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A Comparative Study of Spatio-Temporal U-Nets

for Tissue Segmentation in Surgical Robotics
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Nils Marahrens1, Student Member IEEE, Alejandro F. Frangi3, Fellow IEEE, Matteo Leonetti3, Member IEEE,

Chandra Shekhar Biyani4, Elena De Momi2, Member IEEE and Pietro Valdastri1, Senior Member IEEE

Abstract—In surgical robotics, the ability to achieve high
levels of autonomy is often limited by the complexity of the
surgical scene. Autonomous interaction with soft tissues requires
machines able to examine and understand the endoscopic video
streams in real-time and identify the features of interest. In
this work, we show the first example of spatio-temporal neu-
ral networks, based on the U-Net, aimed at segmenting soft
tissues in endoscopic images. The networks, equipped with Long
Short-Term Memory and Attention Gate cells, can extract the
correlation between consecutive frames in an endoscopic video
stream, thus enhancing the segmentation’s accuracy with respect
to the standard U-Net. Initially, three configurations of the spatio-
temporal layers are compared to select the best architecture.
Afterwards, the parameters of the network are optimised and
finally the results are compared with the standard U-Net. An
accuracy of 83.77%± 2.18% and a precision of 78.42%± 7.38%

are achieved by implementing both Long Short Term Memory
(LSTM) convolutional layers and Attention Gate blocks. The
results, although originated in the context of surgical tissue
retraction, could benefit many autonomous tasks such as ablation,
suturing and debridement.

Index Terms—Medical Robotics, Computer Assisted Interven-
tions, Minimally Invasive Surgery, Surgical Vision

I. INTRODUCTION

Compared to open surgery, Robotic Minimally Invasive

Surgery (rMIS) provides substantial benefits to the patient,

such as reduced blood loss, decreased tissue trauma and short-

ened post-operative recovery. Although manual laparoscopy

offers similar advantages, the skills required to perform com-

plex procedures with manually manipulated instruments de-

mand expensive and time-consuming training for surgeons.

The use of such instruments significantly increases the cog-

nitive load, with potential negative effects on the procedure

outcomes. For these reasons, rMIS became popular in surgical

disciplines with limited anatomical access, such as urology,

gynaecology and thoracic surgery and is gaining momentum

in other practices like Ear-Nose-Throat (ENT) and gastric

surgery. Significant portions of rMIS procedures consist of

dissecting and mobilising healthy tissues to reach the diseased
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Fig. 1. Tissue flap segmentation workflow. The stereo images acquired by the
endoscope are combined to evaluate Depth Maps fed into a neural network
to detect the shape and boundaries of the tissue flap. The tissue flap profile is
used to define three waypoints which are used to plan the retraction gesture.

area. During this phase, the surgeon heavily relies on the

assistant to clear the surgical field from obstructing tissues,

facilitating the surgeon’s navigation in the anatomy.

The coordination between surgeon and assistant can be

difficult and requires highly specialised personnel. Immersive

consoles, such as the one in the Intuitive Surgical DaVinci

robot, limit the communication between members of the

clinical staff. In particular scenarios such as newly formed

teams or lack of adeguate training on emergency situations,

the limited communication could increase the risk of adverse

events. Some robotic systems, (e.g. the DaVinci robot), allow

the clinician to operate three arms, thus reducing the need for

external assistance, but the switching process could increase

the cognitive load on the clinician [1], particularly for less

experienced surgeons.

A semi-autonomous assistance system, capable of operating

one arm of the surgical robot and supporting the clinician dur-

ing the manipulation of soft tissues would solve many issues

and open the way for a shared control paradigm, in which

the clinician can rely on the robot to perform minor repetitive
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tasks and focus on the clinical aspects of the procedure. The

first step towards the autonomous execution of surgical tasks

is the analysis of the scene. The autonomous system must

segment the endoscopic scene and isolate the tissue flaps that

can be manipulated to plan and execute the gesture. This is a

crucial step in the accomplishment of many tasks, as any lack

of accuracy at this stage could negatively affect the execution

of the gesture and possibly lead to hazardous situations. For

this reason, it is extremely important to provide an accurate

segmentation system, capable of offering the best possible

performance.

