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Ring solitons and soliton sacks in imbalanced fermionic systems
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We show that in superfluids with fermionic imbalance and uniform ground state, there are stable solitons.
These solutions are formed of radial density modulations resulting in nodal rings. We demonstrate that these
solitons exhibit nontrivial soliton-soliton and soliton-vortex interactions and can form complicated bound states
in the form of “soliton sacks.” In a phase-modulating (Fulde-Ferrell) background, we find different solitonic
states, in the form of stable vortex-antivortex pairs.
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I. INTRODUCTION

Solitons have long been understood to have profound con-
sequences for the physical properties of fermionic systems
[1–4]. Recently, new methods were developed to create and
observe solitons in superfluid ultracold atoms [4], opening
up a route to explore new regimes and properties [5–9]. We
will focus on the existence of solitons in so-called imbalanced
Bardeen-Cooper-Schrieffer (BCS) fermionic systems. Such
superfluids exhibit pairing between fermions with different
magnitudes of Fermi momenta. For example, such pairing
has been considered in the context of dense quark matter
[10], mixtures of different ultracold atoms [11–16], and su-
perconductors [17–29]. When the effects of imbalance are
strong, the ground state of such a system can spontaneously
break translation symmetry, by inducing periodic modulation
in the complex order parameter. Two commonly considered
inhomogeneous ground states are the Fulde-Ferrell (FF) state
[30], which exhibits purely phase modulation, and the Larkin-
Ovchinnikov (LO) state [31], which consists of purely density
modulation. These two are jointly referred to as FFLO states.
Situations where both phase and density modulate have also
been found [13,29]. Conversely, if the imbalance is weak, the
ground state remains uniform. In this paper, we will show that
fermionic imbalance can nonetheless change the properties of
the system, even when the ground state is uniform, through
the existence of energetically stable solitonic excitations [32].

II. GINZBURG-LANDAU MODEL

We consider imbalanced systems in the weak-coupling
limit, close to the tricritical point, i.e., where the uniform,
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FFLO, and normal phases meet. Near the tricritical point
the amplitude of the order parameter and its gradients are
small, justifying a Ginzburg-Landau (GL) free-energy expan-
sion, which has been derived from the microscopic theory for
various imbalanced systems [12,29,33,34]. Fermionic popula-
tion imbalance diminishes the coefficient of the second-order
gradient term, which leads to the required inclusion of higher-
order gradient terms. We will use the GL model, originally
derived in Ref. [33], which has been shown to be sufficient
when describing effects far from the boundary [35,36], where
the free-energy density reads

f = α|ψ |2 − 2|ψ |4 + |ψ |6 − c1|∇ψ |2 + c1

2
|∇2ψ |2

+ c2|ψ |2|∇ψ |2 + c2

8
((ψ∗∇ψ )2 + (ψ∇ψ∗)2), (1)

written in dimensionless units, where the field ψ = |ψ |eiϕ

is the complex order parameter. The model applies for sys-
tems with pairing between electrically neutral fermions or
superconductors where the coupling to the vector potential is
negligible. The two parameters c1 and c2 are positive constants
and, for systems with a two-dimensional Fermi surface, are
given to be c1 = 8/3 and c2 = 16/3. Therefore the model can
be described by a single parameter α, which depends on both
the temperature T and the population imbalance, fixed by the
Zeeman splitting energy h. The rescaled spatial coordinate
is measured in units of the length scale L0 = h̄vF

kBTc
�0, where

�0 = �0( T
Tc

, h
kBTc

) is a dimensionless quantity that diverges as
the tricritical point (T∗, h∗) is approached. Here, vF denotes
the Fermi velocity and Tc denotes the critical temperature at no
population imbalance. Details of the rescaling are presented in
Appendix A.

Since the second-order gradient term is strictly negative,
there exists the possibility of nonuniform ground states. This
can be seen in the two-dimensional model, where the con-
figuration that minimizes the free energy transitions from a
uniform state ψ = ψU, where |ψU|2 = (2 + √

4 − 3α)/3, to
a density-modulating LO state at αLO

c � 0.857. This inhomo-
geneous state minimizes the free energy until the transition to
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FIG. 1. Phase diagram of an imbalanced fermionic system in
the weak-coupling limit, close to the tricritical point (T∗, h∗), where
h is the Zeeman splitting energy and T is temperature. The gray
(red) background color indicates the uniform (LO) ground state. The
regime with circular hatching denotes the regime in which there exist
stable ring soliton excitations on top of the uniform ground state.
The curve separating the uniform and soliton regimes is defined
by α = αc1 � 0.56, while the curve separating the LO and soliton
regimes is defined by α = αLO

c � 0.857.

the normal state at α = 4/3. We note that the soliton solutions
we find exist for the parameter region 0.56 � α < αLO

c , which
is comparable to the size of the LO regime. These values of α

can be translated into the corresponding values of the Zeeman
splitting energy h and the temperature T , as seen in Fig. 1.

