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Lucy Beresford, Matthew Walton , Alexis Llewellyn, Stephen Palmer,

and Sofia Dias

Background. The National Institute for Health and Care Excellence and a number of international health technology

assessment agencies have recently undertaken appraisals of histology-independent technologies (HITs). A strong and

untested assumption inherent in the submissions included identical clinical response across all tumour histologies,

including new histologies unrepresented in the trial. Challenging this assumption and exploring the potential for het-

erogeneity has the potential to impact upon cost-effectiveness. Method. Using published response data for a HIT, a

Bayesian hierarchical model (BHM) was used to identify heterogeneity in response and to estimate the probability of

response for each histology included in single-arm studies, which informed the submission for the HIT, larotrectinib.

The probability of response for a new histology was estimated. Results were inputted into a simplified response-

based economic model using hypothetical parameters. Histology-independent and histology-specific incremental

cost-effectiveness ratios accounting for heterogeneity were generated. Results. The results of the BHM show consid-

erable heterogeneity in response rates across histologies. The predicted probability of response estimated by the

BHM is 60.9% (95% credible interval 16.0; 91.8%), lower than the naively pooled probability of 74.5%. A mean

response probability of 56.9% (0.2; 99.9%) is predicted for an unrepresented histology. Based on the economic anal-

ysis, the probability of the hypothetical HIT being cost-effective under the assumption of identical response is 78%.

Allowing for heterogeneity, the probability of various approval decisions being cost-effective ranges from 93% to

11%. Conclusions. Central to the challenge of reimbursement of HITs is the potential for heterogeneity. This study

illustrates how heterogeneity in clinical effectiveness can result in highly variable and uncertain estimates of cost-

effectiveness. This analysis can help improve understanding of the consequences of histology-independent versus

histology-specific decisions.
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The National Institute for Health and Care Excellence

(NICE) and a number of international health technology

assessment (HTA) agencies have recently undertaken

appraisals of histology-independent technologies (HITs)

for the treatment of cancer.1–5 HITs are approved on the

basis of a target genetic mutation, rather than on tumor

histology, type, or location (hereafter referred to as ‘‘his-

tology’’ for simplicity). Larotrectinib and entrectinib have
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recently gained regulatory approval as HITs for treating

patients with advanced cancer with fusions involving the

neurotrophic receptor tyrosine kinase (NTRK) genes.6–8

Therefore, any patient with advanced cancer harboring an

NTRK gene fusion is eligible for treatment, subject to other

criteria in the marketing authorization.6–8

It is important to ensure that HIT reimbursement

decisions are supported by systematic and robust assess-

ments of clinical and economic evidence (i.e., how well

the medicine or treatment works and its value for money)

when considering their use in practice. Assessment of the

clinical and cost-effectiveness of such treatments, how-

ever, creates a number of challenges given the breadth of

the population covered by a histology-independent

approval (which is likely to cover many individual histol-

ogies) and the types of evidence generated in support of

these technologies.

Evidence of the effectiveness of HITs is commonly gen-

erated using basket trials. These largely early-stage, phase

II exploratory trials recruit small cohorts to baskets

defined by a common genetic mutation/marker or by

tumor histology, based on a master protocol common to

all baskets.9–11 Despite recommendations in the literature

for considering potential differences in response across

baskets,9,12–15 the clinical efficacy evidence used for deci-

sion making for larotrectinib16,17 consisted of an average

pooled overall response rate (ORR). Response is defined

by tumor shrinkage, measured across histologies included

in the basket trial, but with insufficient data to assess

response by individual histology. However, the use of an

average ORR to represent all histologies covered by the

marketing authorization implicitly assumes identical clini-

cal effectiveness across all histologies. This assumption

fails to allow for heterogeneity in clinical effectiveness

across histologies, that is, the fact that different groups of

patients may obtain different treatment benefits based on

observed characteristics (i.e., histology). In the context of

HITs, there may be clinical and scientific arguments for

heterogeneous treatment efficacy across tumor histolo-

gies18 as well as across other clinical characteristics such as

age, fusion type, and position in the treatment pathway.

This can present novel challenges to the decision mak-

ing of reimbursement bodies, whose determinations typi-

cally consider only a technology’s clinical and cost-

effectiveness in a single indication. Such decisions oper-

ate on the assumption that a single, expected incremental

cost effectiveness ratio (ICER) adequately represents the

cost-effectiveness of a technology across the whole eligi-

ble population, including patients not represented in the

available evidence. Failure to account for heterogeneity

in cost-effectiveness across histologies may result in the

reimbursement of a HIT for histologies in which it is not

cost-effective.

