
This is a repository copy of Learning image-based Receding Horizon Planning for
manipulation in clutter.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/170573/

Version: Accepted Version

Article:

Bejjani, W orcid.org/0000-0002-6129-2460, Leonetti, M orcid.org/0000-0002-3831-2400
and Dogar, MR orcid.org/0000-0002-6896-5461 (2021) Learning image-based Receding
Horizon Planning for manipulation in clutter. Robotics and Autonomous Systems, 138.
103730. ISSN 0921-8890

https://doi.org/10.1016/j.robot.2021.103730

© 2021, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Learning Image-Based Receding Horizon Planning

for Manipulation in Clutter

Wissam Bejjania,∗, Matteo Leonettia and Mehmet R. Dogara

aSchool of Computing, University of Leeds, LS2 9JT, Leeds, UK

A R T I C L E I N F O

Keywords:

Manipulation in clutter

Physics-based manipulation

Heuristic learning

Receding horizon planning

Imitation and Reinforcement learning

Abstract state representation

A B S T R A C T

The manipulation of an object into a desired location in a cluttered and restricted environment re-

quires reasoning over the long-term consequences of an action while reacting locally to the multiple

physics-based interactions. We present Visual Receding Horizon Planning (VisualRHP) in a frame-

work which interleaves real-world execution with look-ahead planning to efficiently solve a short-

horizon approximation to a multi-step sequential decision making problem. VisualRHP is guided by

a learned heuristic that acts on an abstract colour-labelled image-based representation of the state.

With this representation, the robot can generalize its behaviours to different environment setups, that

is, different number and shape of objects, while also having transferable manipulation skills that can

be applied to a multitude of real-world objects. We train the heuristic with imitation and reinforce-

ment learning in discrete and continuous actions spaces. We detail our heuristic learning process for

environments with sparse rewards, and non-linear, non-continuous, dynamics. In particular, we in-

troduce necessary changes for improving the stability of existing reinforcement learning algorithms

that use neural networks with shared parameters. In a series of simulation and real-world experi-

ments (video available on https://youtu.be/raKHTnJLikQ), we show the robot performing prehensile

and non-prehensile actions in synergy to successfully manipulate a variety of real-world objects in

real-time.

1. Introduction

Many robotics applications require robots to act in un-

structured and cluttered environments with uncertain dynam-

ics. Examples include reaching for specific objects on a ware-

house shelf, sorting waste, and grasping a food item from

a fridge [12, 14, 44]. In most of these applications, robots

must react, and even leverage, multi-object physical interac-

tions in real-time. For instance, in Fig. 1 the robot is tasked

with manipulating in a planar space the orange fruit to the

target region. Accomplishing this task involves interpreting

the task goal, representing the environment, reasoning over

the environment’s physics, and executing in real-time a long

sequence of prehensile and non-prehensile actions while sat-

isfying constraints such as not to drop any of the objects off

the surface edges.

The multi-step, sequential, and high dimensional nature

of such tasks makes sampling-based planning an attractive

option for solving the problem. Nonetheless, the uncertainty

in modelling the physics (both in object-to-object and object-

to-surface friction) in a cluttered environment would neces-

sitate real-time closed-loop decision making [35]. Replan-

ning makes the computation cost of sampling-based plan-

ning impractical for real-time applications as they treat ev-

ery new planning instance independently of previous expe-

riences and they also have to solve the problem all the way

to the goal. Instead, shortening the planning horizon can

reduce the computation cost and mitigate the uncertainty as-

sociated with increased clutter density.

⋆
This work has received funding from the UK Engineering and Physi-

cal Sciences Research Council under grant EP/R031193/1.
∗Corresponding author

wissam.bejjani@hotmail.com (W. Bejjani); m.leonetti@leeds.ac.uk

Fig. 1. The robot is tasked with moving, whithin the surface

edges, the orange fruit to the target region using prehensile

and non-prehensile planar actions.

Planning with a short horizon requires an efficient local

search, and a cost-to-go function expressing the expected

cost for the rest of the plan beyond the horizon. Receding

Horizon Planning (RHP) is a planning framework aimed at

continual planning with a limited look-ahead [38]. Heuristic-

based RHP offers desirable properties for achieving physics-

aware manipulation skills in closed-loop. It relies on a heuris-

tic to perform a local search using the forward model of a

physics simulator, and to evaluate the potential consequences

of finite sequences of actions, before executing the first ac-

tion of a chosen sequence [26]. We adopt this paradigm,

(M. Leonetti); m.r.dogar@leeds.ac.uk (M.R. Dogar)

W Bejjani et al. Page 1 of 17

Learning Manipulation in Clutter

and propose using a heuristic, learned with Reinforcement

Learning (RL), to guide the local search and estimate the

cost-to-go.

In image-based RL, RGB data are mapped to control

actions. This framework enables greater generalization by

making geometric features of the environment available to

the learner while also relieving the algorithm designer from

having to hard-code task-relevant features that might hinder

the robot in leveraging the full dynamics of the environment

[23]. It remains challenging, however, for the neural model

of an RL system to capture the complexity introduced by

non-linear and non-continuous dynamics of the physics en-

vironment whilst proposing actions with long-term conse-

quences. Furthermore, models that directly act on real-world

images to manipulate a specific object, defined for example

by its shape or colour [49], lack transferability to tasks with

different desired object attributes.

In this article, we propose VisualRHP an approach that

combines the advantages of both image-based learning and

heuristic-based RHP. We design a framework around Visual-

RHP to interleave real-world execution with abstract image-

based look ahead planning in a physics simulator. The real-

world state is abstracted to a colour-labelled image represen-

tation rendered from the simulator state, enabling generaliz-

able and transferable manipulation skills. In the simulator,

VisualRHP uses a learned image-based heuristic that acts on

the abstract state representation to efficiently solve a short

horizon approximation to a multi-step sequential decision

making problem. The acquired skills by VisualRHP com-

bine prehensile and non-prehensile manipulation actions that

generalize to different number of objects with different shapes,

and transfer to tasks with a different desired object to manip-

ulate in the real world.

Our contributions build on our research on heuristic learn-

ing for RHP in a discrete action space [6] and on learning

transferable manipulation skills by means of an abstract state

representation [5]. We extend these contributions to learning

manipulation actions in a continuous action space reducing

by a third the number of actions required to solve a manipu-

lation problem compared to a discrete action space. The two

heuristic learning approaches, in discrete and in continuous

action spaces, presented in this article put forth modifica-

tions on existing Imitation Learning (IL) and RL methods

to improve on the stability of learning algorithms in sparse

rewards environments with non-linear and non-continuous

dynamics.

The contributions of this work are (i) a framework that

integrates of real-world execution with physics-based look-

ahead planning in simulation (Fig. 2 and Sec. 3), (ii) an ab-

stract image-based representation that uses colour-labelling

to represent the state of the manipulation task (Sec. 5.1),

(iii) and the VisualRHP algorithm that uses an image-based

heuristic to run RHP in discrete and continuous action spaces

(Sec. 5.2). While our overall framework is agnostic to the

particular way the heuristic is learned, (iv) we detail a stable

heuristic learning process in Sec. 6. These contributions cul-

minate in having robust and transferable manipulation skills

to different desired objects while generalizing over different

environment settings.

The remainder of this work is structured as follows. Sec.2

presents and locates our work w. r. t. related literature. An

overview of the framework is described in Sec.3. Sec.4 presents

the formalism adopted in this work. The details of the con-

trol loop including VisualRHP is found Sec.5. The IL and

RL heuristic learning algorithms are presented in Sec.6. The

simulation and real-world experiments are presented in Sec.7

and Sec.9. Concluding comments are found in Sec.10.

2. Related Work

Manipulation in cluttered spaces has long been approached

with planning-based techniques. Planners such as [18, 30,

29, 13, 4] adopt an approach of motion planning followed by

open-loop execution to solve the task. In particular, Haustein

et al. [18] adopt sampling-based planning to solve manipu-

lation in clutter problems. They propose reducing the search

space of kinodynamic Rapidly exploring Random Trees (RRT)

by planning over statically stable environment states, while

allowing for physical interaction in-between these states. We

use a similar kinodynamic RRT planner to generate demon-

strations in different task instances. There are planners which

also take uncertainty into account before the generation of

the motion trajectory [13, 34, 25, 43], but these planners typ-

ically rely on uncertainty reducing actions, which generate a

conservative sequence of actions, limiting the robot from us-

ing the complete dynamics of the domain. Alternatively, to

avoid the uncertainty associated with multiple objects inter-

acting in a cluttered environment, planning approaches have

been developed to avoid contact altogether with environment

obstacles. Finding a collision free trajectory has been the

common theme in many of the approaches presented at the

Amazon Picking Challenge [20, 42]. Most recently, Kimmel

et al. [28] motivate a two-step planning approach, first in the

task space and then in the robot joint configuration space,

to find a collision-free trajectory to a stable grasp pose and

for retrieving the desired object. Avoiding all obstacles re-

mains, however, impossible (and often undesirable) in many

environment setups, and with that comes the necessity of a

reactive system.

Learning-based approaches have seen significant progress

in recent years in developing closed-loop physics-based non-

prehensile manipulation policies. To learn a robust behaviour,

Kloss et al. [31] combine an image-based learning approach

with an analytical model of a pushing task. They train a neu-

ral network, on visual sensory input, to output the appropri-

ate physical parameters to the analytical model that is con-

trolling the robot. Also for a pushing task, Peng et al. [46]

propose randomizing the physics parameters in the simula-

tor, such that the learned behaviour avoids exploiting the in-

accuracy of the physics model in the simulator. Clavera et

al. [11] argue for a modular approach where sensing, policy,

and controller are designed separately to ease the skill trans-

fer from simulation to the real world. These approaches have

proven capable in real-world manipulation. However, they

W Bejjani et al. Page 2 of 17

Learning Manipulation in Clutter

are designed for pushing a single object and their extension

to multi-object environments is yet to be explored.

The state representation, that is, the features on which

decisions are made, plays a major role in shaping the learned

behaviour. When deciding on the state representation, the

key design choice lies in balancing the trade-off between

having a representation that is expressive enough to capture

the state, while also providing a space that is efficiently search-

able [10]. Raw sensory representations, such as in the form

of realistic images, carry an abundant amount of informa-

tion, i. e., highly expressive, and does not require feature en-

gineering. Image-based representations can take advantage

of the spatial generalization of Convolutional Neural Net-

works (CNN) to learn implicitly spatial features that allow

for greater task generalization [56]. Domain randomization

is often used in conjunction with realistic image-based rep-

resentations to guide the learning process to capture features

that are regular across different tasks while being robust to

the randomized elements, such as the background colour or

the physics parameters in a manipulation task [46]. Domain

randomization, however, limits the application of such sys-

tems to environments that fall within the randomized space.