One feature to note regarding Eq. (1) is that it is mathe-
matically related to the Swift-Hohenberg equation, which is
also described by a fourth-order partial differential equation.
This model, initially formulated in the context of thermal con-
vection [37], is commonly used to model pattern formation.
The main differences between the GL model described by
Eq. (1) and the standard Swift-Hohenberg equation are that
the order parameter ψ is complex valued and there is an
additional coupling between the field strength and the gradient
in the terms proportional to c2 in Eq. (1). A more detailed
comparison between the models can be found in Appendix B.

III. RING SOLITONS

We turn now to the numerical solutions of the free en-
ergy in Eq. (1). We used a nonlinear conjugate gradient flow
method both in finite element (FREEFEM [38]) and finite dif-
ference schemes, which produced consistent results.

We find numerically that the two-dimensional GL free
energy defined by the density in Eq. (1) has a number of local
minima, in the form of solitons. The simplest subset of these
soliton solutions retain the rotational spatial symmetry of the
model, which we coin “ring solitons.” These radial solutions
take the form ψ = g(r)eiϕ , where ϕ is a constant and g(r) is
a real profile function that modulates continuously between
being positive and negative, before decaying to its ground-
state value ±|ψU| as r → ∞. This leads us to characterize
the solutions by the number of radial nodes [g(r) = 0] they
exhibit (N). In the cases where ϕ is constant, we assume
without loss of generality that ϕ = 0 and thus ψ is a real
field. The N = 1 solutions are displayed in Fig. 2, where ψ (r)
changes sign once. It is important to note that the energy
density deviation from the uniform state, plotted for α = 0.7
in Fig. 2, decays such that the total soliton energy is finite.
This means that since entropy scales with system size, solitons
will be thermally induced in the thermodynamic limit. We

FIG. 2. The two upper panels show (left) the order parameter
and (right) the deviation of the free-energy density from the uniform
ground state, for a ring soliton with one nodal ring (N = 1) for α =
0.7. The lower panel shows cross sections of the order parameter,
for multiple values of α, of N = 1 solutions, which were found to
be stable for α � αc1 � 0.56. The nodal radius increases with α,
such that for significantly large α, the order parameter interpolates
between the two ground-state values ±|ψU|.

found stable solutions for α � αc1 � 0.56, which suggests
that a system with sufficiently weak imbalance will not sup-
port these solitonic excitations (see Fig. 1 for the conversion
into dimensionful parameters). As α increases, the size of the
soliton also increases, and the order parameter approaches
|ψU| at the center of the soliton.

For higher values of α we find that N > 1 solutions be-
come stable, first at α = αc2 � 0.733 for N = 2, followed by
solutions with three and four nodal rings (N = 3, 4) at αc3 �
0.784 and αc4 � 0.806, respectively. The N = 1–4 solutions
are plotted in Fig. 3 along with their energies and increas-
ing nodal radii R [i.e., ψ (R) = 0]. The N = 1 solution has
the lowest excitation energy above the uniform ground state.
As the LO transition is approached (α → αLO

c ), the energies
decrease, becoming zero relative to the uniform ground state
at the transition. At α = αLO

c , a state that modulates between
the values of the vacua indefinitely become stable, similar
to the LO-modulating ground state. Therefore, despite only
presenting solutions with four or fewer nodal rings, we expect
that as the FFLO transition is approached, solutions with any
number of concentric nodal rings become stable. Namely,
for all natural numbers N , there exists an αcN such that for
α ∈ (αcN , αLO

c ), a solitonic excitation with N concentric nodal
rings is stable.