Furthermore, if the assumption of homogeneous clini-

cal effectiveness fails to hold across the histologies pres-

ent in the clinical evidence, this casts further doubt on

the assumption that homogeneity extends to histologies

for which there is no evidence. The potential cost and

health consequences of this uncertainty (i.e., of making

an ‘‘incorrect’’ decision) could be significant. Thus, the

consequences of heterogeneity for decision uncertainty

should be quantified to allow for informed and accoun-

table decision making.19–21

Bayesian hierarchical modeling (BHM) frameworks,

which have been more typically used in adaptive basket

trial designs,22–25 can be used to overcome some of the

limitations and assumptions highlighted above. Estimates

of the level of heterogeneity across histologies, as well as

pooled treatment effects for each histology, can be pro-

duced. They work on the assumption that treatment effects

across histologies are exchangeable (i.e., drawn from the

same distribution of effects) rather than identical—a more

reasonable assumption in the absence of evidence to the

contrary. In addition, these frameworks allow the predic-

tion of the clinical effect in unrepresented histologies as

long as they can also be assumed to be exchangeable with

the included histologies.

Although, in theory, the BHM can be applied to

dichotomous (e.g., histology response) and to time-to-

event (TTE) outcomes (e.g., progression-free survival

[PFS] and overall survival [OS]),26 the assumption of

exchangeability of the effects of treatment on survival

outcomes across histologies is harder to justify than the

equivalent assumption made for the effects of treatment
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on response. Prognostic heterogeneity usually means

pooled survival is harder to disentangle than pooled

response,10,27 and survival data tend to be immature at the

time of reimbursement applications, making estimation of

a hierarchical model for time-to-event outcomes even more

challenging.

The aim of this study is to consider heterogeneity in

response rates across histologies and to characterize its

implications to the cost-effectiveness of HITs. A BHM

framework is used to analyze published clinical evidence

of an existing HIT to demonstrate the potential for het-

erogeneity in response rates across histologies. An eco-

nomic model, using a simplified model structure and

hypothetical data, considers how such heterogeneity may

affect estimates of cost-effectiveness and decision uncer-

tainty faced by HTA and reimbursement agencies.

Finally, some of the issues raised by these approaches

and possible alternatives are discussed.

Methods

Clinical Data

The analysis is based on the response rates used in the

regulatory approval of the histology-independent Trk-

inhibitor, larotrectinib.16,17 The data set consists of a

post hoc pooling of 55 patients covering 12 histologies

and can be considered typical of the type of data that will

be available when appraising the value of histology-

independent drugs.8,16,28–30 The ORR observed across

the 55 patients is 74.5% and ranges from 0% to 100%

across histologies. For a breakdown of the individual his-

tology response rates from the trial, see Supplementary

Material Table S1.

Predictive Response Using the BHM Framework

The BHM assumes that for each of the histologies j,

the log-odds of response, uj (i.e., the measures of treat-

ment effects), are exchangeable and follow a normal

distribution31:

uj;Normal m,s2
� �

where s is the standard deviation quantifying the between-

histology heterogeneity and m is the pooled mean effect

across all histologies. Prior distributions must be selected

for m and s and are likely to have some influence on the

posterior estimates,31,32 particularly when a small number

of groups, each containing few patients, are included. A

normal prior distribution for m is used, centered on a prob-

ability of response of 0.3, with a variance of 10 across all

histologies. A relatively conservative uniform prior distri-

bution for s (i.e., a priori assuming limited sharing of

information across histologies) is used, which was found to

be robust in a simulation study.32 The sensitivity of the

results to alternative priors presented in the literature is

assessed.31,32 The prior distributions used for the base-case

analysis are

m;Normal �0:8473, 10ð Þ

s;Uniform 0, 5ð Þ

When the outcome is binary, the probability of response

in each site, pj, is recovered as

pj =
exp uj

� �

1+ exp uj
� �

Because the evidence does not reflect every histology that

could be eligible for larotrectinib under the marketing

authorization, the predictive distribution for the response

rate in a new histology is calculated to reflect the full

degree of uncertainty both due to the sample size and the

observed heterogeneity in effects across the observed

histologies. The resulting distribution is the probability

of response in a ‘‘new,’’ that is, unrepresented, histology.

To illustrate the impact of assuming identical response

across histologies, a scenario in which identical response

rates are assumed is implemented. This is achieved by

analyzing the response data through a fixed-effects ver-

sion of the BHM to ensure consistency with the methods

of estimation.

The model is adapted from Thall et al.31 and estimated

using Markov chain Monte Carlo in OpenBUGS,33

implemented in R34 (version 3.6.0) using R2OpenBUGS35

(version 3.2.3.2). Code and implementation details are

presented in the supplementary material.

Model fit is assessed by plotting individual histology

contributions to the residual deviance (in a well-fitting

model, these are expected to be close to 1) and by com-

paring the total residual deviance to the number of histol-

ogies, G.

For all analyses, 55,000 iterations are run on 2 parallel

chains, and the first 5000 iterations are discarded as

‘‘burn-in.’’ Convergence is assessed by visual inspection

of the Brooks-Gelman-Rubin plots and assessment of

the R̂ statistic.36,37

Economic Evaluation

To assess the economic implications of characterizing

heterogeneity in clinical effectiveness, the cost-effectiveness

Murphy et al. 3



of a hypothetical HIT for the treatment of solid tumors

harboring an NTRK gene fusion is assessed. The simpli-

fied economic model draws on evidence from an existing

Trk-inhibitor (larotrectinib) in the form of response out-

comes from the BHM but otherwise uses hypothetical

inputs and assumptions. The results of the model are

therefore for purely illustrative purposes. In line with the

NICE reference case,38 the model considers a National

Health Service and Personal Social Services perspective.