In previous work [2], we proposed a feasibility study on

autonomous tissue retraction, developed on a DaVinci Re-

search Kit (DVRK). To detect a candidate flap of tissue for the

retraction, a single endoscopic Depth Map was segmented with

deep-learning techniques, and the system was autonomously

executing the retraction, based on the analysis of the image.

The experimental setup is shown in Figure 3: the images

captured by the endoscopic stereo-camera were segmented

by means of a deep neural network (i.e. the U-Net [3]), the

result of the segmentation was subsequently used to define

starting and end point of the retraction. Although the images

processed by the system were part of a video stream, the

segmentation stage was performed on a single image, thus

discarding the obvious relation between consecutive images in

the stream. This approach neglects the information provided

by the relation between consecutive images and therefore is

sub-optimal, with negative consequences on the performance

of the segmentation and of the whole task.

In this work, we propose a new approach to the segmen-

tation of soft tissues in surgical endoscopic video streams.

We take advantage of the correlation between consecutive

images and demonstrate that, by considering sequences as

an alternative to single images, the segmentation system

outperforms our previous architecture. The main goal of the

work is to provide a robust framework to segment soft tissues

in abdominal surgery. The approach, based on deep-learning,

could be applied to a wide range of surgical tasks and is

suitable for real-time tracking of the tissue motion. The main

technical contribution of this work is the development of

three novel deep-learning network models for video stream

segmentation. Starting from a standard network architecture

such as the U-Net, we combine the use of Long Short-Term

Memory (LSTM) [4] and Attention Gate blocks [5], [6] to

develop three network variants. The performances of these

networks are compared to our previous work, the process

of parameters optimisation is discussed in detail and the

effectiveness of a pre-training stage is evaluated. Additionally,

a dataset, based on the FlapNet [2], is developed to train and

verify the performances of the networks. The dataset, com-

prising labels and training images, and the code are publicly

available for the research community at https://github.com/

Stormlabuk/dvrk ULSTM. Although the techniques described

in this work originate in the context of retraction, robust

segmentation of soft tissues could be used in developing many

autonomous surgical tasks such as ablation [7], resection [8]

and suturing [9]. The paper is organised as follows: in Section

II the dataset processing and organisation (Section II-A), the

model architecture (II-B) and the training setup (Section II-C)

are desribed. Then, in Section III the performances of the three

architectures are discussed. Additionally, a comparison with a

pre-trained model [10] and our previous work [2] is carried

out, to demonstrate the benefits in adopting LSTM layers

and Attention Gate blocks in video segmentation. Section

IV concludes the paper, summarising the contribution and

discussing future developments.

A. Technical Contribution

Despite the great interest on autonomy in surgical robotics,

demonstrated by the amount of literature [11], research on

soft tissues manipulation is limited. The vast majority of the

literature focuses on the automation of tasks [12] involving

extraneous elements such as suturing [13], [14] and interven-

tional needle passing [8] [15]. On the other hand, automation

of tasks that involve tissue manipulation are challenging due

to the complex geometry and compliance of the soft tissues.

Few examples of autonomous tissue manipulation are available

[16], [17], mostly demonstrated in simplified scenarios with

reduced complexity. The main barrier for development of

realistic applications is the complexity of the scene, difficult

to analyse autonomously. A significant contribution can be

provided by machine learning. Techniques based on neural

networks are widely adopted for medical and surgical image

analysis [18]. Deep Learning models have been employed

in medicine for the segmentation from MRI and CT scans

[19] of either organs [20], [21] or compromised tissue such

as polyps [22] and tumours [23]. The U-Net [3] is com-

monly used in segmentation of medical images such as

the segmentation of blood vessels, brain and skin tumours

[24], [25], [26]. This network consists of an encoder-decoder

architecture which captures contextual information, simulta-

neously providing accurate detection of the image features.