In vision-based system for example, unless the light-source

is randomized in the simulation environment, it won’t be able

to work robustly in the real world [22].

In many applications where the attributes of the desired

object and environment conditions are known a priori, end-

to-end systems have been successfully deployed to map real-

world images to actions [49]. However, the use of end-to-

end systems for multi-task manipulation remains limited. For

instance, a policy that is trained for grasping apples cannot

be used to grasp an orange instead without necessitating fur-

ther training or domain adaptation [15, 24]. We overcome

this limitation by using a shared representation of manipula-

tion tasks with different desired and obstacle objects.

More recently, the research on manipulation in clutter is

witnessing a growing interest in image-based systems with

top-down bin picking that acknowledge the necessity of ac-

counting for physics interaction in cluttered environments.

The work by Zeng et al. [62] approaches object picking from

a bin using a custom designed gripper capable of push, grasp,

and suction actions. Working with RGB-D images, they

use several neural network models (one per action primi-

tive) to evaluate pixel-wise affordances for the correspond-

ing actions, then execute the action at the location and ori-

entation of the highest affordance. Also using RGB-D im-

ages, Shome et al. [52] use a suction cap end-effector to per-

form one of three manipulation primitives, namely toppling,

pulling, and pushing for bin packing tasks of cuboidal ob-

jects. For grasping in a tightly packed cluster of objects,

Zeng et al. [61] learns synergetic push and grasp actions over

pixel-wise action-value heat map to disperse the clutter then

grasp one of the objects in the scene. These approaches,

however, require specific high-level manipulation primitives

to be defined. On-shot execution of a high-level primitive

limits the robotic manipulator from dynamically correcting

its behaviour in response to unexpected changes in the envi-

ronment. Viereck et al. [58] addresses this problem by using

a controller that continuously updates the target grasp pose

during execution. The controller relies on a learned distance

to grasp function that is evaluated over depth information.

It remains that these approaches are object agnostic, i. e., no

specific object to be manipulated can be specified apriori and

it is left to the system to select an object that is feasible to

grasp. In many real-world scenarios, it is desirable to be able

to specify the target object such as for getting a milk bottle

from the back of a cluttered fridge.

In environments with sparse reward functions, remark-

able results have been achieved by combining RL based ap-

proaches with planning which compensates for the subopti-

mality of a policy with informed model-based conjectures.

This combination is dominated by tree search planners to

guide RL policy search [3, 53], mostly by the adoption of

Monte Carlo Tree Search (MCTS) that uses Upper Confi-

dence Bounds (UCB) to balance between state space explo-

ration and rewards exploitation [27, 48]. Song et al. [54]

apply this concept to physics-based manipulation domains

for solving rearrangement tasks that necessitate a long se-

quence of actions. Albeit the use of neural networks that

are recursively trained over previous iterations of the gener-

ated plans to speed up the search [8, 32], the computation

cost associated with the transition function of physics mod-

els remains prohibitively expensive for this process to run

in closed-loop in real-time. This is because, fundamentally,

MCTS requires a large number of roll-outs for its estimates

to become reliable.

A more viable alternative is the use of Model Predictive

Control (MPC) and RHP like approaches to perform look-

ahead planning in real-time. If the goal state is not within

the horizon reach, a learned value function is used as a termi-

nal cost at the horizon state in order to solve a finite-horizon

approximation to a long or infinite horizon task. Kartal et

al. [26] extend an Actor-Critic RL algorithm to predict the

temporal closeness to terminal states. The temporal close-

ness is then used to enable limited-depth MCTS roll-outs

with around a 100 roll-outs per action selection. Despite

significant improvement over previous works, the number

of performed roll-outs remains far above real-time perfor-

mance for physics simulation. In a physics simulator, Tong

et al. [57] propose training a policy network to generate a

sequence of actions up to a certain horizon. Then using an-

other value function trained network and an evolutionary al-

gorithm, the sequence of actions is optimized and the first

action of the optimized sequence is executed. Thananjeyan

et al. [55] implements deep MPC over learned dynamics in

a constrained environment. To ensure exploration without

violating the constraints, generated trajectories are condi-

tioned to where a plan exists for navigating back to a safe

set. More recently, to address control problems under con-

straints such as state boundary, Mittal et al. [39] train Lya-

punov neural network to be used as the terminal cost for a

one-step horizon MPC with an imperfect forward model to

improve on the control stability. Although the approaches

stated so far are showing promising results and have a remi-

W Bejjani et al. Page 3 of 17

Learning Manipulation in Clutter

niscence to our work, some of their underlying assumptions,

such as having access to a dense reward function or that the

initial and goal state distributions forms a tight subset of the

state space, are not applicable to physics-based manipulation

in clutter tasks.

3. Framework

The framework is composed of two phases: first the heuris-

tic learning phase which takes place in simulation, then the

execution phase in which VisualRHP is interleaves the real-

world actions with the physics simulator at run time. We will

begin by describing the execution phase (Sec. 5) assuming

learning has already taken place, and then characterize the

learning phase that makes it possible (Sec. 6).

The execution phase consists of a closed-loop control

scheme (Fig. 2-Bottom). It dynamically maps the state of the

real world to the simulator, where an action is selected and

then executed by the real robot. The control scheme cycle

starts by processing multi-sensory data from the real world

to produce a corresponding state in the physics simulator

(Sec. 5.1). Then, in the simulator, VisualRHP performs a lo-

cal look-ahead search by simulating multiple physics-based

roll-outs up to a certain horizon. Each roll-out is evaluated

by computing its expected return. In this process, a heuristic

is required for (i) guiding the local search towards parts of the

state space with high expected returns, (ii) and for estimating

the expected return beyond the horizon state (Sec. 5.2). Vi-

sualRHP returns the first action of the best roll-out. Lastly,

the selected action is resolved to the joint motion of the real

robot (Sec. 5.3).

The learning phase consists of training a Deep Neu-

ral Network (DNN) to be used as the VisualRHP heuristic

(Fig. 2-Top). The heuristic guides VisualRHP to produce a

behaviour that seamlessly generalizes over different environ-

ment setups. The DNN in the discrete action space is trained

to approximate the optimal action-value function, whereas

the DNN in the continuous action space is trained to approx-

imate the optimal policy as well as the value function of the

learned policy. For both the discrete and continuous action

space implementations, we use deep IL (Sec. 6.2) followed

by deep RL (Sec. 6.3) to train the DNN.

4. Problem Formulation

We formalize the problem as a Markov Decision Process

(MDP), represented as a tuple M = ⟨S,A, T , r,
⟩ where S

is the set of the environment states describing:

• the surface edges represented by a set of vertices:

edges = {(x, y)1, (x, y)2,…}

• the location and radius of the circular target region:

tarReg = {(x, y)tarReg, radtarReg} with (x, y)tarReg be-

ing within edges

• the Cartesian pose and gripper state of the robot end-

effector: rob = {(x, y, �)rob, �grip}

DNN

𝑞(𝑠, 𝑎1)𝑞(𝑠, 𝑎2)𝑞(𝑠, 𝑎3)abstract

image
abstract

image

𝜋(. |𝑠)𝑣(𝑠)DNN

Learned heuristic with IL and RL
Discrete Action Space Continuous Action Space

VisualRHP running in a physics simulator

state

ac
ti

o
n

Real world

Fig. 2. Framework overview. Example with the orange fruit

as the desired object.

• the arrangement of the desired object and the obstacle

objects: arr = {(x, y, �)desObj, (x, y, �)2,… , (x, y, �)m}

• the shape of the objects and the robot end-effector,

represented by their vertices:

ver = {verdesObj, ver2,… , verm, verrob}

where m is the number of objects in the scene; tarReg and

desObj stand for target region and desired object, respec-

tively. Therefore, a state s at time t is given by st = [edges,

tarReg, rob, arr, ver]; A is the set of actions that the robot

can execute for moving over a planar surface and for closing

and opening the gripper. A can be either defined over a dis-

crete or a continuous space; T ∶ S × A × S → [0, 1] is the

transition probability function, r ∶ S × A × S → ℝ is the

reward function;
 is the discount factor.

We denote as Sval, the set of valid states where all the

of objects lie within the surface edges. The set of invalid

states, Sinval, consists of the states where any of the objects

is located outside of the surface edges. The task goal states,

Sg ⊂ Sval, is identified by the arrangement, arr, where the

desired object is in the target region, satisfying:

||(x, y)desObj − (x, y)tarReg|| ⩽ radtarReg.

Intuitively, it is expected from the robot to manipulate the

desired object to the target region with the least number of

actions without violating the surface edge constraints. The

robot interacts with the environment following a policy�(a|s),
then the environment transitions to the next state s′ and the

robot receives a reward r(s, a, s′). In this work, we adopt a

sparse reward function to avoid shaping exploration through

reward engineering. The optimal policy �∗(a|s) maximizes,

at any instant t, the expected discounted sum of future re-

wards (called the return)Gt =
∑
k=t

k−trk+1, where rk+1 =

r(sk, at, sk+1). Therefore, the optimal policy maximizes:

J (�) = Es∼d,a∼�[G0|s0 = s]. (1)

W Bejjani et al. Page 4 of 17

Learning Manipulation in Clutter

where d is the initial state distribution and actions are sam-

pled from �. The robot maximizes the expected return by

manipulating the objects in the environment along a sequence

of states ⟨st⟩Lt=0 s.t. st ∈ Sval for t in [0, L], where L + 1 is

the number of traversed states, from s0 ∈ Sval to sL ∈ Sg.