Costs and quality-adjusted life-years (QALYs) are dis-

counted using a 3.5% discount rate, and results are pre-

sented over a lifetime (30-y) time horizon. All parameters

used in the economic model are shown in Table 1.

The economic model uses a landmark response-based

structure that incorporates PFS and OS distributions,

conditional on response, as presented in Ouwens et al.41

The model structure consists of 3 mutually exclusive

health states: 1) progression-free disease, 2) progressed

disease, and 3) death. State occupancy is derived using

the partitioned survival technique, which uses PFS curves

to partition OS into those patients with progression-free

and progressed disease.

In the context of HITs, the general challenges of gen-

erating an appropriate control are complicated by the

need to cover multiple histologies and potentially use mul-

tiple data sets, each requiring adjustment for important

Table 1 Input parameters included in the economic model

Parameter Value 95% CI Source

Effectiveness
Response rate See Results section BHM16

Median progression-free survival
Responders 24 mo [21.6; 26.4] Assumed
Nonresponders 6 mo [5.4; 6.6] Assumed

Median overall survival
Responders 36 mo [32.4; 39.6] Assumed
Nonresponders 12 mo [10.8; 13.2] Assumed

Utilities
Progression-free survival

Hypothetical HIT 0.79 [0.71;0.87] Assumed
SoC 0.72 [0.65;0.79] Assumed

Postprogression survival
Hypothetical HIT 0.64 [0.57;0.71] Assumed
SoC 0.64 [0.57;0.71] Assumed

Costs (£)
Drug acquisition costs

Hypothetical HIT Value-based price — Assumed
SoC £20 — Assumed

Health state costs
Progression-free survival £350 [£315; £385] Assumed
Postprogression survival £500 [£450; 550] Assumed
Terminal care cost £6,878 — 39

Distribution of eligible patients
Soft tissue sarcoma 1.80% — 40

Appendix 5.80% —
Breast 1.80% —
Cholangiocarcinoma 0.00% —
Colorectal 8.30% —
GIST 1.40% —
IFS 9.80% —
Salivary gland 0.70% —
Melanoma 1.10% —
Lung 6.20% —
Pancreatic 6.20% —
Thyroid 2.20% —
Unrepresented 55.10% —

CI, confidence interval; BHM, Bayesian hierarchical model; HIT, histology-independent technology; SoC, standard of care; GIST, gastrointestinal

stromal tumour; IFS, Infantile fibrosarcoma.
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prognostic factors. A number of approaches to generating

controls can be considered, including using nonrespon-

ders as a proxy for patients not receiving an active treat-

ment,42 differences in time-to-progression in the previous

line of treatment,43 literature estimates of postprogression

survival,43 the use of ‘‘big data,’’44 and elicitation meth-

ods.45 For the purpose of this study, nonresponders are

used as a proxy for controls, that is, the standard-of-care

(SoC) arm. This approach is considered appropriate

because of the ease with which potentially important

prognostic factors are matched between arms (i.e., the

number of prior lines of therapy within histologies and

the presence of NTRK gene fusions).

Survival in the hypothetical HIT arm is calculated as a

weighted average of the responder and nonresponder sur-

vival curves based on the percentage response. In model

scenarios in which unrepresented tumors are included,

the response rate of the unrepresented tumors is based on

the predictive distributions of the BHM model. Survival

in the SoC arm is modeled assuming a 0% response. This

assumption is considered appropriate, as the hypothetical

HIT is assumed to be used as an end-of-line treatment

and therefore not displacing any active treatments. The

plausibility of this assumption and the appropriateness

of basing the control on nonresponders would need to be

considered in a real economic analysis.

It is assumed that the survival functions of responders

and nonresponders follow an exponential distribution;

parametric survival curves are fitted to hypothetical esti-

mates of median PFS and OS for responders and nonre-

sponders. Hypothetical estimates of median PFS and OS

were used. In practice, the trial data are likely the most

appropriate source of PFS and OS data. However, the

reliance on surrogate outcomes and lack of a concurrent

randomized control arm represents a key limitation of

the trial designs for HITs. As a result, additional external

data (e.g., surrogate evidence based on landmark response

outcomes) may be required to more appropriately

inform extrapolations, particularly where there is very

short follow-up or there is significant confounding.

It is assumed that patients are treated with the hypo-

thetical HIT until progression and a monthly drug acqui-

sition cost is applied while patients receive treatment.

The hypothetical HIT price is set at a level that results in

an ICER close to NICE’s cost-effectiveness threshold.

This is done using a version of the economic model in

which the unrepresented tumors are included in the anal-

ysis (see the Decision Options section).