The main drawback of the standard U-Net is the incapacity

to correlate frames in a video sequence, thus not taking

advantage of the tissues motion and consequently offering

limited performances in continuous tissue manipulation. To

overcome this limitation, a simplistic approach could consist

in linearly merging several independent U-Nets. However,

literature has shown outstanding results with the adoption of

recurrent neural network architectures such as the Long Short-

Term Memory (LSTM) cells [4]. LSTM provide memory to

the model, thus allowing a representation of the features’

evolution in time. Adding LSTMs on top of fully convolu-

tional network proved to significantly enhance the accuracy of

video segmentation [27] of street scenes. In medical imaging,

LSTMs have been used to predict the growth of tumours

from 4D patient’s data [28] with a simple encoder/decoder

model. LSTM cells have been adopted on top of a U-Net

model for cell segmentation, showing a remarkable ability in

discriminating both the cell’s body and its boundaries from

the background [10]. An alternative recurrent structure used

for video segmentation is the Gated Recurrent Unit (GRU)

[29]. These units, significantly simpler than LSTMs, have been

implemented by means of convolutional networks to enhance

the precision in prostate [30] and brain [31] segmentation.
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Fig. 2. The dataset is created from images collected with a stereoscopic
endoscope. Depth Maps are evaluated from the stereo pairs and manually
labelled. Subsequently, sequences are created by extracting the previous
4 frames from the whole operation video and batching them with the
corresponding label of the 5th frame.

Additionally, an approach for video segmentation adopting 3D

convolutional layers to extract the temporal information from

image sequences was recently proposed in [32]. These blocks

are particular structures that support the network’s training

and inference by identifying focus regions of the image where

relevant information is contained. These blocks have shown

effectiveness in medical image segmentation [5] for pancreas

segmentation and classification [33].

II. METHODS

A. Data Setup

The first step in the development of a tissue segmentation

system is the conditioning of the input data. Since most

surgical robots and advanced endoscopic systems are equipped

with stereo-vision, we take advantage of the stereoscopic

endoscope by considering pairs of stereo images as starting

point. With a modified version of the Semi-Global Matching

algorithm [34] implemented in the stereo_img_proc ROS

package, each pair of stereo images generates a Depth Map

(DM). Depth Maps are single-channel images in which pixel

intensity represent the distance of each pixel from the camera

frame. Distances are computed from the features’ disparity

in the left and right images. As DMs do not contain light

and colour information, their use guarantees robustness against

variations of lighting conditions and tissue colours. This aspect

is particularly important in this work, as the instruments

frequently cross the endoscope field of view during tissue

manipulation, therefore, it is crucial to guarantee satisfactory

performances in presence of the instruments. Additionally, as

the color information is represented in images with three chan-

nels (RGB), DMs allow to work on single-channel images,

thus speeding up the training phase.

In order to train the networks, DMs must be associated

with labels highlighting the areas of the image covered by

tissue flaps and by the surgical tools. In a previous work [2],

our group developed FlapNet: a dataset of 1080 DMs ex-

tracted from images collected during a robotic surgery course,

performed with a DaVinci Xi at the University of Leeds,

on Thiel-embalmed cadavers [35] by experienced surgeons.

Starting from the full stereo video stream of a lobectomy,

the most relevant frames of the stream are extracted and

labelled: for each DM, a binary mask is created, classifying

each pixel as background (0) or tissue (1). The labelling

process is carried out by researchers under the guidance of

experienced urological and colorectal surgeons. Initially, the

video sequences containing tissue flaps are identified and

isolated. Subsequently, a set of single frames is manually

selected. Depth Maps are generated for the identified images.

The labelling process is carried out manually on the Depth

Map. However, during the process, the user can visualize the

RGB image to ease the label creation. Labels with Structural

Similarity Index higher than 70% have been discarded to avoid

similarity between the dataset entries, guaranteeing a signifi-

cant variety of samples. To represent the tool’s appearance in

the endoscopic scene, regions of the DM containing surgical

instruments are labelled, extracted from the original DM and

superimposed over scenes where tools are not present. The

instruments’ labels are not available in the FlapNet, as the

tissue flaps are the only targets for the segmentation.