Surprisingly, the radial configurations of solitons that we
found numerically can be approximated by a simple logistic
function to reasonable accuracy. We first note that the LO state
can be approximated as successive kinklike modulations. We
can then approximate the transition value αLO

c to the LO state,
by calculating when it is energetically favorable for a single
kinklike modulation to appear—namely, when the total energy
deviation from the constant ground state, of an infinite system,
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FIG. 3. The upper panel shows radial solutions with N concentric
nodal circles, evaluated at the corresponding value of α at which
they become stable (αcN ). The associated excitation energy F − FU

(left) and nodal radii R (right) of these solutions, as a function of α,
are shown in the lower panels. As α increases (the LO transition is
approached), the excitation energy of the solution approaches zero,
and its nodal radii diverge.

minimized with respect to q, of ψ = ψU tanh(qx) becomes
zero. This was calculated to be α � 0.858, which is remark-
ably close to the numerically computed value αLO

c � 0.857.
This in turn leads us to approximate the N = 1 soliton in a
similar way, by a radial kinklike profile

ψ = ψU[tanh q(r + R) − tanh q(r − R) − 1]. (2)

If we then substitute this approximation into Eq. (1), the total
energy and nodal radius, when numerically minimized with
respect to q and R, are within an average of 1% of the true
numerical solution. Nonetheless, this approximation does not
capture the asymptotics of the solution well.

We can understand the stability and nature of these solitons
by considering a crude approximation. Consider an N = 1
soliton in the vicinity of the LO phase transition (α � αLO

c ).
Inspecting the numerical solutions in Fig. 2 suggests the ap-
proximation that ψ � ±|ψU| everywhere except for a small
finite region centered on the nodal radius R. We then ap-
proximate the various terms of the energy density as being
independent of R, except for ∇2ψ � ∂2

r ψ + ∂rψ

R . We reiterate
that this crude approximation is valid only when the nodal
radius R is large due to being close to the LO transition. This
gives the total excitation energy

F − FU ∝
∫ (

AR + B + C

R

)
dr, (3)

where A, B, and C depend on ψ . These terms then have the
following physical interpretation: Atot = ∫

Adr corresponds
to the energy per unit length of a straight nodal line, which
in a uniform ground state is positive. Hence its contribution
to the energy decreases as the radius R becomes smaller.
This shrinking is balanced by the term Ctot = ∫

Cdr [where
C ∝ (∂rψ )2], which represents the energy cost associated
with increasing the curvature of the nodal ring ∝ 1

R . These
competing contributions lead to stable ring solitons with

R �
√

Ctot
Atot

. Note that R → ∞ as α → αLO
c , due to Atot → 0

in this limit. The argument above can be extended to N > 1,
demonstrating that solitons with any number of nodal rings
are expected to be stable if α is sufficiently close to αLO

c .
We also considered the three-dimensional analog of the

ring solitons with spherical nodal surfaces. However, despite
evolving a number of initial conditions for different param-
eters, we did not find any stable solutions. This suggests
that spherical nodal surfaces may be unstable in the consid-
ered regime. However, we have not performed an exhaustive
enough search to conclusively make this claim. It may still
be possible that solutions with small energy barriers exist,
requiring initial conditions close to the resulting configuration
to relax to the local minima.

IV. COHERENCE LENGTHS AND LONG-RANGE
INTERSOLITON FORCES

We can understand the long-range nature of the solutions
by considering the linearized theory. This linearized theory
will give the linear coherence lengths, determining the length
scales at which the field recovers its ground-state value away
from a perturbation. To that end, we consider the field far
from the soliton center, such that we can write it as a small
perturbation ε about its ground state

ψ = ψU + ε. (4)

By assuming that any terms of order O(ε2) or higher are
negligible, we acquire the tractable linearized equation,

∇4ε + 2a∇2ε + bε = 0, (5)

where a = 1 − 5c2
4c1

|ψU|2 and b = 2(α − 12|ψU|2 + 15|ψU|4).
As described in detail in Appendix C, the solution to this
linearized equation gives the asymptotic form of the field as

ε = Re[CK0(μr)], (6)

where K0 is the zeroth-order modified Bessel function of the
second kind and C is a complex constant. The coherence
length ξ = μ−1 defines the length scale at which the devi-
ation ε decays. Importantly, in this imbalanced system, the
coherence length is complex, since

1
ξ

≡ μ = μR + iμI =
√

−a + i
√

b − a2, (7)

where μR and μI are positive. Therefore, in contrast to con-
ventional superconductors and superfluids, the deviation ε

oscillates while decaying. At long range the behavior of the
field is

ε → C∞
e−μRr

√|μ|r cos (μI r + φ∞) (r → ∞), (8)

where C∞ and φ∞ are some real constants. Hence the tails of
the solitons decay exponentially over the length scale 1/μR,
while their amplitude oscillates with period 2π/μI . This ef-
fect is present in the states shown in Fig. 2 but becomes
visible only if the scales of the axes are changed. Complex
coherence lengths have previously been considered in other
superconducting models [39].