For the purpose of this analysis, the hypothetical HIT

was assumed to meet NICE’s end-of-life criteria, allow-

ing a cost-effectiveness threshold of £50,000 per QALY

gained. To represent forthcoming one-off treatment

modalities such as gene therapies, a scenario analysis in

which a technology with a one-off drug cost applied at

the start of treatment is modeled. This scenario also sets

the price such that the ICER is close to NICE’s end-of-

life threshold.

Hypothetical health state utility values, monthly

health state costs, and monthly costs of SoC are used in

the economic model. It is assumed that the hypothetical

HIT is associated with a benefit to health-related quality

of life while in the progression-free health state. It is also

assumed there is no cost of identifying patients eligible

for the HIT. A one-off terminal care cost, obtained from

Georghiou and Bardsley,39 is applied upon transition

from the progressed disease state to the death state. The

distribution of patients eligible for hypothetical HIT by

histology is estimated using the approach outlined in the

literature40 and is used to reweight the histology-specific

results.

To assess the uncertainty surrounding the variables

included in the cost-effectiveness model, a probabilistic

sensitivity analysis is undertaken using 10,000 samples.

Uncertainty in the response rates is captured through

inputting 10,000 iterations from the BHM into the eco-

nomic model. To reflect uncertainty in the utility values,

health state costs, and survival, standard errors are

assumed to be 10% of the mean. All results are calcu-

lated as the mean average of the 10,000 iterations.

Decision Options

To compare the economic implications of allowing for

heterogeneity in the response rates, the economic analysis

considers 4 alternative approaches to generating ICERs

of the hypothetical HIT compared with SoC. Three

HTA decision options (decisions 1–3) can be considered

true histology-independent decisions in which a single

ICER is used to represent the cost-effectiveness of the

technology across all histologies covered by a histology-

independent marketing authorization, although they dif-

fer in how this common ICER is obtained. A fourth deci-

sion (decision 4) shows the range of ICERs for histology-

specific decisions. The decision options are as follows:

� Decision 1: Uses the response rate produced by the

fixed-effects version of the BHM. This assumes

homogeneity in response across all histologies.
� Decision 2: Uses the individual histology response

rates generated by the BHM to generate incremental

costs and QALYs for each individual histology

included in the clinical evidence. A single ICER is

Murphy et al. 5



then generated as a weighted average according to

the distribution of patients in each histology making

up the eligible population.
� Decision 3: Uses the approach in decision 2 but also

including the unrepresented histologies in the calcula-

tion of the single ICER.
� Decision 4: Uses individual histology response rates

produced by the BHM to show the range of histology-

specific ICERs. These demonstrate the potential range

of individual histology-specific ICERs when moving

away from a histology-independent recommendation.

Results

Calculation of Response

The BHM estimates substantial heterogeneity in response

between the histologies presented in the clinical evidence.

The posterior median of s was 2.86 on the log-odds scale,

although there is considerable uncertainty (95% credible

interval [CrI], 0.92 to 4.83; Figure 1).

The posterior distribution of the response probability,

accounting for heterogeneity, is presented in Figure 2

and has an estimated mean response rate across all histol-

ogies of 60.9% with 95% CrI (16.0% to 91.8%). This

value is lower than the naı̈ve pooled mean response rate

of 74.5% (i.e., the value obtained under a homogeneity

model).

The mean response probability predicted for an unre-

presented histology is 56.9%; however, the 95% CrI is

wide, meaning this probability could be as low as 0.2%

or as high as 99.9%. The uncertainty in the response of a

histology unrepresented in the trial population represents

both the underlying uncertainty in the mean response

and the estimated heterogeneity across observed histolo-

gies (Figure 2).

The predictive and posterior probabilities of response

were insensitive to the use of a half-normal prior, an

inverse gamma prior, and a uniform prior centered on a

probability of response of 0.5, the result of which can be

seen in Table S2 of the supplementary material. Model

fit statistics for the base-case and the sensitivity analyses

are presented in the Supplementary Table S3.

The estimated probabilities of response for each histol-

ogy are shown in Table 2. The estimated mean response

of the fixed-effects version of the BHM shows a small

difference in the probability of response compared with

the observed pooled response: 74.2% compared with

the observed response of 74.5%. This is likely a result

of simulation error.

The effect of allowing borrowing of information across

the histologies is to shrink the observed response proba-

bilities toward the pooled mean response probability.

Histologies with few patients borrow more information

than histologies with more patients. Although the observed

response suggested that cholangiocarcinoma, cancer of the

appendix, breast cancer, and pancreatic cancer did not

respond to larotrectinib, results of the BHM suggest the

estimated mean response is greater than zero, by borrow-

ing information from other histologies with more allocated

patients and more promising response rates. The posterior

distributions for these histologies are very wide, illustrating

that there is very little information in the data to obtain

estimates of the response rate with a sample size of 1 for

these histologies.

Figure 1 Prior and posterior distributions for the between-

group heterogeneity standard deviations.