The networks developed in this work require a sequence of

images. To this end, the FlapNet dataset has been enriched

by adding the four frames preceding every labelled image

already available in the dataset. To account for this, entries

of the original dataset are grouped with the four stereo-

frames preceding every labelled image, thus obtaining a set

of sequences, in which the last image of each set associated

to a binary label (Figure 2). Since the majority of the samples

(712 images) contained in the FlapNet are artificial images

(i.e. created by the superposition of tools on the scene), no

preceding frames are available for these entries, reducing the

size of the dataset to 368 sequences. The images contained in

the dataset are reduced to a size of 64x64. During preliminary

tests this proved to be a satisfactory compromise between the

amount of detail available in the image and time required to

train the model. If required by a specific application, the output

of the network can be up-sampled and linearised to the original

size of the input image. Over the whole set of images, the

pixels associated with the background are 70% of the total,

leading to a slightly unbalanced dataset. Therefore, particular
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attention is required during the training phase to limit the

amount of predicted false negative and false positive. It is

well known in the literature [36] that unbalanced datasets may

create issues in the modeling of the less-represented response,

leading to a degradation in performance. The original dataset

contains only DMs where at least one area is classified as

tissue. In order to represent the case in which no foreground

tissue is present in the scene, 88 new sequences associated

with black mask (only background) are added to the dataset,

raising the number of the total sequences to 456.

Given the limited size of the dataset, data augmentation is

required. Standard augmentation computer vision techniques

are adopted to enlarge the dataset, including: contrast and

brightness adjustment, horizontal and vertical flipping, im-

age shifting and rotation. These transformations, randomly

selected, are equally applied to every image and label of

the sequence to maintain coherence between the input and

the target. Moreover, elastic deformation [37] is applied to

enhance the variety among the augmented entries by distorting

the input image. This technique consists of convoluting two

random displacement fields ∆x and ∆y with a Gaussian filter

having standard deviation σ, which represents the elasticity

coefficient. The resulting displacement fields are scaled by a

factor α that defines the deformation intensity. An additional

method for video augmentation comprising the inversion of the

sequences’ frames to obtain new sequences is herein adopted.

This technique allows to create new sequences of images

with a coherent time evolution of the scene, thus doubling

the number of entries while maintain the correlation within

subsequent frames. By means of this augmentation, the initial

456 sequences are doubled to 912, additionally every single

sequence is distorted with the aforementioned computer vision

techniques up to 3 times, thus increasing the number of entries

to 2736 sequences.

B. Neural Networks Development

One of the most common neural network architectures

utilised for the segmentation of medical images is the U-

Net [3]. Satisfactory performances are reported in literature

regarding image segmentation adopting this class of network

even with limited amount of data and with high resolution

images. As show in Figure 4, the network comprises two

symmetric encoding and decoding branches, with parallel

connections linking the encoders to the decoders. The standard

U-Net architecture is suitable for segmenting single images

in endoscopic scenarios, as demonstrated by our previous

work [2], but cannot correlate consecutive frames (e.g. a

video stream) and therefore has limited robustness. For this

reason, we build upon the basic U-Net architecture by adding

features that implement memory (i.e. recurrency) and take ad-

vantage of the relation between consecutive frames to enhance

performances. We use recurrent structures such as LSTMs,

proposing three network architectures. Additionally, in one of

the network variants, the use of attention gates is explored. A

summary of the features implemented is reported in Table I.

All the U-Net variants are developed in the TensorFlow [38]

framework. The basic structure, identical for all the networks,

Convolutional LSTM

Convolutional 2D

Max Pooling

Attention Gate block

Upsampling

Output

Neural Network Layers:

Fig. 3. Comparison between different extensions of the U-Net[3]. The Enc-
ULSTM contains LSTM cells in the encoding branch, the Full-ULSTM model
incorporates LSTMs in both branches. Finally, the Att-ULSTM includes
Attention Gate blocks in the decoding block.

is composed of 4 encoding and 4 decoding blocks that con-

stitute the contracting and expanding paths, respectively. The

encoding blocks consist of 2 convolutional layers with batch

normalisation and adopt the Rectifier Linear Unit (ReLU)

activation function. Subsequently, a layer with pool size of

2 halves the output size, grouping the features detected by

the previous layers to reduce over-fitting, while limiting the

memory allocation required. In parallel, the decoding blocks
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TABLE I
SUMMARY OF THE IMPLEMENTED FEATURE AND ARCHITECTURES IN THE

THREE DIFFERENT MODELS PROPOSED.