The optimal policy can be approximated either indirectly

with value iteration methods or directly with policy iteration

methods. In the discrete action space, a DNN parametrized

by a vector , q (s, a), is trained through value iteration to

approximate the optimal action-value function:

q∗(s, a) = ∫s′∈S T (s, a, s
′)[r(s, a, s′) +
 max

a′
q∗(s′, a′)]ds′,

that is the expected return for taking action a at state s and

proceeding following the optimal policy. The optimal pol-

icy can be derived by �∗(a|s) = maxa q
∗(s, a). The max

operator allows for learning the action-value function with

off-policy methods, i. e., learning the value of the optimal

policy independently of the learner’s actions. In the con-

tinuous action space, the parameters of the policy can be

directly learned with an Actor-Critic method similar to Ad-

vantage Actor-Critic (A2C). It uses value and policy itera-

tions until it converges to the optimal policy �∗(a|s). The

performance of a �-parametrized stochastic policy ��(a|s),
i. e., the Actor, can be iteratively improved by evaluating its

performance with respect to a�-parametrized value function

v�(s), i. e., the Critic. ��(a|s) models a k-dimensional mul-

tivariate Gaussian distribution �(�Ak , �Ak) from which ac-

tions can be sampled, and v�(s) approximates the expected

sum of discounted rewards from following�� at state s: v(s) =

Ea∼��
[Gt|st = s]. It is common, in applications where the

visual input is significant, for the value function and the pol-

icy to share some of their parameters, i. e., � and �, mostly

the convolutional part of the DNN. The motivation behind

shared parameters is that the low level features useful for

estimating the value function could also be useful for mod-

elling the policy and vice versa. Furthermore, optimizing

the parameters of the value function and policy together acts

as a regularizing element which leads to greater stability in

the learning process [40, 51]. In the rest of this article, we

will refer with � to the parameters of the Actor-Critic DNN.

Instead of acting greedily w. r. t. the learned value func-

tion or policy, using them as heuristics for RHP mitigates

inaccuracies in their learned approximations of the optimal

behavior. The longer the RHP horizon is, the less the behav-

ior depends on the learned approximations and vice versa.

We assume (i) a quasi-static physics model with limits

on the velocity of the robot motion, (ii) full observability of

the environment, and (iii) discrete time steps.

5. Execution Phase

In this section, we present a closed-loop control scheme

(Fig. 2-Bottom) that balances real-time execution with long-

term goal-oriented actions. First, we explain the mapping

from the real-world to the simulator and the colour-labelled

abstract image-based state representation (Sec. 5.1), and then

Real world State description extractor[edges, tarReg, rob, arr, ver] Robot-centric colour

labelled abstract image

as state representation

Fig. 3. Mapping the real-world state to a colour-labelled ab-

stract image-based state representation for a task where the

orange fruit is the desired object.

we explain how VisualRHP uses a heuristic acting on the ab-

stract state representation to suggest actions (Sec. 5.2). Once

an action is chosen, it is resolved back to the robot joint space

and executed by the real robot (Sec. 5.3).

5.1. Mapping the real world to an abstract

representation
Our mapping captures the state of the real world while

leaving out information that is not relevant to the task, such

as object texture, background colour, lighting sources, etc.

As illustrated in Fig. 3-Middle, we apply instance segmen-

tation on real-world images to detect the numberm, arrange-

ment arr, and the shape ver of the objects. This operation

is performed using Mask R-CNN [19] which also identifies

the type of each detected object. We identify the target re-

gion tarReg using simple template matching. We localize

with forwards kinematics the end-effector pose over the pla-

nar Cartesian space and the gripper state rob. The simulator

uses this information to create objects with the same con-

tour shapes as in the real world. In this work, the shape of

the end-effector and the surface edges are pre-loaded into the

physics model as they are kept unchanged from one task to

another1.

The input to the DNN is in the form of an image ren-

dered from the state of the physics simulator. The objects in

the simulator are colour labelled based on their functional-

ity. As in the example of Fig. 3-Right, the desired object is

always of the same colour (light green), all other objects are

of another common colour (red). The same applies to the

end-effector (blue), the surface edges (black), the target re-

gion (dark green), and the scene background colour (white)

across all task instances2. The colour labelling allows for the

seamless transfer of manipulation skills to different desired

objects. For example, any real-world object can be assigned

the colour of the desired object and the DNN will treat it as

such.

Furthermore, the abstract images are made robot centric,

i. e., the image tracks the robot from a top-view perspective

with constant offset (Fig. 3-right). The robot centric view

1If required, the detection of the shape of the end-effector and the sur-

face edges can also be automated.
2Where required, additional information, such as objects where the

quasi-static assumption does not apply, can also be captured by the colour

labelling.

W Bejjani et al. Page 5 of 17

Learning Manipulation in Clutter

𝑎1 ~ 𝜋 . 𝑠𝑡+1

𝑠𝑡
𝑟𝑡+1, 𝑠𝑡+1 𝑟𝑡+2, 𝑠𝑡+2 𝑟𝑡+3, 𝑠𝑡+3≡ℎ

𝑎2 ~ 𝜋 . 𝑠𝑡+2 𝑣(𝑠ℎ)

𝑟𝑡+1, 𝑠𝑡+1 𝑟𝑡+2, 𝑠𝑡+2 𝑟𝑡+3, 𝑠𝑡+3≡ℎ
𝑣(𝑠ℎ)𝑎1 ~ 𝜋 . 𝑠𝑡+1 𝑎2 ~ 𝜋 . 𝑠𝑡+2

Fig. 4. VisualRHP example of n = 2 roll-outs with ℎ = 3

horizon depth in continuous action space.

reduces the amount data required by the learning algorithm

due to the symmetry of the scene when compared to a fixed

view.

An equally important advantage of using this abstract

representation is in reference to the size of the DNN archi-

tecture need to operate on it. For real-time operation, it is

essential to have a small network to ensure fast inference

time. The abstract representation allows for a much smaller

convolutional part of the DNN to capture relevant features

when compared to the convolutional architectures designed

to handle real-world or realistically rendered images [7].

5.2. VisualRHP
VisualRHP can be seen as a combination of two pro-

cesses. The first process consist of performing a local search

starting from the current state of the simulator up to a certain

horizon depth. However, an exhaustive search would scale

badly with a horizon depth ℎ and the size of the action set

A, (|A|ℎ) in the discrete case, and it would be inapplicable

in the continuous case. Instead, as illustrated in an example

in Fig.4, we run a small number of n roll-outs up to a short

horizon of depth ℎ while using the heuristic as a stochastic

policy to orient the roll-outs’ expansion towards directions

with high return. The stochastic policy for the discrete ac-

tion space is the soft-max of the action-value function:

P (a|s) =
exp(q (s, a)∕�)

Σai∈Aexp(q (s, ai)∕�)
, (2)

where � is the temperature parameter, while it is represented

explicitly for continuous actions a ∼ �(�Ak , �Ak). The

stochastic policy would favour exploring actions that are more

likely to lead to higher return.

The second process consists of computing the expected

ℎ-step return of a roll-out, using the first ℎ rewards gener-

ated by the model and the expected return beyond the hori-

zon state sℎ. In discrete action space, the value of a horizon

state sℎ is computed as v(sℎ) = maxa q (sℎ, a), whereas in

the continuous action space it is the output of the value head

of the DNN: v(sℎ) = v�(sℎ). The return of a roll-out is there-

fore computed as:

Rt∶ℎ = r1 +
r2 +…+
ℎ−1rℎ +

ℎv(sℎ). (3)

The VisualRHP algorithm, detailed in Alg.1, returns the first

action of the roll-out that obtained the highest return Rt∶ℎ.

Algorithm 1: VisualRHP(scur, n, ℎ)

Input: Current state scur, No. rollouts n, horizon ℎ

Output: action a

RolloutsReturn← []; F irstAction ← []

for ni = 1,2, . . . , n do
setSimulatorTo(scur)

s← scur; R← 0

for hi = 1,2, . . . , h do
a ∼ �(.|s)
if hi is 1 then

F irstAction.append(a)

s← simulatePhysics(s, a)

r← receiveRewards

R← R +
ℎi−1r

if isTerminal(s) then
break

if not isTerminal(s) then

R← R +
ℎv(s)

RolloutsReturn.append(R)

return F irstAction[argmax(RolloutsReturn)]

In this algorithm, the heuristic plays two roles: it informs

the search through sampling, and as an approximation of the

rewards that are not sampled from the model.

5.3. From the simulator to the real world
Although VisualRHP can be extended to arbitrary di-

mensions of the action space, we limit our implementation

to actions parallel to the manipulation surface in the pla-

nar Cartesian space of the robot end-effector. It is safe to

assume that a sequence of actions performed over a small

planar Cartesian space can be resolved to the joint motion

of a redundant manipulator. Kinematic singularities can be

avoided using an inverse kinematics solver based on non-

linear optimization [33]. Therefore, the action returned by

VisualRHP is resolved to the robot joint motion and executed

in the real world.

6. Learning Phase

As described in Sec. 5, the performance of VisualRHP is

dictated by the quality of its heuristic. We are interested in

approximating the optimal heuristic for VisualRHP, whether

in the form of the optimal action-value function or in the

form of the optimal policy and value function for the discrete

and continuous actions space, respectively. We formulate

the heuristic learning as an RL problem where the robot is

trained in simulation to maximize the return (Eq. 1).

Training a randomly seeded RL algorithm in a cluttered

environment under edge constrains is unlikely to converge

to a good solution, as transition samples leading to the goal

will not be observed enough many times. For this reason,

we use a planner as a starting point for the search. The DNN

is jump-started with IL from demonstrations generated by

a probabilistically complete sampling-based planner. With

enough knowledge captured from demonstrations, RL would

W Bejjani et al. Page 6 of 17

Learning Manipulation in Clutter

only require a relatively small number of transition samples

to refine the robot’s behaviour. Therefore, we divided the

heuristic learning process into three sequential steps: (i) gen-

erating demonstrations, (ii) IL, and (iii) RL. We detail each

of these steps in discrete and continuous action spaces.

6.1. Generating demonstrations
Sampling-based planners provide a probabilistically com-

plete tool to solve complex planning problems in high di-

mensional state and action spaces without requiring a hand-

crafted or domain-dependent heuristic. In particular, Kino-

dynamic planners are one family of the sampling-based Rapid-

ly exploring Random Trees planners (Kino-dynamic RRT),

specific for solving planning problems that involve dynamic

interactions. We implement a discrete and a continuous ver-

sion of the state-of-the-art Kino-dynamic planner [18] used

for solving planning problems on physics-based manipula-

tion in clutter.

We generate P task instances. Each task instance is ini-

tialized with random environment setups. This includes the

location of the target region, the initial arrangement, and the

shape and number of objects. Then, for each task instance p,

we run the Kino-dynamic planner to generate a solution of

the form ⟨ap
0
,… , a

p

L−1
⟩ with state sequence ⟨sp

0
,… , s

p

L
⟩.

6.2. Imitation Learning
In this section, we show how to use the generated plans as

demonstrations to train the DNN to reproduce the behaviour

of the Kino-dynamic RRT.