Figure 2 Posterior and predictive distributions of response

probability.
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Economic Evaluation

Drug acquisition cost. Assuming continuous treatment,

the cost of the hypothetical HIT is estimated to be £2200

per month; for a one-off cost, it was estimated to be

£50,000.

Economic evaluation results. Relaxing the assumption of

homogeneity in histology response has an impact on

the ICER of the hypothetical HIT compared with SoC

(Table 3). In the base case, the mean histology-independent

ICER produced from the fixed-effects BHM model

(decision 1) is almost £4000 under the cost-effectiveness

threshold: £46,137 (£41,206 to £64,733). This is in con-

trast to the histology-independent decisions, which allow

for heterogeneity in response (decisions 2 and 3): the

ICERs are approximately at the cost-effectiveness

threshold; however, the CrIs around the ICERs have

increased: £50,339 (£42,899 to £71,959) and £50,009

(£41,487 to £83,857), respectively. When using the BHM

response rates to generate histology-specific decisions

(decision 4), the mean ICERs show considerable varia-

bility in the cost-effectiveness across histologies. The

ICERs range from £43,639 (£39,356 to £60,540) per

QALY for infantile fibrosarcoma (IFS) to £73,446

(£43,985 to £389,728) for cholangiocarcinoma. This var-

iation can also be seen in the incremental costs and

incremental QALYs. The 95% CrIs around the ICERs

reveal the increase in uncertainty in the economic results

of histologies in which the response was based on small

patient numbers. For example, the 95% CrI around the

ICER of the hypothetical HIT compared with SoC for

appendiceal cancer ranges from £41,760 to £373,368.

The results of the scenario analysis in which a one-off

cost of the hypothetical HIT was modeled at the start of

treatment can be seen in Table 4. The mean histology-

independent ICERs for the scenario analysis show a simi-

lar trend to the monthly cost scenario; however, the 95%

CrIs around the ICERs are larger (£32,167 to £133,343

compared with £41,487 to £83,857 for decision 3). The

range of histology-specific ICERs has increased as a

result of the scenario analysis. The mean ICERs range

from £33,530 to £115,526, considerably larger than was

generated under the monthly cost of the hypothetical

HIT model assumption. The results of this scenario anal-

ysis also show much larger 95% CrIs around the ICERs

compared with the base case.

The influence of the uncertainty on each of the

histology-independent decisions can be seen in the prob-

ability of decisions being cost-effective in Table 3. For

decision 1, the probability of the hypothetical HIT being

cost-effective at a cost-effectiveness threshold of £50,000

is 78%. This drops to 48% for decisions 2 and 3, despite

only a small change in the mean ICER. Table 3 also

shows the range of probabilities of individual histologies

being cost-effective at a cost-effectiveness threshold of

£50,000: approximately 93% for IFS to 11% for cholan-

giocarcinoma. A similar trend can be seen for the sce-

nario of a one-off cost of treatment (Table 4). Cost-

effectiveness acceptability curves illustrating the prob-

ability of the hypothetical HIT being cost-effective at dif-

ferent cost-effectiveness thresholds for the base case and

Table 2 Probabilities of response for all histologies

Histology Observed Response Estimated Mean Response Based on BHM (%) 95% CrI

Fixed effects
Pooled 41/55 = 74.5% 74.20% 62.0%284.7%

Random effects
Soft-tissue sarcoma 10/11 = 90.9% 88.10% 66.0%–99.1%
Salivary gland 10/12 = 83.3% 81.80% 58.0%296.8%
IFS 7/7 = 100% 93.30% 70.5%2100%
Thyroid 5/5 = 100% 91.60% 63.0%2100%
Lung 3/4 = 75.0% 72.60% 30.4%297.8%
Melanoma 2/4 = 50.0% 52.50% 12.4%289.4%
Colon 1/4 = 25.0% 32.00% 2.6%275.5%
GIST 3/3 = 100% 88.30% 49.3%2100%
Cholangiocarcinoma 0/2 = 0% 21.00% 0.0%275.7%
Appendix 0/1 = 0% 30.00% 0.1%289.7%
Breast 0/1 = 0% 30.00% 0.1%290.1%
Pancreas 0/1 = 0% 29.80% 0.1%289.7%
Unrepresented — 56.90% 0.2%299.9%
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Table 3 Summary of the average incremental costs, incremental QALYS and ICERs for various histology-independent and histology-specific decision options

under the base case assumption

Decision Description Incremental Costs (95% CrI) Incremental QALYs (95% CrI) ICER (95% CrI)

Probability of Being
Cost-Effective at
£50,000/QALY

Histology independent
Decision 1 Histology independent–

homogenous response
£66,290 (£52,777; £81,311) 1.44 (0.93; 1.96) £46,137 (£41,206; £64,733) 78%

Decision 2 Histology independent–
heterogeneous response

£54,161 (£41,487; £71,761) 1.08 (0.64; 1.66) £50,339 (£42,899; £71,959) 48%

Decision 3 Histology independent–
heterogeneous response
including unrepresented
histologies