U-Net Enc-ULSTM Full-ULSTM Att-ULSTM

Conv. Layers ✔ ✔ ✔ ✔

Encoder LSTM ✗ ✔ ✔ ✔

Decoder LSTM ✗ ✗ ✔ ✗

Attention Gate ✗ ✗ ✗ ✔

are composed of 2 convolutional layers. The output of each

block is up-sampled by a factor 2 with bilinear interpolation,

to restore the original image size. The up-sampled outputs

are subsequently combined with the feature maps from the

encoding branch by means of parallel skip connections. The

number of kernels, set to 64 for the encoding block, is doubled

for every contraction step in the encoding branch and halved

for every expansion step in the decoding branch, resulting

in a symmetric structure. To save memory in the training

phase, 128 kernels are maintained between the second and

third encoder and decoder. The two branches of the network

are connected by a single convolutional layer with 512 kernels.

The output layer comprises a convolutional layer with a

sigmoid activation function.

Starting from the basic structure, we propose three varia-

tions implementing LSTM and attention gates:

• Enc-ULSTM: the U-Net model contains convolutional

LSTM layers at the beginning of each encoding block.

• Full-ULSTM: the U-Net model contains convolutional

LSTM layers in the encoding and decoding branch.

• Att-ULSTM: using the Enc-USLTM as base model, at-

tention gate blocks are added before each decoder block.

In the Enc-ULSTM and Full-ULSTM, convolutional

LSTMs are used. The detailed structure of an LSTM is

described in Figure 4. LSTMs are composed of three gates

(forget, input and output) which, combined with the previ-

ous cell state ct−1, the previous hidden state ht−1 and the

input xt, allow to extract the correlation between subsequent

frames, thus rejecting lower-level responses. By means of the

forgetting gate contained in the LSTM cells, the non-relevant

information at time t is discarded, enhancing the accuracy of

the response at time t+1. In this particular application, LSTM

cells support the network in detecting relevant information

such as the position and geometry of a tissue while ignoring

and forgetting the appearance of tools. This contributes to

the robustness of the network against instruments crossing the

endoscopic scene.

In the Att-ULSTM, each decoding block includes a first

layer composed of attention gates. In these blocks, capitalising

on a gating signal g, the lower activations are discarded,

thus allowing the network to autonomously find the relevant

areas of the image to focus on, hence resulting in a precise

segmentation. The Attention Gate unit takes xt as input.

The gating signal g is applied to every pixel in order to

define the focus regions. Three linear transformation Wg ,

Wx and Σ define the set of parameters of the single unit

and are evaluated with channel-wise [1x1x1] convolutions.

These blocks contribute to the extraction of focus regions, thus

helping identifying the candidate areas of the image where a

flap could be found.

C. Models Training

The adoption of convolutional LSTM layers allows the

networks to rely on both temporal and spatial features. For this

recurrent architecture, a modified version of the Back Propa-

gation Through Time algorithm has been adopted, namely the

Truncated Back Propagation Through Time [39]. This algo-

rithm, commonly adopted for recurrent networks, periodically

updates the gradient a fixed amount of times over the batch. In

this work, this parameter was set to τ = 5. Hence, the gradient

is weighted on the previous input and hidden state, yielding a

simultaneous evaluation of the temporal and spatial features in

the convolutional layers. The networks are trained for 10.000

iterations over 650 epochs using the Adam [40] optimiser,

capable of managing sparse gradients and preventing noise, as

well as vanishing of weak gradients.