6.2.1. IL in Discrete Action Space

In the discrete action space, the goal is to learn the action-

value function from the transition samples observed in the

demonstrations. The actions never selected by the planner,

which do not appear in the demonstrations, must be penal-

ized by receiving a lower value with respect to the selected

actions.

We train the DNN to predict the value of the actions se-

lected by the planner at the visited states by minimizing the

mean squared error w. r. t. the Monte Carlo target:

qtar(s
p

l
, a
p

l
) =

L−l−1∑

k=0

krl+k+1, (4)

where p stands for the index of the demonstration and l for

the index of the state-action pair in that demonstration.

While the DNN trained as above learns to predict the

action-values for the actions selected along the visited states,

the values predicted by the DNN for actions that have not

been selected by the planner along the visited states can be

arbitrary. As a result of function approximation, these ac-

tions must have a value even though they do not appear in the

training set. The value can converge to an arbitrary number,

determined by the effect of the target action value of the tra-

versed state-action transitions. A possible undesirable effect

is that the values of the actions not selected by the planner

can be higher than the selected one. This can later cause an

action that was not favoured by the Kino-dynamic planner

to look more favourable to VisualRHP that uses the action-

value function as a heuristic (Eq. 2).

To counteract this phenomenon, we use for the unse-

lected actions a target value that is lower than the value of

the selected actions. The minimum allowed difference be-

tween the value of the selected action and the other actions

is referred to as the value margin function (�) [21, 47]. We

propose a definition of � driven by the observation that, in

the domain of planar manipulation tasks, a mistake is in most

cases not irreparable, but can be overcome through a num-

ber of � additional actions of fixed cost rcost > 0, such that,

� =
∑�

k=1

L−l−1+krcost. This definition scales � down the

further away sl is from the final state in a demonstration.

Hence, we set the action-value target of the unselected ac-

tions at visited states to:

qtar(s
p

l
,ap
u
) =

{
qtar(s

p

l
, a
p

l
) − �, if q (s

p

l
, a
p
u) ≥ qtar(s

p

l
, a
p

l
) − �

q (s
p

l
, a
p
u), otherwise,

(5)

where au ∈ A⧵{al} is an unselected action. If the value that

the DNN converges to does not favour an unselected action

then we leave it unchanged. Lastly, we add an L2 regular-

ization term to avoid over-fitting on the demonstrations.

6.2.2. IL in Continuous Action Space

The value head of the �-parameterized DNN is trained

to estimate the future sum of discounted rewards that are

expected to be collected if RRT were to be engaged at the

current state. The update target is similar to Eq. 4 but it is

computed over a state instead of a state-action pair vtar(s
p

l
) =

∑L−l−1
k=0

krl+k+1. Furthermore, we train the policy head of

the �-parameterized DNN to estimate the action distribution

over states visited in the demonstrations while penalizing

high entropy distributions. One way this can be achieved

is by minimizing the loss function that combines the policy

and the value function:

il(�) = Es
p

l
,a
p

l
[− Υ log��(a

p

l
|sp
l
)

+ c1 (v
tar(s

p

l
) − v�(s

p

l
))2

+ c2 H(��(.|s
p

l
))], (6)

where c1 and c2 are hyper-parameters. Υ is a positive con-

stant, such that the first term on the right of Eq. 6 increases

the likelihood of action a
p

l
at state s

p

l
. The second term up-

dates the value estimate w. r. t. the Monte Carlo target, and

the last term is an entropy penalty added to reduce the prob-

ability of unselected actions at visited states.

We experimented with DNNs of different sizes and ex-

pressive power in both the discrete and continuous action

cases, but none could reliably represent the behaviour of the

planner over a large number of task instances. As a con-

sequence, we show in the next section how the information

compiled in the DNN can be further optimized to play a valu-

able role when used as the VisualRHP heuristic.

W Bejjani et al. Page 7 of 17

Learning Manipulation in Clutter

6.3. Reinforcement Learning
So far, the knowledge encapsulated in the DNN has two

shortcomings: first, the plans generated by the Kino-dynamic

planner are, in general, sub-optimal; and second, some infor-

mation is lost in the approximation by the DNN, with con-

sequent performance degradation with respect to the Kino-

dynamic planner. To overcome these problems, we use RL

to (i) improve the DNN to better estimate the return of the

optimal policy and/or to better estimate the optimal policy

and to (ii) learn the value of the not experienced state-action

transitions.

6.3.1. -RHP as the RL Policy in Discrete Action

Space

Operating in the discrete action space allows for a straight-

forward implementation of an off-policy RL algorithm. Off-

policy makes it possible to leverage RHP in the exploration

policy of the RL algorithm to exploit actions that are more

likely to lead to the goal. We implement the Deep Q-Learning

algorithm (DQN [41]) with RHP-based exploration policy.

We initialize the DNN with the IL trained parameters.

We also initialize a large buffer Dreplay with the demonstra-

tion transition samples. Further, we formulate a novel ex-

ploration policy, that we call �-RHP, which selects a ran-

dom action with probability � and with probability 1 − �

the policy queries RHP for an action. We found that fo-

cusing the search towards the goal, by augmenting the RL

policy with RHP, reduces the chances of the action-value

function from diverging which is a common problem in RL

when used in conjunction with neural networks as a func-

tion approximator. The robot uses �-RHP to collect transi-

tion samples over task instances initialized with random en-

vironment setups. Throughout the data collection process,

the robot stores the newly collected transition samples in the

buffer Dreplay. The old samples in the buffer get gradually

replaced by new ones that are collected with �-RHP. When

enough new transition samples are collected, the DNN is up-

dated by running a batch optimization over randomly sam-

pled transitions fromDreplay. The loss function over a batch

B = {⟨si, ai, ri, s′i⟩
M
i=1

} of M transition samples is defined

as:

q() = 1

M

M∑

i=1

(ri +
 max
a′

q (s
′
i
, a′) − q (si, ai))

2. (7)

An L2 regularization loss is also added on the network pa-

rameters.

6.3.2. Critic Correction Conditioned Policy

Optimization (C3PO) extension for A2C in Continuous

Action Space

In the continuous action space, we propose reformulat-

ing the loss function for an A2C style algorithm. The mo-

tivation is to improve on the stability of existing algorithms

that use shared neural network parameters and are sensitive

to changes in the policy, more specifically to avoid catas-

trophic forgetting.

One way of implementing A2C with shared parameters is

by (i) running multiple simulation environments in parallel,

each with random task parameterization and with the same

copy of the DNN. In each environment, the robot is con-

trolled by �� . (ii) Once all the transition samples in Dreplay

are replaced with the ones collected with �� , the parame-

ters � of the DNN are stored as �old . (iii) Then, the policy

and the value function are updated together by minimizing

in batches B = {⟨si, ai, ri, s′i⟩
M
i=1

} the loss function w. r. t. �:

actor-critic(�) =
1

M

M∑

i=1

− Adv(si, s
′
i
, ai)

��(ai|si)
��old

(ai|si)

+ c3 (r(si, ai) +
v�old (s
′
i
) − v�(si))

2

− c4 H(��(.|si)), (8)

where c3 and c4 are hyper-parameters, Adv is the advantage

function estimate:

Adv(si, s
′
i
, ai) = r(si, ai) +
v�old (s

′
i
) − v�old (si), (9)

computed w. r. t. the learned baseline, namely the value func-

tion v�old [40]. H is added to encourage exploration by limit-

ing the premature convergence to a sub-optimal policy [40].

The problem with this formulation of the loss function

is that, in the policy update component of Eq. 8, the advan-

tage function Adv is using a baseline v�old that has not yet

been updated to capture the value of the policy ��old used to

collect the samples in Dreplay. This means that the baseline

for updating the policy is always one step behind the pol-

icy used to collect the data. This often goes unnoticed as

the policy updates are usually bounded to small changes in

policy gradient based algorithms. For example, PPO uses

the clip function on the ratio
��

��old

[51], whereas TROP im-

poses a constraint on the KL-divergence between the new

policy and the old policy [50]. However, in environments

with non-linear and non-continuous dynamics, such as the

case in cluttered environments, even a very small change in

the policy can possibly entail a drastic change in the value

function cascading into what is know as catastrophic forget-

ting.

To overcome this problem, we propose updating v�old
prior to the optimization step of Eq. 8, i. e., before using v�old
as a critic in Adv. The baseline is updated to improve the

estimate of the value of the policy used to collect the latest

round of data, while also refraining from causing a change

to the action distribution of this policy. This is achieved by

first doing an update of the value function w. r. t. �:

baseline(�) =
1

M

M∑

i=1

c5 (r(si, ai) +
v�old (s
′
i
) − v�(si))

2

+ DKL(��old (.|si) || ��(.|si)), (10)

where c5 is a hyper-parameter. The first term on the right

updates the value function of the policy used to collect the

transition samples. Since the policy and the value function

share the same body of the DNN and updating one perturbs

W Bejjani et al. Page 8 of 17

Learning Manipulation in Clutter

Algorithm 2: Condition Critic Correction Policy

Optimization (C3PO) extended A2C

Dreplay
← []

for iteration = 1,2, . . . do

while |Dreplay| < M do

for actor = 1,2, . . . , N do
Generate random task instance

Run episode with policy ��
Dreplay.append(⟨si, ai, ri, s′i⟩

L−1
i=0

)

�old ← �

Optimize baseline w. r. t. � (Eq. 10)

�old ← �

Optimize actor-critic w. r. t. � (Eq. 8)

Dreplay
← []

the other, the second term on the right penalizes the KL-

divergence between the action distribution of the policy used

to collect the data ��old and any resulting change in the ac-

tion distribution of �� that might be induced by the update of

the value function v� . This procedure, which we call Critic

Correction Conditioned Policy Optimization (C3PO), is out-

lined in Algorithm 2. This algorithm follows the same struc-

ture of A2C algorithms with the addition of the baseline op-

timization step. Hence, C3PO can be used as an extension to

state-of-the-art A2C algorithms with shared neural network

parameters. Learning a policy and value function to act as

a heuristic for VisualRHP is also possible with off-policy

RL algorithms, such as TD3 [16] and SAC [17]. However,

since sample efficiency is not a key factor, as the DNN is

first optimized with IL, we use C3PO on top of PPO as it is

a relatively stable and robust to hyper-parameter algorithm.