£54,939 (£31,570; £79,507) 1.10 (0.39; 1.90) £50,009 (£41,487; £83,857) 48%

Histology specific
Decision 4 Soft-tissue sarcoma £75,151 (£56,892; £93,111) 1.70 (1.07; 2.33) £44,192 (£39,681; £61,503) 90%

Salivary gland £71,091 (£52,716; £89,755) 1.58 (0.96; 2.22) £45,004 (£40,085; £62,689) 85%
IFS £78,283 (£59,487; £96,373) 1.79 (1.15; 2.43) £43,639 (£39,356; £60,540) 93%
Thyroid £77,170 (£56,343; £95,910) 1.76 (1.07; 2.41) £43,829 (£39,450; £60,612) 91%
Lung £65,404 (£38,349; £89,569) 1.41 (0.57; 2.21) £46,366 (£40,156; £70,082) 72%
Melanoma £52,883 (£27,417; £80,303) 1.04 (0.28; 1.91) £50,969 (£41,473; £101,176) 43%
Colon £40,011 (£21,162; £69,344) 0.65 (0.10; 1.56) £61,098 (£43,711; £213,810) 17%
GIST £75,029 (£48,724; £95,567) 1.70 (0.89; 2.40) £44,221 (£39,477; £62,014) 88%
Cholangiocarcinoma £33,174 (£17,971; £68,732) 0.45 (0.05; 1.53) £73,446 (£43,985; £389,728) 11%
Appendix £38,622 (£18,330; £79,025) 0.61 (0.05; 1.86) £62,915 (£41,760; £373,368) 21%
Breast £38,609 (£18,346; £78,912) 0.61 (0.05; 1.86) £62,917 (£41,881; £371,002) 21%
Pancreas £38,588 (£18,304; £79,127) 0.61 (0.05; 1.85) £63,037 (£41,842; £373,030) 21%
Unrepresented £55,562 (£19,223; £92,190) 1.12 (0.06; 2.29) £49,755 (£39,887; £341,618) 52%

The base case assumes patients are treated with histology-independent technology until progression. A monthly drug acquisition cost of £2200 is modeled while the patient is receiving

treatment. CrI, credible interval; QALY, quality-adjusted life-year; ICER, incremental cost-effectiveness ratio; IFS, Infantile fibrosarcoma; GIST, gastrointestinal stromal tumour.
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Table 4 Summary of the average incremental costs, incremental QALYS and ICERs for various histology-independent and histology-specific scenarios – Scenario

analysis of a one-off drug payment

Decision Description Incremental Costs (95% CrI) Incremental QALYs (95% CrI) ICER (95% CrI)

Probability of Being
Cost-Effective at
£50,000/QALY

Histology independent
Decision 1 Histology independent–

homogenous response
£58,030 (£54,941; £62,011) 1.44 (0.93; 1.96) £40,388 (£31,474; £59,518) 88%

Decision 2 Histology independent–
heterogeneous response

£55,889 (£53,194; £59,915) 1.08 (0.64; 1.66) £51,945 (£36,056; £84,060) 39%

Decision 3 Histology independent–
heterogeneous response
including unrepresented
histologies

£56,024 (£51,715; £61,481) 1.10 (0.39; 1.90) £50,997 (£32,167; £133,343) 49%

Histology specific
Decision 4 Soft-tissue sarcoma £59,598 (£55,631; £64,445) 1.70 (1.07; 2.33) £35,046 (£27,407; £52,677) 96%

Salivary gland £58,879 (£55,020; £63,719) 1.58 (0.96; 2.22) £37,273 (£28,494; £57,740) 91%
IFS £60,148 (£56,129; £65,088) 1.79 (1.15; 2.43) £33,530 (£26,566; £49,441) 98%
Thyroid £59,952 (£55,686; £64,919) 1.76 (1.07; 2.41) £34,050 (£26,719; £52,846) 96%
Lung £57,874 (£52,841; £63,512) 1.41 (0.57; 2.21) £41,028 (£28,617; £93,325) 75%
Melanoma £55,662 (£51,086; £61,444) 1.04 (0.28; 1.91) £53,647 (£31,995; £184,431) 42%
Colon £53,389 (£50,106; £59,034) 0.65 (0.10; 1.56) £81,527 (£37,695; £497,405) 14%
GIST £59,572 (£54,558; £64,896) 1.70 (0.89; 2.40) £35,111 (£26,890; £61,973) 92%
Cholangiocarcinoma £52,181 (£49,819; £58,911) 0.45 (0.05; 1.53) £115,526 (£38,349; £1,027,916) 10%
Appendix £53,145 (£49,822; £60,781) 0.61 (0.05; 1.86) £86,572 (£32,555; £974,846) 20%
Breast £53,149 (£49,822; £60,923) 0.61 (0.05; 1.86) £86,611 (£32,841; £966,066) 20%
Pancreas £53,139 (£49,823; £61,006) 0.61 (0.05; 1.85) £86,808 (£32,765; £971,990) 20%
Unrepresented £56,132 (£49,840; £63,952) 1.12 (0.06; 2.29) £50,265 (£27,736; £853,091) 53%

This scenario assumes patients are treated with a one-off treatment of histology-independent technology. A one-off drug acquisition cost of £50,000 is modeled at the start of

treatment. CrI, credible interval; QALY, quality-adjusted life-year; ICER, incremental cost-effectiveness ratio; IFS, Infantile fibrosarcoma; GIST, gastrointestinal stromal tumour.
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the alternative pricing scenario can be seen in the

Supplementary Figure S1 and Figure S2.