As we understand the asymptotic field behavior of our soli-
tons, we can approximate the long-range intersoliton forces.
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FIG. 4. The state to the left is the N = 2 soliton, where the
simplest soliton (N = 1) is surrounded by an additional nodal ring.
The middle and right states are composite objects, where multiple
N = 1 solitons are confined by an outer nodal ring. We call these
composite structures soliton sacks. All solutions above were com-
puted at α = 0.825.

We do this by considering two point sources that replicate the
asymptotic fields of the interacting solitons and calculating
the interaction energy between them [40]. The total deviation
from the ground state is assumed to be the superposition of
the two asymptotic fields [given in Eq. (6)] with constants
C(1) and C(2), located at x1 and x2, respectively, where the
distance |x1 − x2| is large. Details of the calculation are given
in Appendix D. This gives the interaction energy

Fint = −2πc1

√
b − a2Im(C(1)C(2)K0(μ|x1 − x2|)), (9)

which is an oscillating function of separation distance. This
predicts that there will be weakly bound states with period
2π/μI for solitons at large distances.

It is interesting to compare the radial solitons reported here
with the related, yet distinct, radial solutions to the stationary
Swift-Hohenberg (SH) equation [41,42]. The similarity is that
both solutions exhibit stable radial oscillations. Apart from the
previously mentioned differences [complex order parameter
and the additional terms proportional to c2 in Eq. (1)], there
is a key difference in that the ground state in Refs. [41,42] is
the homogeneous solution ψ = 0, around which the solutions
oscillate. In contrast, the nonlinear part of our solution mod-
ulates between two antipodal points on the U (1) ground-state
manifold. At large distances, both the SH and our solutions
decay exponentially, exhibiting oscillatory tails.

V. SOLITON SACKS

In previous sections we considered only radially symmetric
solutions; however, it transpires that these represent only a
small fraction of the solitonic solutions in the model described
by Eq. (1). As the LO transition is approached, we find more
structurally complicated stable solutions that break rotational
symmetry. Examples of these symmetry-breaking solutions
are plotted in Fig. 4. These can be interpreted as soliton sacks,
where a larger soliton confines a group of smaller solitons.
This confinement is a completely nonlinear effect and cannot
be explained by the asymptotic intersoliton forces. Such so-
lutions are reminiscent of the ostensibly unrelated Skyrmion
sack or bag solutions, which attract substantial interest in su-
perconductors [43,44], chiral magnets [45], and liquid crystals
[46].

FIG. 5. A bound state of a vortex and a soliton, at α = 0.7. At
the nodal line of the soliton the vorticity receives a π phase shift.
The energy of this composite topological defect is smaller than the
energy of an infinitely separated vortex and soliton.

VI. SOLITON-VORTEX COMPOSITE

While we have demonstrated a rich spectrum of new so-
lutions in imbalanced systems, the natural question is how
they interact with the familiar soliton excitations, namely,
vortices. We consider a regime away from the LO instability
(exemplified by the choice α = 0.7) where ordinary vortex
solutions exist (namely, away from the regime where a vortex
core induces an FFLO state as reported in Ref. [47]). We
find that the solitons and vortices form bound states, shown
in Fig. 5. The energy of this bound state is lower than the
combined energy of a separate single vortex and soliton, but
the energy of the bound state is larger than the energy of a
single ordinary vortex.

VII. SOLITONS IN FULDE-FERRELL STATE: STABLE
VORTEX-ANTIVORTEX PAIRS

Finally, our results prompt the question of whether or not
these solitons exist over the background of another imbal-
anced state with uniform density, namely, the Fulde-Ferrell
(FF) state, where the background phase modulates. An ex-
ample of a microscopically derived Ginzburg-Landau model
for the FF state can be found in Ref. [34]. To model the
FF state, without fine-tuning, we chose parameters α = 0.5,
c1 = 2, and c2 = 2 phenomenologically. Our numerical stud-
ies suggested that the solitons described above are not stable
on top of the FF ground state ψFF = |ψFF|eiqy but that the
Fulde-Ferrell state has its own stable solitonic excitations of a
different kind: vortex-antivortex pairs. In contrast, we did not
observe such a solution outside of the FF regime. In Fig. 6
we show a stable vortex-antivortex pair and examples of the
structures that can be formed by multiple pairs.