7. Experimental Setup and Implementations

We evaluate the performance of the proposed Visual-

RHP in achieving efficient and generalizable planar manipu-

lation using prehensile and non-prehensile actions with em-

phasis on real-world and real-time applications. We run a se-

ries of experiments conducted in simulation and on the real

robot to evaluate and validate VisualRHP. The focus of the

experiments are: (i) to evaluate the performance contribu-

tion of each of the main elements of VisualRHP in discrete

and continuous action spaces with respect to state-of-the-art

alternatives (Sec. 8.1), (ii) to assess the algorithms’ robust-

ness to un-modelled dynamics for real-world applications

compared to open-loop execution (Sec. 8.2), (iii) to evalu-

ate if the acquired behaviour learned transferable skills to

different real-world manipulation environment (Sec. 9).

During the experiments, we varied the environment pa-

rameters introduced in Sec. 4. The environment consists of

the target region, the end-effector of the robot arm, one de-

sired object, and m − 1 obstacles3. We trained the DNN on

3The surface edge dimensions are 50 × 50 cm, the target region has a

radius of 7 cm, and the objects and robot density is 1 kg∕m2 with 0.3 as the

friction coefficient. The robot dimensions are modeled after the Robotiq

task instances with different clutter densities, ranging from

m = 1 object, i. e., only the desired object, to m = 7 objects.

The shape of an object is randomly selected from a pool of

polygons with a random number of vertices centred around

the polygon centre of mass. Some of the objects are too large

to fit within the gripper fingers to be grasped, whereas others

are small enough to be grasped with force closure from any

approach angle, and some others are directionally graspable.

The location of the target region is sampled from a uniform

distribution over the manipulation surface. With the aim of

only describing the task objective, the reward function is set

to r = −1 per action and r = −50 if an object is dropped

outside of the surface edges. The negative reward per ac-

tion encourages the robot to solve the problem with as few

actions as possible.

7.1. Action spaces
In our simulation environment, we modelled the world in

the Box2D physics simulator [9]. The robot motion is driven

by a PD controller, where an action represents a target veloc-

ity vector to be maintained for a fixed amount of time.

Discrete action space (das): We define 8 actions: four along

cardinal directions that achieve a 5 cm translation in any of

these directions, two 30o rotational actions (CW and CCW),

and the last two are for closing and opening the gripper.

Continuous action space (cas): The action distribution is

modelled by a 4-dimensional Gaussian distribution. The first

three correspond to the longitudinal, lateral, and rotational

directions along the robot end-effector. The means of the

Gaussian distribution are bounded such that the induced trans-

lation and rotational step falls within −10 cm and 10 cm,

and −50o and 50o, respectively. The fourth dimension cor-

responds to closing and opening the gripper.

7.2. Network architecture
It is important to design a neural network architecture

with an inference time small enough to query RHP multi-

ple times per action selection and still return an action in

near real-time. We built similar feedforward neural network

architectures for the discrete and continuous action spaces,

using the TensorFlow library [1], with the main difference

being the output heads.

Discrete action space: The DNN modelling the action-value

function is composed of a CNN part connected to dense lay-

ers. The input to the CNN is a 64 × 64 × 3 image. The

CNN consists of 3 sequences of: 2 coordConv appended

channels4, 2D convolution, normalization, and max-pooling

layers. We use 3 × 3 kernel sizes and 8, 8, 16 filters for the

convolution layers, respectively. The output of the CNN is

flattened into a 256 feature vector. The input to the dense

layers is a feature vector that concatenates the output of the

CNN and a binary value corresponding to the gripper state.

The dense layers are composed of 3 fully connected layers.

The first 2 layers have 128 neurons each. We use leaky ReLu

as activation function all throughout the network. The out-

2F-85 gripper.
4The coordConv helps in capturing translation invariant features [37].

W Bejjani et al. Page 9 of 17

Learning Manipulation in Clutter

put layer consists of 8 neurons, one per action, with linear

activation functions.

Continuous action space: The architecture of the CNN and

the input vector to the dense layers are the same as in the net-

work for the discrete action space. The CNN is followed by

two shared fully connected dense layers of 256 and 128 neu-

rons. The value head has a fully connected layer of 64 neu-

rons with leaky ReLu activation function. It is followed by a

single neuron output layer for the value function with a linear

activation function. The Policy head has a fully connected

layer of 128 neurons with leaky ReLu activation function.

The output layer is a fully connected layer with 8 neurons

modelling the mean and standard deviation parameters of a

4-dimensional Gaussian that is representing the policy. The

4 outputs corresponding to the means have a hyperbolic tan-

gent (tanh) as activation function, and the other 4 outputs

corresponding to standard deviations have a sigmoid activa-

tion function5.

The inference time over either of the DNNs is measured

to be around 0.003 seconds running on an Intel Xeon E5-

26650 computer equipped with an NVIDIA Quadro P6000

GPU card.

7.3. Evaluation metrics
Data for each experiment is collected over 300 runs. Un-

less otherwise specified, the performance is evaluated in sim-

ulation with respect to three metrics:

• Success rate represents the percentage of the success-

fully completed tasks. We consider a task to be suc-

cessfully completed when the desired object is moved

to the target region in under 50 actions without having

any of the objects falling off the surface.

• Action efficiency is a relative measure in view of the

scene complexity represented by the clutter density.

It is calculated as
number of objects in tℎe scene

number of actions until completion
. The

higher the ratio of an approach, the more efficient it

is.

• Average execution time per run is computed as the

number of actions times the average time required for

selecting an action, which can change for different plan-

ners, and the time required to roll the physics in the

simulator.

7.4. Training procedure
We collected, for each of the discrete and continuous ac-

tion space approaches, up to P = 14, 000 demonstrations

over random task instances using the Kino-dynamic RRT

planner. We train the DNNs over these demonstrations as

detailed in Sec.6.2 on IL. For the discrete action space we

use the value margin parameters of � = 3 and rcost = 1. For

the continuous action space we set the hyper-parameters to

5It is common in the continuous action space literature to use a linear

activation function to model the standard deviations, however, we found

that a tanh function makes it more likely for the RL algorithm to converge

without having any noticeable downside on the exploration.

c1 = 0.7, c2 = 0.01, and Υ = 0.5. We use a learning rate

of 0.0001 for the training process in both action spaces, a

discount factor of
 = 0.995, and a batch size ofM = 2000.

To ensure that enough demonstrations were collected for

IL, we show in Fig. 5 how the success rate changes when in-

creasing the number of available demonstrations. The plots

show the average success rate with 90% confidence interval

as measured over 15 batches of 20 random task instances.

As expected, the graph shows an increasing trend w. r. t. the

number of available demonstrations. After reaching a P of

around 8000, the success rate starts to plateau at around 60%

and 70% for the discrete and continuous action spaces, re-

spectively. We also report a remarkably low action efficiency

of 0.15 and 0.20 for the discrete and continuous action spaces,

respectively.

2000 4000 6000 8000 10000
12000

14000

0

20

40

60

80

100

Number of Demonstrations

S
u
cc

es
s

R
a
te

%
Greedy policy in continuous action space

Greedy policy in discrete action space

Fig. 5. The effect of the available number of demonstrations

on the performance of the learned behaviour.

Next, the DNNs of both action spaces are further trained

with RL. We keep the same batch size of M = 2000 and

the discount factor of
 = 0.995. We decrease the learning

rate to 0.00001. In the discrete action space, we use an �-

RHP with � = 0.2 and RHP with n = 3 and ℎ = 3. We use

a replay buffer Dreplay that can fit 500000 transition sam-

ples. The transition samples are collected from 10 agents

running in parallel. We run 3 optimization epochs after ev-

ery 2000 newly collected transition samples. In the contin-

uous action space, we use C3PO in conjunction with PPO.

We set the PPO clip value to 0.075 and the hyper-parameters

to c3 = 0.7, c4 = 0.1, and c5 = 0.35. We set the size of

the replay buffer Dreplay to 10000 transition samples. We

also run 10 environments in parallel. For the optimization

step, we run 20 epochs over baseline and 15 epochs over

actor−critic .
7.5. VisualRHP and baselines

We conducted an ablation study to assess how each ele-

ment in our proposed approach affects the final performance.

We looked at the effect of the image-based abstract represen-

tation, the use of a learned heuristic, and the integration of

the physics-based look-ahead planning in the control strat-

egy. Accordingly, in addition to VisualRHP, we composed

four corresponding baseline methods. We use n × ℎ in the

superscript of a method’s name to denote the RHP parame-

ters (e. g., VisualRHP3×3). All baseline methods are trained

W Bejjani et al. Page 10 of 17

Learning Manipulation in Clutter

with the same procedure as ours unless otherwise specified:

VisualRHP: We ran our implementation in four formats.

Two in the discrete action space and two in the continuous

action space. For each of the action spaces, there is one ver-

sion that uses n = 3 roll-outs of ℎ = 3 horizon depth, and

another one that uses n = 6 and ℎ = 6.

Cartesian Pose Baseline (CartesianRHP): Instead of us-

ing abstract images for the state representation, Cartesian-

RHP uses the relative Cartesian poses of the objects and the

target region with respect to the end-effector, and the abso-

lute Cartesian pose of the end-effector and a binary grip-

per state. The discrete and continuous action space versions

of CartesianRHP use the same DNN architectures. We ran

CartesianRHP in conjunction with RHP n = 3 and ℎ = 3.

The DNN architecture has an inherent limitation. It can only

be trained on a specific number of objects and can not gen-

eralize to arbitrary clutter densities. Adding or removing

objects, i. e., changing the size of the input layer, requires

the use of a different DNN architecture. Hence, Cartesian-

RHP requires the training of multiple DNNs, each designed

to operate on a specific number of objects. This baseline is

inspired by the one used in [6].

Handcrafted Heuristic Baseline (CraftedHeuristicRHP):

We ask the question of whether the problem can still be solved

in closed-loop with a handcrafted heuristic to estimate the

cost-to-go from a horizon state to the goal, rather than the

learned one. Hence, CraftedHeuristicRHP implements RHP

with a handcrafted heuristic. We found that CraftedHeuris-

ticRHP performs best with n = 8 random roll-outs of depth

ℎ = 4 by sampling random actions from the discrete or con-

tinuous action spaces. The cost-to-go function is a weighted

sum of the Euclidean distance and the angular displacement

between the robot and the desired object, the Euclidean dis-

tance between the target region and the desired object. It

also includes a term that encourages the alignment between

robot, desired object, and target region, with increasing em-

phasis on the robot facing the target region once it is posi-

tioned behind the desired object. A penalty term is added to

dropping any of the objects outside the surface edges. The

weights, balancing these different components, were empiri-

cally optimized to favour a behaviour where the robot would

first approach the desired object from the back, then pushes

it towards the target region. The use of a handcrafted cost

function for manipulation in clutter is reminiscent to trajec-

tory optimization-based approaches such as in [2, 45].