Discussion

In this article, we used a BHM framework to explore the

potential for heterogeneity in the clinical effectiveness

evidence supporting a HIT. The results of the BHM

analysis identified substantial evidence of heterogeneity

in clinical effects across histologies, demonstrating the

importance of appropriately accounting for heterogene-

ity when estimating clinical effects.

Using a simplified model based on hypothetical data,

we illustrate how alternative approaches to characteriz-

ing the clinical effectiveness of a hypothetical HIT affect

the cost-effectiveness and the uncertainty around the

ICER. The histology-independent ICERs ranged from

£46,137 (£41,206 to £64,733) per QALY under the

assumption of homogenous response rates to £50,009

(£41,487 to £83,857) per QALY once we accounted for

heterogeneity and included unrepresented histologies.

In addition, histology-specific estimates of cost-

effectiveness may vary substantially, ranging from £43,639

(£39,356 to £60,540) per QALY in IFS to £73,446 (£43,985

to £389,728) in cholangiocarcinoma because of the differ-

ent response rates between histologies; in our analysis, 7 of

the histologies would be considered cost-effective at a

threshold of £50,000 per QALY in the base case, while a

further 6 histologies would not. If a histology-independent

reimbursement decision was made, a large proportion of

patients under the marketing authorization would not be

treated cost-effectively. This has consequences for reimbur-

sement agencies considering HITs such as entrectinib and

larotrectinib, as they have the opportunity to optimize rec-

ommendations by limiting reimbursement to where bene-

fits are greatest, increasing allocative efficiency.19,20

The results of our analysis demonstrate the importance

of appropriately accounting for uncertainty when consid-

ering histology-specific estimates of cost-effectiveness and

how point estimates of the ICERs independent of the

uncertainty may result in misleading conclusions. For

example, the mean estimated ICERs for melanoma and

the unrepresented histologies are both approximately

£50,000 per QALY (Table 3). However, comparison of

the uncertainty reveals that the unrepresented histology

has a 95% CrI 5 times the width, with an upper limit of

£301,731 per QALY.

The results also demonstrate the potential masking of

heterogeneity by considering only the ICERs for differ-

ent decisions. In the base case, the results of the eco-

nomic model show large variation in the incremental

QALYs and less variation in the ICERs. Because time

on treatment is linked to PFS, a large variation in PFS

results in an almost proportionate variation in costs.

This effect was demonstrated in the scenario in which a

fixed, one-off cost of treatment was modeled. This could

have important implications for HIT reimbursement

decision making. Currently, approved HITs (such as

entrectinib and larotrectinib) link time on treatment (and

therefore cost) to PFS. However, given the ongoing bas-

ket trial evaluating a gene therapy,46 it is plausible that a

technology requiring a one-off treatment cost could seek

a histology-independent recommendation in the future.

Strengths and Limitations of the Proposed

Analytical Framework

The principal strength of the BHM framework is that it

allows the restrictive assumption of identical effectiveness

across histologies to be relaxed and for individual histol-

ogy response rates to be estimated even when patient

numbers are small or where no evidence exists. These

histology-specific response rates are required for a num-

ber of reasons. First, the NICE reference case recom-

mends the exploration of heterogeneity in clinical and

cost-effectiveness.38 Exploration of clinical heterogeneity

would not be possible for each histology separately given

limited patient numbers. Second, generating a single

ICER requires the distribution of patients eligible for

treatment in the trial to reflect the distribution expected

in the population. Any reweighting of the results to

match the trial distribution to the expected real-world

distribution (to improve the external validity) requires

individual histology results. Third, histologies not in-

cluded in the evidence are still included in a histology-

independent decision. Without the predictive distribution

provided by the BHM, decisions are being made about a

potentially substantial number of histologies with no

empirical evidence.

The BHM approach relies on the assumption that

response rates are exchangeable across histologies (i.e.,

that they are similar to one another rather than being

either equal or completely different). Hierarchical designs

have been criticized when there is insufficient information

in the outcome data to determine whether borrowing

across subgroups is appropriate.13,47 Alternative forms of

BHM that restrict the borrowing of information to simi-

lar baskets while avoiding optimistic borrowing from

extreme baskets can be used.47 This, however, requires

judgments to be made (based on clinical and/or empirical

criteria) about the set of baskets within which informa-

tion can be borrowed.
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The use of a landmark response framework presents a

further limitation, as it makes strong assumptions about

the relationship between survival outcomes (PFS and

OS) and response. Specifically, it assumes that response

is not only a good predictor of future survival outcomes

but also that this relationship is constant across histolo-

gies. In reality, it is unlikely that this assumption will ever

hold and will frequently be far from being a reasonable

approximation, as there will be a degree of variability in

the strength of response as a predictor and the nature of

this relationship.48–50 When applying a response-based

modeling approach for the evaluation of HITs, it is

therefore important to consider the strength of evidence

supporting the surrogacy assumptions and whether the

ability to generate histology-specific ICERs outweighs

any associated uncertainties. Where there are substantive

concerns regarding the potential for heterogeneity in sur-

vival endpoints, alternative analysis methods may be

more appropriate.