VIII. CONCLUSIONS

In conclusion, we have shown that in BCS superfluids and
superconductors, fermionic imbalance leads to solitonic exci-
tations in the form of ring solitons. These solitons constitute
a number of local minima of the free-energy landscape. The
solutions we find are related to, but distinctly different from,
solutions of the Swift-Hohenberg equation. We have shown
that these solitons have nontrivial nonlinear bound states:
soliton sacks. Additionally, the long-range intersoliton forces
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FIG. 6. Solitonic excitations in FF state: Stable vortex-antivortex
pairs. The pairs have long-range attractive interaction like in an or-
dinary superfluid but in the FF background are protected from decay
by a potential barrier. The solutions are shown for the GL model in
Eq. (1) with α = 0.5 and c1 = c2 = 2.

predict bound states at larger separation, and the introduction
of phase winding generates bound states of solitons with
vortices. We have also demonstrated the existence of stable
solitonic states in a phase-modulating background, in the form
of vortex-antivortex pairs.

In ultracold atoms, ring solitons could be created and ob-
served by imprinting methods and standard density-sensitive
techniques, due to the fact that order-parameter modulation
is typically accompanied by density modulation [36,48]. In a
superconductor, such solitons could be observed via scanning
tunneling microscopy.

Let us now remark on the particular case of the N = 1
soliton that was reported earlier by one of the authors [32].
Objects structurally similar to the simplest N = 1 ring soli-
ton have since been discussed independently in the study of
unitary Fermi gases at low temperature [49,50], suggesting
that radial solitons may appear under different circumstances
from those in the BCS regime. It would be interesting to con-
sider whether unitary systems support more complex bound
states, such as soliton sacks, similar to those found in this
paper.

Another avenue for further work is to study the dynam-
ics of the presented static solutions. Introducing simple time
dependence to the system will lead to dissipative dynam-
ics, equivalent to gradient flow. Since the static solutions we
present are local minima of the free-energy landscape, various
initial conditions would simply relax to the static solutions
presented. However, one interesting question is the behavior
of the solitons in a dynamically driven system. A further
important question is the height of the energy barrier that
prevents the solitons from collapsing. To determine the barrier
height quantitatively, techniques such as the string method
[51,52], recently generalized to superconducting models [53],
should be used.
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APPENDIX A: RESCALING OF GINZBURG-
LANDAU FUNCTIONAL

In this paper, we use the Ginzburg-Landau (GL) free-
energy expansion derived in Ref. [33], starting from the
following microscopic Hamiltonian for a spin-imbalanced su-
perfluid

H =
∫

dd x

{ ∑
σ=±1

�†
σ (x)

[−∇2

2m
+ σh

]
�σ (x)

+ ((x)�†
+1(x)�†

−1(x) + H.c.)

}
, (A1)

where �σ is the fermionic quantum field operator, h is the
Zeeman splitting energy,  is the superfluid order parameter,
and H.c. denotes Hermitian conjugation. The resulting GL
free-energy functional reads

F =
∫

dd x
{
α||2 + γ ||4 + ν||6 + β|∇|2 + δ|∇2|2

+ μ||2|∇|2 + μ

8
((∗∇)2 + (∇∗)2)

}
, (A2)

where the coefficients α, β, γ , δ, μ, and ν are functions of the
temperature T and the Zeeman splitting energy h. In natural
units h̄ = kB = 1, the coefficients α, γ , and ν are given by

α = −πN (0)

(
1

π
ln

Tc

T
+ K1(h, T ) − K1(0, Tc)

)
, (A3)

γ = πN (0)K3(h, T )

4
, (A4)

ν = −πN (0)K5(h, T )

8
, (A5)

where N (0) is the electron density of states at the Fermi
surface, Tc is the critical temperature at h = 0, and

