

range is defined by the region of highest DTGrad–DTSurf cor-

relations (Fig. 4 center left), encompassing grid box centers

from 18.758 to 22.58N inclusive (and similarly for the western

and eastern southern Sahara: 17.58–21.258N and 18.758–22.58N,

respectively).

First, from a perspective that includes global mean effects,

Fig. S4 shows that the modeling uncertainty of the southern

Saharan surface is dominated by uncertainties in clear-sky in-

coming LW radiation. Hence, intermodel variations in the

amplitude of LW coupling between surface and lower tropo-

sphere are critical in this mixed picture of remote and regional

drivers of uncertainty. A secondary contributor is a small op-

posing effect from intermodel variations in clear-sky SW sur-

face heating, noting the smaller x-axis range of this Fig. S4

panel; this may be due to the effect of uncertainties in global-

mean clear-sky SW absorption (DeAngelis et al. 2015).

FIG. 10. Maps of index-to-point intermodel correlations between projected changes in Central Sahel meridional

temperature gradient and changes in local values of other variables; see panel titles. Correlations are computed

across 32models at each grid point, data are averaged over July–September, and the effects of global processes have

been removed. Projection anomalies are computed as future-minus-historical, except that specific humidity

anomalies are scaled by the historic climatology. For tropospheric data, grid boxes with more than 50% of models

below the topographic surface are masked. The box marks the Central Sahel.
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FIG. 11. Scatterplots of projected changes in surface energy budget components

(x axis) vs southern Saharan surface temperature. Data are averaged over the central

southern Sahara (defined in section 4b) and July–September. Correlations are com-

puted across 32 models, and the effects of global processes have been removed. The

dashed line is the best linear fit, and printed values are intermodel correlations. Net SW

clear-sky–cloudy partitioning is computed by duplicating that of downward SW.
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Focusing on only the regional contributions to uncertainties in

southern Saharan DTSurf, Fig. 11 paints a different picture.

Intermodel variability in regional processes here are not co-

herently influenced by uncertainties in clear-sky incoming LW

(i.e., the LWcoupling effect in the southern Sahara is due only to

the global mean contribution). This likely reflects the local an-

ticorrelation between DRT
925 and DRq

925 (Fig. 9, left panel) due

to intermodel variations in hot dry Saharan advection, whereby

the temperature and moisture effects induce opposing changes

in LWemissions. Furthermore, Fig. 11 also reveals onemodel to

be a substantial outlier, which we suggest warrants separate

discussion, followed by discussion of the remaining models.

Addressing the behavior of the outlier, BNU-ESM is seen to

have an exceptionally small regional component of southern

Saharan warming (4.5 standard deviations from the ensemble

mean), and indeed is the only model with less net warming in

this region than the global mean (note in Fig. 11 that DRT
Surf

includes the ensemble mean DTSurf, and excludes only inter-

model variations of DTGlo). This unusual outcome is due to an

exceptional increase in evaporation (Fig. 11, top left) and, to a

lesser extent, an unusual decrease in SW surface heating due to

large increases in cloud cover (not shown, and partly offset by a

large increase in net SW clear-sky heating). The budget is

closed by an exceptionally small increase in upward LW (not

shown) and an unusual decline in sensible heat flux. This be-

havior relates to a large northward shift of the North African

monsoon (southern Saharan JAS rainfall anomalies reach 3.5

standard deviations from the ensemble mean), demanding

further examination and understanding to develop a relevant

assessment of this model’s performance against observations.

Examining the remaining models, those with larger evapo-

rative anomalies (DRE) also tend to warm less in the southern

Sahara and vice versa (Fig. 11, top left; r520.64), althoughwith

much smaller differential evaporative forcing and impact than

the BNUmodel. However, when DRE is instead correlated with

850-hPa temperature gradient changes, DRTGrad, the additional

influence of other effects weakens the relationship so that

evaporative effects become much less influential than lower-

tropospheric or circulation effects (cf. Fig. 10 center right with

Fig. 7 center left and Fig. 10 lower left). As noted, uncertainties

in incoming LW radiation do not coherently influence DRT
Surf,

although their intermodel range of ;20 Wm22 indicates that

their importance is similar to that of evaporative effects. Lesser

roles—again without coherency across models—are played by

sensible heat flux and SW radiative effects, both with a range of

;10Wm22 (this may include, for example, the effects of model

inability to adequately represent low-level clouds over West

Africa; Hannak et al. 2017).

Despite this lack of coherent behavior across models for any

one variable, we emphasize that uncertainties in surface pro-

cesses are nevertheless an important driver of uncertainties in

this large-scale severe storm driver, demonstrated by notable

intermodel correlations between surface LW emissions and

DRTGrad (Fig. 7, top left). Additionally, the weak positive

correlations in the northern Sahel between LW emissions and

925-hPa thermal advection suggest that intermodel variations

in surface processes also contribute to intermodel variability in

the strength of the warming–advection–circulation feedback.

Again, similar conclusions can be drawn for the surface in-

teractions at the longitudes of the East andWest Sahel (Figs. S8

and S12). Exceptions are that for the East Sahel, evaporative

effects are less coherent (r 5 20.44 with the outlier removed),

and that a weak but coherent SW cloud effect is found in the

West Sahel across all models (r 5 0.60, range ;10 Wm22

without the outlier), both commensurate with the outcomes of

the East/West Sahel equivalents of Fig. 7 noted above.

5. Summary and discussion

This study seeks to understand the causes of modeling un-

certainties in the projected change in a large-scale atmospheric

driver of severe storm activity over the North African Sahel.