Greedy Baseline (Greedy): Almost ubiquitously, an RL

trained robot for manipulation tasks would act greedily at

execution time on the learned policy without running look-

ahead planning [61, 49, 62]. In this work we argued that

it is hard for a greedy policy to accurately anticipate how

the environment will unfold under complex interaction dy-

namics, especially in an environment rich with physical col-

lisions. Greedy challenges this claim by running a greedy

policy on the trained DNN. Action selection is based solely

on the current state as observed in the abstract image repre-

sentation. In the discrete action space, the action with the

highest value estimate is selected. In the continuous actions

space, the action vector is set to the mean vector of the pol-

icy distribution as outputted by the policy head of the DNN.

Therefore, the simulator at execution time is only used to

render the abstract images on which the greedy policy acts.

The most similar state-of-the-art approach to this baseline is

[60].

Kino-dynamic RRT Baseline (K.RRT): All the previous

baseline control strategies run in closed-loop. As an alterna-

tive, we used an open-loop sampling-based planner, namely

the kino-dynamic RRT introduced in Sec. 6.1. A computa-

tion time limit of 3 minutes was imposed on K.RRT before

declaring a failure. In the discrete action space, the planner

has access to the 8 discrete actions per state. In the contin-

uous actions space, the planner can sample up to 8 random

actions per state.

We report that we omit the following two baselines from

the results, as even after extensive systematic hyper-parameter

tuning, we did not succeed in getting them to converge to a

satisfactory behaviour:

• DNN parameters were randomly initialized and then

solely trained with RL (i. e., without IL). This was re-

peated for several initialization trials. The policy often

converged to a behaviour that drives the robot to shove

the objects by the side of the gripper towards the tar-

get region without much consideration to the surface

edges constraints, often causing objects to drop out-

side of it.

• A baseline wherein the RL part of our training proce-

dure, in the continuous action space, uses PPO with-

out the additional C3PO optimization step ofbaseline.
The original version of PPO resulted in the DNN di-

verging causing the loss of the acquired knowledge

from the IL part. Fig. 6 shows a comparison of the

success rate during the RL training process between

PPO and C3PO with PPO. After every 10000 newly

collected transition samples, 20 optimization epochs

are performed. Each data point is averaged over 5 RL

trials with 90% confidence interval. Both learning al-

gorithms are evaluated with the greedy policy.

0 100 200 300 400 500
0

20

40

60

80

100

Epochs

S
u
cc

es
s

R
a
te

%

PPO

C3PO with PPO

Fig. 6. The effect of the C3PO optimization step on the

learning stability.

W Bejjani et al. Page 11 of 17

Learning Manipulation in Clutter

1 2 3 4 5 6 7
20

40

60

80

100

Number of objects

S
u
cc

es
s

R
a
te

%

VisualRHP6×6
das

VisualRHP6×6
cas

VisualRHP3×3
das

VisualRHP3×3
cas

Cart.RHP3×3
das

Cart.RHP3×3
cas

Greedydas Greedycas

Cra.Heu.RHP8×4
das

Cra.Heu.RHP8×4
cas

(a) Success rate w. r. t. clutter density.

Small objects Mixed objects Large objects
40

60

80

100

S
u
cc

es
s

R
a
te

%

(b) Success rate w. r. t. to objects sizes.

Fig. 7. Performance in different environment setups.

8. Simulation Results and Discussion

In this section we present the results and discuss the im-

plications of the simulation experiments.

8.1. Performance in different environment setups
The first group of simulated experiments looks at the

success rate, the action efficiency, and the average execution

time per run in environments of different levels of difficulty.

We consider the effect of changing clutter densities, ranging

from 1 object, i. e., only the desired object without clutter, to

7 objects on the surface. We also examine the performance

in environments with random number of objects (up to 7) but

of different average sizes (small, mixed, and large) relative

to the dimensions of the gripper. We expect that the shape

of small objects is less significant to the manipulation task

compared to large objects.

The success rate results are reported in Fig. 7a and in

Fig. 7b. The plots show that VisualRHP and CartesianRHP

outperform the other two baselines, with a slight advantage

for running RHP with higher number and deeper roll-outs.

For a low clutter density, all approaches show high success

rate. Not surprisingly, increasing the clutter density causes

1 object 3 objects 5 objects 7 objects

0

0.2

0.4

0.6

0.8

1

A
ct

io
n

E
ffi

ci
en

cy

VisualRHP6×6
das

VisualRHP6×6
cas

VisualRHP3×3
das

VisualRHP3×3
cas

Cart.RHP3×3
das

Cart.RHP3×3
cas

Greedydas Greedycas

Cra.Heu.RHP8×4
das

Cra.Heu.RHP8×4
cas

(a) Action efficiency w. r. t. clutter density.

Small objects Mixed objects Large objects

0

0.2

0.4

0.6

A
ct

io
n

E
ffi

ci
en

cy

(b) Action efficiency w. r. t. object sizes.

Fig. 8. Action efficiency in different environment setups.

a drop in the success rate across all baselines as it becomes

much more likely for objects to fall off the edges or for the

robot not to find its way through the clutter. Greedy suffers

from the sharpest drop with respect to the number of ob-

jects. We also observe in Fig. 7b that large objects seem to

be slightly more difficult to manipulate as reflected in a de-

crease in the success rate. RHP, on the other hand, is more

robust to the increase in object sizes. This result can be at-

tributed to the fact that with higher clutter density and/or

objects sizes, more physical interactions are involved. The

decision making process must account for these interactions

over the short and the long term to avoid irreparable arrange-

ments. In this sense, RHP compensates for the DNN defi-

ciency to anticipate how the environment will unfold under

a sequence of actions. Operating in continuous versus dis-

crete action space has no significant effect on the success

rate.

Looking at the action efficiency results in Fig. 8a and in

Fig. 8b reveals more insight on the difference between oper-

ating in continuous and discrete actions spaces. There is a

clear advantage of operating in the continuous action space.

It consistently scores higher in all baselines. This is because

the policy has finer control over the positioning of the robot.

We note that RL caused a significant increase in the ac-

tion efficiency compared to the IL action efficiency. In the

W Bejjani et al. Page 12 of 17

Learning Manipulation in Clutter

fast ⟷ slow
0

20

40

60

80

100
T

im
e

in
se

co
n
d
s

Greedycas K.RRTcas

Greedydas VisualRHP6×6
cas

VisualRHP3×3
cas

K.RRTcas

Cart.RHP3×3
cas

Cra.Heu.RHP8×4
cas

VisualRHP3×3
das

VisualRHP6×6
das

Cart.RHP3×3
das

Cra.Heu.RHP8×4
das

Fig. 9. Average planning and execution time.

mixed object experiment, the action efficiency of the greedy

policies increased from 0.15 to 0.22 and from 0.20 to 0.35

in the discrete and continuous action spaces, respectively.

Furthermore, using RHP with higher number and deeper

roll-outs (VisualRHP6×6) does not have a noticeable action

efficiency advantage over using less (VisualRHP3×3) or no

roll-outs (Greedy). The action efficiency results also show

that although CartesianRHP3×3’s success rate is on par with

VisualRHP3×3, CartesianRHP3×3 slightly but consistently

scores lower on the action efficiency compared to all the ap-

proaches that rely on the abstract image-based representa-

tion. This confirms our intuition on the use of engineered

features for the state representation. CartesianRHP3×3 al-

ways converged to a behaviour where the robot would ap-

proach the desired object from the back and push it towards

the target region. Although robust to the variation in shape

of the objects, each DNN of CartesianRHP3×3, trained over

a specific number of objects, resulted in a behaviour that re-

quires more actions for solving the task when compared to a

behaviour where the robot can actually leverage the shape of

the objects in order, for instance, to grasp the desired object

and move it to the target region.

The importance of the action efficiency metric is reflected

in the average execution time per task as presented in Fig. 9.

We see that the average execution time per task is always

lower in the continuous action space. This can be explained

as a direct consequence of the action efficiency6. In addition,

the average execution time is also affected by the number and

depth of the RHP roll-outs. For instance, VisualRHP6×6 and

CraftedHeuristicRHP8×4 simulate 6 × 6 and 8 × 4 actions

before returning an answer. This places them at the slowest

end of the spectrum. In contrast, Greedy does not need to

perform any roll-out and exhibit the fastest execution time,

albeit with a trade-off on the success rate. We also included

in this figure the results for kino-dynamic RRT. It stands in

the middle of the rank, but as we will see in the next section,

it might not be the best suited for these kinds of domains.

8.2. Robustness to un-modelled dynamics
Following the results of the first group of simulated ex-

periments, we identify that VisualRHP3×3
cas

, CartesianRHP3×3
cas

,

Greedycas, and K.RRTcas are potentially suitable for near

real-time applications in the real world. They offer a reason-

able balance between computation time and success rate.

As a way of gauging how these approaches cope with dy-

namics that are different than the one they were trained for,

we ran a second group of simulated experiments where we

compared them against different levels of artificially injected

noise on the physics and geometric parameters at evaluation

time. Their performance under such conditions is a way of

estimating the robustness of each policy, and approximating

how a policy would perform under real world uncertainty.

The results are presented in Fig 10. The different line styles

correspond to the different noise levels. Each data point cor-

responds to 300 runs initialized with random target location,

arrangement, and objects shapes. We injected noise into the

shape, friction, and density parameters of the objects. Dur-

ing evaluation, the noise was sampled from a Gaussian dis-

tribution centered around the mean value of the parameters

used in the training (and planning in the kino-dynamic plan-

ner case)7.

K.RRT with no noise shows a high success rate. The

few cases where it failed were due to the imposed time limit.

Nevertheless, the decreasing performance with higher noise

and the relatively high computation time, which also limits

real-time re-planning, confirms the limitation of using open-

loop planning in execution. In general, this indicates that this

type of planning is favorable when a high-fidelity model and

high-processing power are available. Greedycas preforms re-

markably well even with high noise but only for when there

is one object in the scene. This can explain the wide spread

use in literature of the greedy policy for pushing an object

on a surface in the real world (see Sec. 2). It has real-time

reactive behavior but it fails to cope with high clutter envi-

ronment with unknown dynamics.