Kn(h, T ) = 2T

(2πT )n

(−1)n

(n − 1)!
Re[� (n−1)(z)], (A6)

where z = 1
2 − i h

2πT and � (n) is the polygamma function of
order n. The remaining coefficients are given in terms of γ

and ν as β = β̂v2
F γ , δ = δ̂v4

F ν, and μ = μ̂v2
F ν, where vF is

the Fermi velocity and β̂, δ̂, and μ̂ are positive constants
that depend on the dimensionality d of the Fermi surface.
The numerical values of β̂, δ̂, and μ̂ in one, two, and three
dimensions are given in Table I. The possibility of inhomoge-
neous ground states arises in the parameter regime in which
the gradient coefficient β is negative. Since β shares sign with
the quartic coefficient γ , the inclusion of positive higher-order
terms, both in density and momentum, is necessary.
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TABLE I. Numerical values of coefficients c1 and c2 in one,
two, and three dimensions. The coefficients are computed using the
microscopically derived values of the coefficients β̂, δ̂, and μ̂.

d β̂ δ̂ μ̂ c1 c2

1 1 1/2 4 4 8
2 1/2 3/16 2 8/3 16/3
3 1/3 1/10 4/3 20/9 40/9

For convenience we perform the following rescaling:

ψ = 

|0| , α̃ = α

α0
, x̃ = q0x, F = α0|0|2

qd
0

F̃ , (A7)

where |0|2 = −γ

2ν
, α0 = γ 2

4ν
, and q2

0 = −β

2δ
and the rescaled

free energy F̃ reads

F̃ =
∫

dd x̃
{
α̃|ψ |2 − 2|ψ |4 + |ψ |6 − c1|∇̃ψ |2 + c1

2
|∇̃2ψ |2

+ c2|ψ |2|∇̃ψ |2 + c2

8
((ψ∗∇̃ψ )2 + (ψ∇̃ψ∗)2)

}
, (A8)

where ∇̃ denotes the gradient with respect to x̃ and c1 = 2β̂2

δ̂

and c2 = β̂μ̂

δ̂
. The values of c1 and c2 in one, two, and three

dimensions are listed in Table I. In the rescaled coordinates, to
be explicit, the length is measured in units of L0 = 1

q0
= vF

Tc
�0,

where

�0 = �0

(
T

Tc
,

h

Tc

)
= 1

4π

√
δ̂

3β̂

Tc

T

√
Re[� (4)(z)]

Re[� (2)(z)]
(A9)

is a dimensionless quantity that diverges as the tricritical point
is approached. In the main text, we drop the tilde notation but
still work in the rescaled model.

APPENDIX B: CONNECTION TO THE
SWIFT-HOHENBERG EQUATION

The equation of motion corresponding to the Ginzburg-
Landau model discussed in the main text reads

(α − 4|ψ |2 + 3|ψ |4)ψ + c1∇2ψ + c1

2
∇4ψ + c2

{
ψ |∇ψ |2

− ∇ · (|ψ |2∇ψ ) + 1

4
[ψ∗(∇ψ )2 − ∇ · (ψ2∇ψ∗)]

}
= 0.

(B1)

If we constrain ψ to be real and rescale it by ψ = u( c1
6 )1/4,

we obtain the following equation for u:

−(1 + ∇2)2u − μu + νu3 − u5 + γ [u(∇u)2 + u2∇2u] = 0,

(B2)
where μ = 2α

c1
− 1, ν = 4

√
2

3c1
, and γ = 5c2

2
√

6c1
. Note that

Eq. (B2) becomes the static cubic-quintic Swift-Hohenberg
equation, in the limit γ = 0.

APPENDIX C: LINEARIZATION

In this Appendix we will show the technical details as
to how the linearized solutions presented in this paper for
the long-range behavior of the field were found. From our

numerical solutions it follows that there is a class of solutions
which can be described by a real field; thus in the analysis
below we can restrict the field ψ to be real. The resulting
equation of motion reads

dV

dψ
+ c1[2∇2ψ + ∇4ψ] − 5c2

2
[ψ (∇ψ )2 + ψ2∇2ψ] = 0,

(C1)

where V (ψ ) = αψ2 − 2ψ4 + ψ6 is the potential density.
However, as we are interested in the behavior of the soliton
far from its center, we write the field as

ψ (r) = ψU + ε(r), (C2)

where we assume that the deviation ε from the uniform ground
state ψU has only radial dependence, is real, and is small.
We can then proceed by considering the resulting equation
of motion for ε by neglecting any terms in Eq. (C1) that are
nonlinear in ε, as they will be negligible at long range. This
results in the linearized equation of motion

c1∇4ε + 2

(
c1 − 5c2ψ

2
U

4

)
∇2ε + d2V

dψ2

∣∣∣∣
ψ=ψU

ε = 0. (C3)