A step profile is scheduled for the value of the learning

rate, decreasing from an initial value of 10−3 to 10−5 to

speed-up the initial phase of the training. The kernel’s weights

are randomly initialised with the He uniform distribution [41]

which allows to regulate the initial values depending on the

preceding layers’ dimension, thus reducing the time required

for training. Dropout is applied in the LSTM layers and in

the central block to limit over-fitting. While standard dropout

is implemented for convolutional layers, the same approach

is not suitable for long-term memory. As standard dropout

applies a mask to the layer to randomly deactivate the neurons,

if applied to LSTM cells it would resets the forget gate

at each iteration, thus ereasing the cell’s memory. For this

reason, a recurrent of dropout [42] is applied to LSTM layers

to maintain the dropout mask fixed, preventing the loss of

memory of the cells. The dataset is split into 75% training

set, 15% validation and 10% test set. The models are trained

on a Linux (Ubuntu 18.04) machine equipped with an Intel

Xeon Gold 6140 (2.30GHz) CPU, an Nvidia Quadro 5000

RTX GPU and 128 GB DDR4 2666MHz RAM.

Two loss functions are compared in this work. The Combo

Loss (CL) [43] is the weighted Dice Loss DL = 2·P ·G
P+G

, where

G is the ground truth and P the sigmoid output, [44] and the

Weighted Cross-Entropy (WCEL) defined as:

WCEL = p · −log(p̂) · β + (1− p) · −log(1− p̂) (1)

where p is the ground truth label, p̂ is the sigmoid activation

of the logits and β is a trade-off factor to foster either false

negatives or false positives. The CL is finally defined as:

CL = α ·WCEL+ (1− α)DL (2)

where α controls the contribution of the single DL and WCEL.

Given the unbalanced dataset and considering that for the

surgical application false positives must be minimised, we

defined β = 0.8 and α = 0.6 to favour the contribution of

the WCEL over the DL.

The other function considered here is the Tversky Loss (TL)

[45], widely used in medical image segmentation for its ability
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Attention Gate
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Resampler

Convolutional LSTM

Convolutional 2D [5x5] + Batch Norm.

Max Pooling [2x2]

Attention Gate block

Bilinear Upsampling

Convolutional  [1x1] + Sigmoid

Neural Network Layers:

Th

Σσ +

×
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Fig. 4. The structure of the Att-ULSTM model comprises 4 encoders, 4 decoders and the central block connecting the two branches. Each encoding block
is composed of a LSTM cell, two convolutional and one max pooling layers, while the decoding blocks present an Attention Gate block, two convolutional
layers and a linear upsampling layer. The output layer is a convolutional layer with sigmoid activation function.

to train over highly unbalanced training sets. The TL formula

is a generalisation of the DL:

TL =
2 · P ·G

P +G+ γ · P \G+ η ·G \ P
(3)

where G is the ground truth, P is the prediction, P \ G =
P · (1 − G) is the relative complement and γ, η are weights

to balance false positives or false negatives.

III. RESULTS

In this section, the performance of the three networks

models is evaluated. Four metrics, all aimed at evaluating

the ratio between True Positive (TP), True Negative (TN) and

False Positive (FP), False Negative (FN), are proposed:

• The Precision: P = TP
TP+FP

, represents the capability of

the algorithm to reject false postives.

• The Recall: R = TP
TP+FN

describes the sensitivity of

the network in detecting TP and TN. Combined with

Precision, it provides a reliable measure of the network

robustness. The Recall is particularly meaningful with

unbalanced datasets.

• The Accuracy: A = TP+TN
TP+TN+FP+FN

, reports correct

predictions over the full testing set.

• The Jaccard Index: J = TP
TP+FP+FN

, estimates the

similarity between the ground truth and the prediction,

computing the ratio between intersection and union of the

two. If used in conjunction with the accuracy, accurately

predicts the quality of the segmentation.