The application of flexible parametric models and

mixture models may allow for heterogeneity in survival

outcomes to be reflected. However, in the context of

HITs, this has a number of limitations. First, the use of a

single full-population ICER across multiple tumor sites

with potentially different treatment effectiveness, com-

parators, costs, and health-related quality of life will be

difficult to interpret. Given the amount of heterogeneity

associated with HITs, estimating the average cost-

effectiveness for the full patient population covered in

the scope may not provide enough information to deci-

sion makers. Second, the approaches rely on extrapola-

tions of the observed survival data, which will potentially

be immature, resulting in highly uncertain predictions.

This is likely to be the case for trials that are powered on

response endpoints, such as larotrectinib and entrecti-

nib.6–8

Heterogeneity in PFS/OS could also be explored using

the BHM in a similar way to response.26 However, given

the immaturity of the survival data and restrictions

around the requirement of a common parametric distri-

bution across histologies, it is unclear whether this type

of model would provide useful results. To address con-

cerns regarding the maturity of the TTE endpoints, the

BHM could alternatively be applied to specific landmark

survival time points (e.g., 6 or 12 mo) for which more

robust data exist, with surrogate relationships employed

to predict longer-term survival conditional on survival

up to these specific time points.

A further alternative would be to apply the BHM

response assessments to conditional PFS and OS distri-

butions from the overall population or to link them to

external surrogate data. Although such an approach is

less desirable than having robust TTE data for the over-

all population and each specific subgroup of interest, it

may provide a basis for initial explorations of the poten-

tial impact and importance of heterogeneity as well as

guide further data collection and help prioritize specific

subgroups.

Limitations of the Exemplar Analysis

Because of a number of simplifying assumptions, it is

possible that our results underestimate potential hetero-

geneity, as we focused only on heterogeneity in clinical

effects. In reality, there may be a number of other input

parameters that vary across histologies. For example, in

our hypothetical economic analysis, health state utility

values, health state costs, and comparator costs are all

assumed to be identical across histologies. It is, however,

likely that these have the potential to vary substantially,

along with important patient characteristics such as line

of therapy and NTRK-fusion partner, further contribut-

ing to heterogeneity in the estimates of cost-effectiveness.

These simplifying assumptions are also likely to mean

that the predicted estimates of uncertainty are underesti-

mates because several parameters were excluded from the

probabilistic analysis. For example, uncertainty around

the predictive value of response is not included in the

model nor is uncertainty in the response rate for SoC

which is assumed to be zero.

Importantly, our model ignores testing costs associ-

ated with identifying patients who are NTRK fusion pos-

itive. Testing costs may vary substantially across

histologies because of variation in current testing avail-

ability and in the prevalence of NTRK fusions. Such var-

iations are likely to further exacerbate the heterogeneity

in cost-effectiveness estimates across histologies.

This article focused on histology as the main source of

heterogeneity. However, heterogeneity could be explored

using a range of alternative characteristics and sub-

groups. To move from histology as the main source of

heterogeneity to considering a wider range of characteris-

tics requires an understanding of how different charac-

teristics can be used and combined in different ways in

decision making. This is a complex question that requires

further research.

Further, although this study emphasized the impor-

tance of characterizing the uncertainty associated with

heterogeneity, we do not consider the consequences of

uncertainty. An exploration of the value of distinguish-

ing between different types of patients, known as the

value of heterogeneity,19–21 would inform reimbursement
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decision makers of the consequences of alternative policy

options and be an appropriate subsequent exploration of

heterogeneity in the context of HITs. Furthermore, given

the decision uncertainty identified in this analysis, value

of information could also be conducted to help provide

reimbursement decision makers with information on the

drivers of decision uncertainty.

Conclusion

Histology-independent treatments represent a potentially

important shift in the treatment of cancer. However, it is

important to properly address the clinical and cost-

effectiveness of these technologies. This study found con-

siderable heterogeneity in response rates across histolo-

gies, which can result in highly heterogeneous histology-

specific estimates of cost-effectiveness. This study calls

into question the assumption of homogeneity in HIT

response rates across different histologies, which under-

mines the appropriateness of histology-independent

reimbursement decisions. Where there is evidence of het-

erogeneity, decision makers may consider making more

optimized recommendations in which a HIT is approved

for only specific subgroups or histologies for which effi-

cacy evidence is sufficiently robust.
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