Let us define the coefficients

a = 1 − 5c2

4c1
ψ2

U, (C4)

b = 1

c1

d2V

dψ2

∣∣∣∣
ψ=ψU

= 2

c1

(
α − 12ψ2

U + 15ψ4
U

)
, (C5)

such that the linearized equation of motion reads

∇4ε + 2a∇2ε + bε = 0, (C6)

which can be written, by introducing ω = ∇2ε, as a system of
coupled differential equations

(∇2 − M )

(
ω

ε

)
= 0, M =

(−2a −b
1 0

)
. (C7)

By linear transformation to the eigenbasis of the matrix M, the
two equations decouple into

∇2φ − μ2φ = 0, (C8)

where μ2 = −a ± i
√

b − a2 are the two eigenvalues of the
matrix M. We identify Eq. (C8) as the modified Bessel equa-
tion, where for each eigenvalue of M, the solution in general
is given as a superposition of the modified zeroth-order Bessel
functions K0 and I0. The Bessel function I0 can be discarded
directly by considering the asymptotic behavior at r → ∞,
and we obtain

φ+ = C+K0(μr), φ− = C−K0(μ∗r), (C9)

where C± are some complex constants and where we have

defined μ =
√

−a + i
√

b − a2 with Re(μ) > 0, Im(μ) > 0,
which is shown for the relevant parameter regime in Fig. 7.
The small deviation ε is some superposition of φ+ and
φ−. However, since ε is real valued, we can use that
K0(z∗) = K0(z)∗ and consequently Re[K0(z∗)] = Re[K0(z)],
which gives us

ε = Re[CK0(μr)], (C10)

where C is some complex-valued constant.
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FIG. 7. Plot of the inverse length scale μ for the system with
changing α parameter. The inverse of the real part sets the decay
length while the inverse of imaginary part sets the oscillation length
scale. Note that the transition to the LO state has been marked on the
plot by the dotted line.

APPENDIX D: LONG-DISTANCE INTERACTION

Next we follow the point-source approach [40] to deter-
mine the intersoliton forces. To that end, let us determine
the point source ρ that replicates the asymptotic field ε

given by Eq. (C10). The point source is defined by the
equation

c1(∇4ε + 2a∇2ε + bε) = ρ (D1)

and can be found by considering the limit |x| = r → 0, where
K0(μ|x|) → − ln |x|. Using that ∇2 ln |x| = 2πδ(x), we
find

∇2K0(μ|x|) = μ2K0(μ|x|) − 2πδ(x), (D2)

∇4K0(μ|x|) = μ4K0(μ|x|) − 2π (μ2δ(x) + ∇2δ(x)), (D3)

where we have used that (∇2 − μ2)K0(μ|x|) = 0 for x �= 0.
Inserting these results into Eq. (D1) gives the point source

ρ = −2πc1Re(C[∇2δ(x) − (μ∗)2δ(x)]). (D4)

Having calculated the appropriate point source, we now
consider two solitons, centered around x1 and x2, respectively,
where the distance |x1 − x2| is large. To estimate the interac-
tion between the two solitons, we assume that the total field
ψ is given by the superposition ψ (x) = ψU + s1(x) + s2(x),
where s j is the deviation from the ground state ψU for one
soliton, centered around x j . That is, s j (x) approaches ε j (x)
far from its center. The main assumption here is that the field
of the first soliton at the position of the second is the same as it
would have been if there were no soliton there, and vice versa.
This is quite a crude approximation since the center con-
tributes significantly to the interaction energy. The interaction
energy Fint = F12 − F1 − F2 is derived by expanding to first
order in the value of s1 near x2, and vice versa. After several
integrations by parts we can get rid of the exact solitons s1,2

in favor of their asymptotics ε1,2, resulting in the interaction
energy

Fint = −
∫
R2

ρ1ε2dxdy = −
∫
R2

ρ2ε1dxdy. (D5)

By using the derived expression for the asymptotic in
Eq. (C10) and the point source in Eq. (D4) we find

Fint = −2πc1

√
b − a2Im(C(1)C(2)K0(μ|x1 − x2|)), (D6)

where C(1,2) are the constants associated with the two soliton
asymptotics, respectively. The oscillatory nature of K0(μ|x1 −
x2|) implies that the solitons will be weakly bound at large
distances.
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