When looking at CartesianRHP3×3
cas

in high noise envi-

ronments, we see that its success rate surpasses the Visual-

RHP3×3
cas

. A possible explanation is the conservative policy

learned by CartesianRHP3×3
cas

makes it more robust against

noise on the shape of the objects. Because of the engineered

feature vector of the state representation, the shape of the ob-

jects are unknowable to the policy. Hence, each of the DNNs

in CartesianRHP3×3
cas

, one for every specific number of ob-

jects, has converged to a behavior that increases the chances

of success irrespective of the shapes but at the expense of

a lower action efficiency. In contrast, VisualRHP3×3
cas

tailors

the behavior to the exact shape of the objects making it more

action efficient and generalizable, but also it is slightly more

susceptible to high noise. We expect that a decently param-

eterized physics simulator would be good enough for Visu-

6The difference in the inference time between different DNN architec-

tures is minimal and has no measurable effect on the average execution time.
7Standard deviation on the physics and geometric parameters with cor-

responding noise level: low = 0.01 × mean, medium = 0.03 × mean, high

= 0.05 × mean.

W Bejjani et al. Page 13 of 17

Learning Manipulation in Clutter

1 2 3 4 5 6 7

20

40

60

80

100

Number of objects

S
u
cc

es
s

R
a
te

%
VisualRHP3×3

cas

No noise

Low noise

Med noise

High noise

1 2 3 4 5 6 7

20

40

60

80

100

Number of objects

CartesianRHP3×3
cas

1 2 3 4 5 6 7

20

40

60

80

100

Number of objects

Greedycas

1 2 3 4 5 6 7

20

40

60

80

100

Number of objects

K.RRTcas

Fig. 10. Performance w. r. t. clutter density in cas for different noise level on the physics and geometry parameters.

alRHPcas to achieve high success rate.

9. Real-World experiments and Discussion

We build on the simulation results to compare the ap-

proaches evaluated in the previous section in real-world ex-

periments that require transferable manipulation skills over

different task setups. We used a Robotiq 2F-85 two finger

gripper8 mounted on a 6-DOF UR5 robot9. The robot oper-

ates over a 50cm× 50cm surface and target region of 7cm in

radius. The manipulation objects include bottles, apples, or-

anges, and cups. Using a top mounted RGB camera, instance

segmentation is performed using a Mask R-CNN [19] vision

system trained on the COCO Dataset [36]. A video of the

experiments is available on https://youtu.be/raKHTnJLikQ.

Starting from a similar initial environment setup, Fig. 11

and Fig. 12 shows K.RRT (top), Greedycas (middle), and Vi-

sualRHP3×3
cas

(bottom) tasked with manipulating an orange

fruit to the target region in low and high clutter environ-

ments, respectively. K.RRT succeeds in solving the task in

a low clutter environment. This is because problems asso-

ciated with the physics discrepancy between the simulator

model and the real world are mitigated by minimal physi-

cal interactions in a low clutter environment. However, in

a high clutter environment, small discrepancies between the

physics model of the simulator and the real world, e. g., gripper-

orange-bottle interactions, are compounded causing task fail-

ure as shown by the red apple falling outside the surface

edge. Further, Greedycas also performs well in a low clut-

ter environment. It can react fast to a dynamic environment.

We see the robot chasing the orange after it was unintention-

ally knocked to the side of the table. The high clutter envi-

ronment shows that Greedycas is prone to getting trapped in

some parts of the state space (cyclic or oscillatory behaviour

[59]), only escaping it after executing several ineffective ac-

tions. Also, by acting solely based on the current observation

the robot fails to anticipate the upcoming states as exempli-

fied by the red apple being pushed, via the bottle, outside

the surface edge. On the other hand, VisualRHP3×3
cas

eval-

uates the potential consequences of an action before being

executed in the real world. At a slightly higher computation

8https://robotiq.com/products/2f85-140-adaptive-robot-gripper
9https://www.universal-robots.com/products/ur5-robot/

Fig. 11. Comparing Kino-dynamic RRT (top), Greedy (mid-

dle), and VisualRHP (bottom) policies running in continuous

action space in low clutter environment. The “orange” is the

desired object.

cost, the policy selects informed actions based on the pre-

dicted environment dynamics.

In Fig. 13 and with the bottle being the desired object, we

observe two distinct strategies that CartesianRHP3×3
cas

and Vi-

sualRHP3×3
cas

converges to. In the top row, CartesianRHP3×3
cas

drives the robot around the apple obstacle. Unaware of the

actual geometry of the bottle, the robot barely manages to

push the bottle to the target region. In the bottom row, the

robot behaviour, controlled by VisualRHP3×3
cas

, exhibits aware-

ness of the geometries of the objects by approaching the bot-

tle from a graspable angle and manoeuvring it to the target

region.

Additionally, Fig. 14 shows the robot being tasked with

manipulating a small apple in the top row and a large apple

in the bottom row using VisualRHP3×3
cas

. When the geome-

try of desired object is relatively small, i. e., it fits within the

fingers of the gripper, the robot manoeuvres its way through

the clutter, grasps of the apple, and pulls it to the target re-

gion. Whereas, when the geometry of the desired object is

relatively large, the robot resorts to pushing it towards the

target region.

Fig. 15 compares the robot behavior in discrete (top) and

continuous (bottom) action spaces. In this experiment the

robot is tasked with manipulating the bottle to the target re-

W Bejjani et al. Page 14 of 17

Learning Manipulation in Clutter

Fig. 12. Comparing Kino-dynamic RRT (top), Greedy (mid-

dle), and VisualRHP (bottom) policies running in continuous

action space in high clutter environment. The “orange” is

the desired object.

Fig. 13. Comparing CartesianRHP (top) and VisualRHP

(bottom) policies running in continuous action space. The

“bottle” is the desired object.

Fig. 14. Comparing VisualRHP, running in continuous ac-

tion space, in manipulating small (top) and large (bottom)

desired object. The “apple” is the desired object.

gion. Having only access to discrete actions, the robot per-

forms several actions, particularly when the robot is posi-

tioned under the bottle, before the robot is able to get the

bottle within the gripper fingers and then pushes it to the

target region. In the continuous action space, the robot per-

forms fewer actions to position itself directly under the bottle

such that it can be grasped, rotated, then pushed towards the

target region.

Lastly, we show VisualRHP3×3
cas

operating in challenging

environment setups where the desired object is surrounded

by obstacles with little room to manoeuvre. In Fig. 16, with

the bottle being the desired object, the robot leverages the ob-

stacles by pushing the larger apple which in turn is pushing

Fig. 15. Comparing VisualRHP in discrete (top) and con-

tinuous (bottom) action spaces. The “bottle” is the desired

object.

Fig. 16. Manipulation examples with VisualRHP in chal-

lenging environment setups. The “bottle” is the desired

object.

against the desired object and driving it to the target region.

In Fig. 1, with the orange being the desired object, Visual-

RHP3×3
cas

does not only use its control over the opening and

closing of the gripper for prehensile actions, but also as a

tool for the robot to squeeze its way through the clutter and

then opening the gripper for clearing the robot’s path to the

desired object.

10. Conclusions

We introduced an approach for physics-based manipula-

tion tasks in cluttered real-world environments with limited

available working space. The results show the potential of

learning-based heuristic-guided RHP when presented with

an expressive yet efficiently searchable state space represen-

tation. The conducted ablation study provides strong evi-

dence for the necessity of the different components of Vi-

sualRHP. (i) The abstract image-based representation pro-

vides the basis for transferable and generalizable manipu-

lation skills. The robot was shown performing in environ-

ments with different clutter densities and object shapes while

also handling a variety of desired objects. (ii) The two learn-

ing algorithms were shown capable of learning robust heuris-

tics to un-modelled dynamics. A learned heuristic with IL

and RL drives VisualRHP to achieve high success rate and

action efficiency compared to a handcrafted heuristic or open-

loop execution. When using the continuous action space

heuristic, the robot benefits from finer control over its ac-

tions resulting in higher action efficiency relative to operat-

ing in a discrete action space. (iii) The closed-loop control

scheme that alternates between real-world execution and Vi-

sualRHP in a physics simulator ensures a balance between

real-time execution and informed action generation for solv-

ing sequential decision making problems.

The success of our system relies on the full observabil-

ity of the environment. However, full observability may not

W Bejjani et al. Page 15 of 17

Learning Manipulation in Clutter

always be available when operating in a tight work-space. A

possible future line of inquiry is to incorporate partial ob-

servability into the decision making process. An approach

which includes partial information in the state representation

or the DNN structure may prove useful.

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,

Corrado, G.S., et al., 2015. TensorFlow: Large-scale machine learn-

ing on heterogeneous systems. URL: https://www.tensorflow.org/.

[2] Agboh, W.C., Dogar, M.R., 2018. Real-time online re-planning for

grasping under clutter and uncertainty, in: IEEE-RAS 18th Interna-

tional Conference on Humanoid Robots, IEEE.

[3] Anthony, T., Tian, Z., Barber, D., 2017. Thinking fast and slow with

deep learning and tree search, in: Adv Neural Inf Process Syst.

[4] Bejjani, W., 2015. Automated Planning of Whole-body Motions for

Everyday Household Chores with a Humanoid Service Robot. Mas-

ter’s thesis. Technische Universität Dortmund.

[5] Bejjani, W., Dogar, M.R., Leonetti, M., 2019. Learning physics-based

manipulation in clutter: Combining image-based generalization and

look-ahead planning, in: 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 6562–6569.

[6] Bejjani, W., Papallas, R., Leonetti, M., Dogar, M.R., 2018. Planning

with a receding horizon for manipulation in clutter using a learned

value function, in: IEEE-RAS 18th International Conference on Hu-

manoid Robots, IEEE.

[7] Bianco, S., Cadene, R., Celona, L., Napoletano, P., 2018. Benchmark

analysis of representative deep neural network architectures. IEEE

Access 6, 64270–64277.

[8] Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling,

P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton,

S., 2012. A survey of monte carlo tree search methods. IEEE Trans-

actions on Computational Intelligence and AI in games 4.

[9] Catto, E., 2015. Box2d. http://box2d.org/.

[10] Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., Mouret,

J.B., 2019. A survey on policy search algorithms for learning robot

controllers in a handful of trials. IEEE Transactions on Robotics .

[11] Clavera, D.I., Abbeel, P., 2017. Policy transfer via modularity. IROS.

IEEE .

[12] Correll, N., Bekris, K.E., Berenson, D., Brock, O., Causo, A., Hauser,

K., Okada, K., Rodriguez, A., Romano, J.M., Wurman, P.R., 2016.

Analysis and observations from the first amazon picking challenge.