The joint analysis of these metrics provide a comprehensive

insight of the networks’ performance in terms of rejection to

disturbances and management of false positives/negatives. A

K-fold cross-validation with K = 10 is adopted to validate
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Fig. 5. Predictions examples of the Att-ULSTM model at the end of the
training phase. The tissue is placed in different regions of the endoscopic
scene to verify the robust inferring of the model, independently from the
tissue position.

the network’s robustness against data variability. Initially, the

models are trained and tested using the CL, discussed in

Section II-C. As in Figure 6, the Att-ULSTM model provides

better performances in terms of accuracy, precision and Jac-

card Index, while the best values of Recall is given by the Full-

ULSTM network. The Att-ULSTM structure provides superior

identification of the tissue flaps and a sufficient rejection to FP

and FN as shown in Figure 5. Further analysis will be carried

out only on Att-ULSTM model, comparing this architecture

with the state of the art. To further improve the network

performances, the Att-ULSTM is trained using the Tversky

Loss instead of the Combo Loss. The results are reported

in Table II and compared with the performance of the same

network structure trained with the CL.

TABLE II
PERFORMANCE COMPARISON OF THE MODEL TRAINED WITH BOTH

TVERSKY AND COMBO LOSS FUNCTIONS

Tversky Loss Combo Loss
Accuracy 82.25% ± 2.80% 83.77% ± 2.18%
Precision 74.89% ± 9.35% 78.42% ± 7.38%

Recall 70.60% ± 6.49% 74.32% ± 3.83%
Jaccard Index 72.53% ± 7.54% 75.83% ± 3.38%

The adoption of the Tversky Loss entails a slight loss of

performance in the Att-ULSTM model with respect to the

Combo Loss. For this reason, the combo Loss is selected. In

Figure 7 and 3 the precision and accuracy during the training

phase are reported for the worst (K = 1), the average (K = 2)

and the best (K = 3) performing model over the K validations.

Given the restricted data available for this particular ap-

plication, pre-training is evaluated, with the aim of limiting

the over-fitting during training. The neural network model

proposed in [10] is considered, due to its similarity with the

Enc-ULSTM structure. Despite the similar structure, the pre-

trained convolutional layers are characterised by an higher

number of filters, thus increasing the model complexity. As

shown in Table III, the pre-trained model offers no perfor-

mances improvement. This is motivated by the higher amount

of kernels in the convolutional layers of the pre-trained model

which increases the complexity of the model. Moreover, the

model is pre-trained with microscopic images of cells, requir-

ing a smaller amount of data augmentation with respect to

endoscopic images, in which the geometrical constraints of the

anatomy limit the image augmentation. Moreover, the amount

of images contained in the pre-training dataset is limited, thus

preventing the model to generalise the predictions.

TABLE III
PERFORMANCE COMPARISON BETWEEN THE PRE-TRAINED MODEL [10]

AND THE MODEL TRAINED FROM SCRATCH.

P-ConvULSTM Att-ULSTM
Accuracy 77.59% ± 2.30% 83.77% ± 2.18%
Precision 73.31% ± 5.64% 78.42% ± 7.38%

Recall 58.76% ± 5.59% 74.32% ± 3.83%
Jaccard Index 64.65% ± 4.83% 75.83% ± 3.38%

Finally, to demonstrate the increased performances provided

by the approach in this work regarding the segmentation of

single images, the Att-ULSTM model and the standard U-

Net presented in [2] are compared. In Section II-A, the U-Net

implemented in our previous work is fed with single images

from the video stream and produces a single prediction for

each frame. By comparing these two networks it is possible

to assert if the adoption of LSTM layers and attention gates is

beneficial for tissue flap segmentation in video. The networks

performances are evaluated in terms of accuracy and precision,

as defined in Section II-C.

TABLE IV
PERFORMANCE COMPARISON BETWEEN THE ORIGINAL FLAPNET AND

THE PROPOSED ATT-ULSTM

Accuracy Precision
U-Net [2] 80.90% ± 1.32% 72.63% ± 1.94%
Att-ULSTM 83.77% ± 2.18% 78.42% ± 7.38%

p-value 0.0173 0.0376

With the adoption of spatio-temporal layers and Attention

Gates blocks in the Att-ULSTM, the model outperforms a

standard feed-forward U-Net model, as shown in Table IV.