Lower tropospheric meridional temperature gradients impact

the intensity of MCSs via zonal wind shear below the AEJ and

midlevel warming and drying of the Saharan air layer. Taylor

et al. (2017) have shown this to be the primary driver of the

recent threefold increase in the frequency of intense MCSs

over the West and Central Sahel. For the coming decades, in-

creasing atmospheric moisture content will also be a critical

large-scale driver of storm intensity (e.g., Collins et al. 2013;

Fitzpatrick et al. 2020), and so a parallel study is examining

uncertainties in projections of this diagnostic.

The range of projected changes in DTGrad for the late

twenty-first century is found to be substantially larger than

natural multidecadal variability. The same is true for mid-

century projections (not shown), although to a lesser extent.

Hence, understanding the causes of projection uncertainties in

this large-scale driver represents an important step toward

potentially reducing uncertainties in future estimates of flood

risk, to help guide adaptation decisions. We have focused on

the Central Sahel, 48W–138E, but also shown that intermodel

variations and mechanisms are broadly coherent across the

whole Sahel, 168W–358E.
We find three main drivers of uncertainties in DTGrad, summa-

rized in Fig. 6. First, uncertain projections in remote atmospheric

warming, which includes processes such as sea ice feedbacks, the

slow ocean warming, global cloud feedbacks, and remote land

surface interactions (Fig. 6, top left). These have strongest impact

on the East Sahel, where DTGrad and DTGlo correlate at 0.56, with

steadily diminishing impact toward the West Sahel. Constraining

uncertainties in global warming projections will therefore be

helpful, and indeed is the subject of much research. On the other

hand, we note that some studies are instead suggesting that the

CMIP5 ensemble underestimates these uncertainties (Murphy

et al. 2018; Brunner et al. 2020) due to neglect of carbon cycle

uncertainties, inadequate modeling of aerosol impacts in some

models, and missing complementary evidence from a broader

sampling of parameter uncertainties. Drawing on such work may

therefore expand rather than constrain the plausible range of this

component of inferred severe storm activity.

Second, we have examined regional atmospheric drivers of

the uncertainties in DTGrad (Fig. 6, top right). These are iso-

lated by excluding intermodel variations in DTGlo via a linear

regression approach. In the southern Sahel, uncertainties in

lower-tropospheric warming contribute little to DTGrad un-

certainty, due to a regional negative feedback. Here models
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with larger DRTGrad induce greater strengthening of the monsoon

flow, leading to larger increases in lower-tropospheric humidity

and hence surface LWexchange and warming, but approximately

cancelled by larger increases in cool air advection.

So, uncertain warming over the southern Sahara and northern

Sahel is found to be the primary driver of the regional component

of DTGrad uncertainties. This uncertainty appears to be primarily

determined by a lower tropospheric warming–advection–circula-

tion feedback, specific to a narrow zonal band along the southern

Sahara, which varies in strength between models. This does not

relate to the ‘‘desert amplification’’ mechanism seen in the en-

semble mean, but instead depends on model variations in local

thermal advection and circulation change, evidenced by a lack of

intermodel correlation (in fact anticorrelation) between lower

tropospheric moisture and temperature changes. Further work is

now needed to understand the causes of these differences in

feedback strength betweenmodels, and in particular to try to find

parallel intermodel variability in control simulations (e.g., in the

amplitude of similar feedbacks in their interannual variability or

seasonal cycle) to develop an emergent constraint for assessment

against observations.

The third driver of uncertainties in DTGrad is intermodel

variations acting from the southern Saharan land surface

(lower part of Fig. 6). We speculate these may also partly

contribute to model variability in the atmospheric feedback

mechanism described above, via upward LW emissions. A

clear outlier in southern Saharan surface behavior is the BNU-

ESM model for which an exceptional increase in evaporation

(and a less influential exceptional increase in cloud cover) leads

to an unusually small (slightly negative) regional component of

southern Saharan DTSurf. Further work is now required to

understand and assess the reliability of this unusual behavior.

For other models, uncertainties in projected southern Saharan

surface warming are dominated by evaporative and lower-

tropospheric processes. For the former, there is a weak ten-

dency for the models with largest southern Saharan evaporative

anomalies to exhibit a smaller regional component of DTGrad.

For the lower-tropospheric processes, uncertainties in incoming

LW radiation do not coherently influence southern Saharan

surface warming due to confounding radiative influences from

uncertainties in the hot but dry Saharan air advection. This lack

of overall coherence across models of surface influences on

DTGrad will make it difficult to constrain these contributions to

uncertainty; each model would need to be judged individually

and an assessment made of the importance of its errors for

projections relative to other models.

The new understanding presented here can now be used to

develop observational constraints for some or all of the above

drivers of uncertainty, and then to combine these objectively,

including a constraint on the range of projected increases in at-

mospheric moisture content. This further research must include a

full analysis of the new CMIP6 simulations, alongside a more de-

tailed understanding of zonal and vertical variations in the drivers

ofWest African warming uncertainties and the larger sensitivity to

projected cloud cover changes in some circumstances. Assessment

of convection-permitting modeling will continue to be particularly

informative, in particular for better understanding the drivers of

future change inMCSs (cf. Fitzpatrick et al. 2020), theprospects for

changes in their relative importance, and potential impacts on the

spatial distribution of MCSs (L. Jackson et al., unpublished man-

uscript). Last, additional external drivers will also need to be

considered, in particular the role of anthropogenic aerosol emis-

sions, which may enhance near-term predictability as modeling

improves (e.g., Ackerley et al. 2011; Scannell et al. 2019), and land-

use changes such as urbanization. Together, we believe these ap-

proaches will build a more robust view of the future risks from

severe Sahelian storm activity.
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