IEEE Transactions on Automation Science and Engineering 15, 172–

188.

[13] Dogar, M., Hsiao, K., Ciocarlie, M., Srinivasa, S., 2012. Physics-

based grasp planning through clutter, in: Robotics: Science and Sys-

tems.

[14] Eppner, C., Höfer, S., Jonschkowski, R., Martín-Martín, R., Siever-

ling, A., Wall, V., Brock, O., 2016. Lessons from the amazon picking

challenge: Four aspects of building robotic systems., in: Robotics:

science and systems.

[15] Fang, K., Bai, Y., Hinterstoisser, S., Savarese, S., Kalakrishnan, M.,

2018. Multi-task domain adaptation for deep learning of instance

grasping from simulation, in: 2018 IEEE International Conference

on Robotics and Automation (ICRA), IEEE. pp. 3516–3523.

[16] Fujimoto, S., Van Hoof, H., Meger, D., 2018. Addressing func-

tion approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477 .

[17] Haarnoja, T., Zhou, A., Abbeel, P., Levine, S., 2018. Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with

a stochastic actor. arXiv preprint arXiv:1801.01290 .

[18] Haustein, J.A., King, J., Srinivasa, S.S., Asfour, T., 2015. Kinody-

namic randomized rearrangement planning via dynamic transitions

between statically stable states, in: ICRA, IEEE.

[19] He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn, in:

ECCV.

[20] Hernandez, C., Bharatheesha, M., Ko, W., Gaiser, H., Tan, J., van

Deurzen, K., de Vries, M., Van Mil, B., van Egmond, J., Burger, R.,

et al., 2016. Team delft’s robot winner of the amazon picking chal-

lenge 2016, in: Robot World Cup, Springer.

[21] Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot,

B., Sendonaris, A., Dulac-Arnold, G., Osband, I., Agapiou, J., et al.,

2017. Learning from demonstrations for real world reinforcement

learning. arXiv preprint arXiv:1704.03732 .

[22] James, S., Davison, A.J., Johns, E., 2017. Transferring end-to-end

visuomotor control from simulation to real world for a multi-stage

task. arXiv preprint arXiv:1707.02267 .

[23] James, S., Johns, E., 2016. 3d simulation for robot arm control with

deep q-learning. arXiv preprint arXiv:1609.03759 .

[24] Jeong, R., Aytar, Y., Khosid, D., Zhou, Y., Kay, J., Lampe, T., Bous-

malis, K., Nori, F., 2019. Self-supervised sim-to-real adaptation for

visual robotic manipulation. arXiv preprint arXiv:1910.09470 .

[25] Johnson, A.M., King, J.E., Srinivasa, S., 2016. Convergent planning.

IEEE Robotics and Automation Letters , 1044–1051.

[26] Kartal, B., Hernandez-Leal, P., Taylor, M.E., 2018. Using monte

carlo tree search as a demonstrator within asynchronous deep rl. arXiv

preprint arXiv:1812.00045 .

[27] Kartal, B., Hernandez-Leal, P., Taylor, M.E., 2019. Action guidance

with mcts for deep reinforcement learning, in: Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, pp. 153–159.

[28] Kimmel, A., Shome, R., Bekris, K., 2019. Anytime motion planning

for prehensile manipulation in dense clutter. Advanced Robotics 33,

1175–1193.

[29] King, J.E., Haustein, J.A., Srinivasa, S.S., Asfour, T., 2015. Nonpre-

hensile whole arm rearrangement planning on physics manifolds, in:

ICRA, IEEE.

[30] Kitaev, N., Mordatch, I., Patil, S., Abbeel, P., 2015. Physics-based tra-

jectory optimization for grasping in cluttered environments, in: 2015

IEEE International Conference on Robotics and Automation (ICRA),

IEEE. pp. 3102–3109.

[31] Kloss, A., Schaal, S., Bohg, J., 2017. Combining learned and

analytical models for predicting action effects. arXiv preprint

arXiv:1710.04102 .

[32] Kocsis, L., Szepesvári, C., 2006. Bandit based monte-carlo planning,

in: European conference on machine learning, Springer.

[33] Konietschke, R., Hirzinger, G., 2009. Inverse kinematics with closed

form solutions for highly redundant robotic systems, in: 2009 IEEE

International Conference on Robotics and Automation, IEEE. pp.

2945–2950.

[34] Koval, M.C., King, J.E., Pollard, N.S., Srinivasa, S.S., 2015. Ro-

bust trajectory selection for rearrangement planning as a multi-armed

bandit problem, in: Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on, IEEE.

[35] Leidner, D., Bartels, G., Bejjani, W., Albu-Schäffer, A., Beetz, M.,

2018. Cognition-enabled robotic wiping: Representation, planning,

execution, and interpretation. Robotics and Autonomous Systems .

[36] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,

Dollár, P., Zitnick, C.L., 2014. Microsoft coco: Common objects in

context, in: ECCV, Springer.

[37] Liu, R., Lehman, J., Molino, P., Such, F.P., Frank, E., Sergeev, A.,

Yosinski, J., 2018. An intriguing failing of convolutional neural net-

works and the coordconv solution, in: Advances in Neural Informa-

tion Processing Systems, pp. 9605–9616.

[38] Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., Mordatch, I.,

2018. Plan online, learn offline: Efficient learning and exploration via

model-based control. arXiv preprint arXiv:1811.01848 .

[39] Mittal, M., Gallieri, M., Quaglino, A., Salehian, S.S.M., Koutník,

J., 2020. Neural lyapunov model predictive control. arXiv preprint

arXiv:2002.10451 .

[40] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley,

T., Silver, D., Kavukcuoglu, K., 2016. Asynchronous methods for

deep reinforcement learning, in: International conference on machine

learning.

W Bejjani et al. Page 16 of 17

Learning Manipulation in Clutter

[41] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., Riedmiller, M., 2013. Playing atari with deep reinforce-

ment learning. arXiv preprint arXiv:1312.5602 .

[42] Morrison, D., Tow, A.W., Mctaggart, M., Smith, R., Kelly-Boxall,

N., Wade-Mccue, S., Erskine, J., Grinover, R., Gurman, A., Hunn, T.,

et al., 2018. Cartman: The low-cost cartesian manipulator that won

the amazon robotics challenge, in: 2018 IEEE International Confer-

ence on Robotics and Automation (ICRA), IEEE. pp. 7757–7764.

[43] Muhayyuddin, Moll, M., Kavraki, L., Rosell, J., 2017. Randomized

Physics-based Motion Planning for Grasping in Cluttered and Uncer-

tain Environments. ArXiv e-prints .

[44] Papallas, R., Cohn, A.G., Dogar, M.R., 2020. Online replanning with

human-in-the-loop for non-prehensile manipulation in clutter—a tra-

jectory optimization based approach. IEEE Robotics and Automation

Letters .

[45] Papallas, R., Dogar, M.R., 2020. Non-prehensile manipulation in clut-

ter with human-in-the-loop, in: 2020 IEEE International Conference

on Robotics and Automation (ICRA), IEEE. pp. 6723–6729.

[46] Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P., 2017. Sim-

to-real transfer of robotic control with dynamics randomization. arXiv

preprint arXiv:1710.06537 .

[47] Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A., 2006. Maximum mar-

gin planning, in: Proceedings of the 23rd international conference on

Machine learning, pp. 729–736.

[48] Riccio, F., Capobianco, R., Nardi, D., 2018. Dop: Deep optimistic

planning with approximate value function evaluation. arXiv preprint

arXiv:1803.08501 .

[49] Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J.,

Van de Wiele, T., Mnih, V., Heess, N., Springenberg, J.T., 2018.

Learning by playing-solving sparse reward tasks from scratch. arXiv

preprint arXiv:1802.10567 .

[50] Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P., 2015.

Trust region policy optimization, in: International conference on ma-

chine learning, pp. 1889–1897.

[51] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.,

2017. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347 .

[52] Shome, R., Tang, W.N., Song, C., Mitash, C., Kourtev, H., Yu, J.,

Boularias, A., Bekris, K.E., 2019. Towards robust product packing

with a minimalistic end-effector, in: 2019 International Conference

on Robotics and Automation (ICRA), IEEE. pp. 9007–9013.

[53] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,

A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al., 2017.

Mastering the game of go without human knowledge. Nature 550.

[54] Song, H., Haustein, J.A., Yuan, W., Hang, K., Wang, M.Y., Kragic,

D., Stork, J.A., 2019. Multi-object rearrangement with monte carlo

tree search: A case study on planar nonprehensile sorting. arXiv

preprint arXiv:1912.07024 .

[55] Thananjeyan, B., Balakrishna, A., Rosolia, U., Li, F., McAllister, R.,

Gonzalez, J.E., Levine, S., Borrelli, F., Goldberg, K., 2020. Safety

augmented value estimation from demonstrations (saved): Safe deep

model-based rl for sparse cost robotic tasks. IEEE Robotics and Au-

tomation Letters .

[56] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.,

2017. Domain randomization for transferring deep neural networks

from simulation to the real world, in: IROS, IEEE.

[57] Tong, X., Liu, W., Li, B., 2019. Enhancing rolling horizon evolution

with policy and value networks, in: 2019 IEEE Conference on Games

(CoG), IEEE. pp. 1–8.

[58] Viereck, U., Pas, A.t., Saenko, K., Platt, R., 2017. Learning a visuo-

motor controller for real world robotic grasping using simulated depth

images. arXiv preprint arXiv:1706.04652 .

[59] Wagner, P., 2011. A reinterpretation of the policy oscillation phe-

nomenon in approximate policy iteration, in: Advances in Neural In-

formation Processing Systems, pp. 2573–2581.

[60] Yuan, W., Hang, K., Kragic, D., Wang, M.Y., Stork, J.A., 2019. End-

to-end nonprehensile rearrangement with deep reinforcement learning

and simulation-to-reality transfer. Robotics and Autonomous Systems

.

[61] Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., Funkhouser,

T., 2018a. Learning synergies between pushing and grasping

with self-supervised deep reinforcement learning. arXiv preprint

arXiv:1803.09956 .

[62] Zeng, A., Song, S., Yu, K.T., Donlon, E., Hogan, F.R., Bauza, M.,

Ma, D., Taylor, O., Liu, M., Romo, E., et al., 2018b. Robotic pick-

and-place of novel objects in clutter with multi-affordance grasping

and cross-domain image matching, in: 2018 IEEE International Con-

ference on Robotics and Automation (ICRA), IEEE. pp. 1–8.

W Bejjani et al. Page 17 of 17