In particular, the adoption of LSTM provides the ability to

extract temporal information from subsequent frames, thus

guaranteeing a more robust prediction. It is worth to mention

that both the Att-ULSTM and U-Net models are trained over

the same DMs, thus no evaluation bias is introduced in the

comparison of the two models. The standard deviation of

the precision is slightly higher for the Att-ULSTM. This is

related to a better characterisation of the tools’ presence in

the augmented entries of the FlapNet, which are omitted in

the training of the Att-ULSTM, as explained in Section II-A.

This enhances the robustness of the the U-Net with respect

to the presence of tools, compared to the Att-ULSTM model.

However, as shown by the other metrics, the segmentation

of the Att-ULSTM is more reliable. Using the computer
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mentioned in Section II-C, an inference time of ti = 0.5 s was

recorded, with a maximum speed of 2 FPS against the recorded

ti < 42 ms recorded for the standard feed-forward U-Net. This

result is acceptable, considering that the surgeon motion are

generally relatively slow to guarantee a safe interaction with

the anatomy.

Given the limited training and testing data for the Att-

ULSTM, a non-parametric test is required to prove the normal

distribution of the two groups. A Wilcoxon rank sum test [46]

is carried out for accuracy and precision to assess statistical

significance of the two models’ performances. This test as-

sesses the null hypothesis that the two groups are continuous

distribution with equal medians. In Table IV, the comparison

between the models’ accuracy and precision are shown. The

p-value indicates a low probability for the two distribution

to have equal median, thus there is a statistically significant

improvement in the prediction performances using the Att-

ULSTM model.

IV. CONCLUSION

A novel approach to the segmentation of tissue in en-

doscopic video streams is herein discussed. Three neural

network architectures for tissue segmentation in endoscopic

images are proposed. The tissue detection and segmentation

are considered the initial step towards intelligent interaction

with the anatomy. On top of this, an estimation of the physical

interaction is needed to accomplish a particular task. This

evaluation however varies depending on the specific objective

task to reproduce. The adoption of attention gates and recurrent

structures such as LSTMs enhance the accuracy of the tissue

detection, compared to a standard feed-forward network. The
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performances of the three variants are compared and the Att-

ULSTM is selected for further investigation. For this network,

different cost functions are compared, and the use of pre-

training is evaluated. Experimental results show enhanced per-

formances with respect to the state of the art for what concerns

the network’s precision (78.42 % ± 7.38 %) and prediction

stability. The adoption of LSTM and attention gates to take

advantage of the time-related features, embedded in the images

sequence, can improve the performances and robustness of

the detection in the context of endoscopic images for surgical

robotics. To achieve this result, the FlapNet dataset is enhanced

to meet the requirements of the recurrent network’s structure,

thus resulting in a new dataset, now available to the research

community.

The approach discussed in this work, demonstrating an

enhanced ability to segment soft tissues, can significantly

improve the implementation of autonomous tasks involving

the elaboration of endoscopic images. Examples range from

laparoscopic procedures, to non-autonomous robotic and semi-

autonomous robot-assisted surgical tasks such as ablation,

retraction and suturing. Localising the target tissue flap is

indeed a key step towards surgical gesture automation and,

given the variety and complexity of the human anatomy, this

task is extremely challenging.

The major limitation of this work is the limited availability

of labelled medical images. As pre-training over different

dataset did not show promising results [2], weak labelling and

unsupervised learning could be beneficial in dealing with such

limited amount of data. As discussed above, the pre-training

does not provide improved results, due to the unique character-

istics of the surgical images. In conclusion, the most promising

approach to increase the networks performances would consist

of an increased number of entries in the dataset. However,

labelling endoscopic images is time-consuming and requires

specialised medical knowledge, thus hindering the process.

The adoption of generative adversarial networks (GANs) could

be beneficial to improve the network’s ability to reject the

surgical instrument, thus guaranteeing a correct and precise

segmentation of the tissue flaps. Future work could include

the adoption of endoscopic RGB image along with DMs to

enhance the performance of the proposed model.
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