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Abstract: Alzheimer’s disease (AD) is the most common cause of dementia worldwide and is charac-

terised pathologically by the accumulation of amyloid beta and tau protein aggregates. Currently,

there are no approved disease modifying therapies for clearance of either of these proteins from

the brain of people with AD. As well as abnormalities in protein aggregation, other pathological

changes are seen in this condition. The function of mitochondria in both the nervous system and

rest of the body is altered early in this disease, and both amyloid and tau have detrimental effects

on mitochondrial function. In this review article, we describe how the function and structure of

mitochondria change in AD. This review summarises current imaging techniques that use surrogate

markers of mitochondrial function in both research and clinical practice, but also how mitochondrial

functions such as ATP production, calcium homeostasis, mitophagy and reactive oxygen species

production are affected in AD mitochondria. The evidence reviewed suggests that the measurement

of mitochondrial function may be developed into a future biomarker for early AD. Further work

with larger cohorts of patients is needed before mitochondrial functional biomarkers are ready for

clinical use.

Keywords: mitochondria; Alzheimer’s disease; biomarker

1. Introduction

Cellular metabolic changes within the brains of people with Alzheimer’s disease (AD)
are seen very early in the condition, and often precede the development of both amyloid
plaques [1–4] and neurofibrillary tangles [5–8]. Abnormalities have been shown in many
metabolic pathways in AD [9], with both peripheral and nervous system cells affected.
Mounting evidence suggests that deficits in the function of mitochondria, specifically
how they control oxidative phosphorylation (OxPHOS) [10], are likely to be key in the
development and progression of AD. In fact, an alternative mitochondrial hypothesis for
the aetiology of AD states that people who inherit mitochondrial genes that predispose
them to lower mitochondrial respiration rates are more likely to develop the condition [11].
A full understanding of the mitochondrial abnormalities identified in AD may lead to new
drug treatments or biomarkers to treat and detect the disease.

Mitochondria are double membraned organelles abundant in almost all types of
mammalian cells [12]. Mitochondria are in a constant state of flux, altering morphology
and localization depending on energy demands or metabolic stresses within the cell [13].
The main cellular function that is performed by the mitochondria is the production of
ATP via the electron transport chain (ETC). Complexes I–IV of the respiratory chain
are coupled to the action of the F0F1-ATP synthase (Complex V) enzyme, which uses
the membrane potential generated by Complexes I–IV to generate ATP from ADP and
phosphate [14]. In addition, mitochondria are critical to many other cellular functions,
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including maintaining cellular calcium concentrations [15], the generation of reactive
oxygen species (ROS) for cellular signalling and as a consequence of the inefficiency of the
ETC [16–19]. Mitochondria also have roles in steroid synthesis, hormone synthesis and
apoptotic signalling [20–22].

Mitochondria exist in a dynamic network, altering shape in response to stress or
as a result of the metabolic demands of the cell. Mitochondria will often fuse together
in times of increased energy demand, or metabolic stress (stress-induced mitochondrial
hyperfusion) [12]. Mitochondrial fission is less directly linked to managing the ATP
demands of the cell, but is used as a way of identifying defective mitochondria that need
to be removed and recycled [23]. Mitophagy is the specific form of autophagy in which
mitochondria are targeted and undergo degradation. Figure 1 highlights the functional
properties of mitochondria.

 

Figure 1. Mitochondrial Function: This figure displays the different elements of mitochondrial function described in this

review article. Calcium exchange: The figure highlights how sodium calcium exchanger (NCX) and mitochondrial calcium

uniporter (depicted in green) maintain the matrix concentration of calcium. Calcium enters and leaves the mitochondria via

the voltage dependent anion-selective channels (VDAC) found on the outer mitochondrial membrane. Electron Transport

Chain: Complexes 1, 3 and 4 pump protons from the matrix into the intermembrane space which generates a membrane

potential that is used by complex 5 (F0F1-ATP Synthase enzyme) to generate ATP. This process consumes oxygen at complex

4 and NADH at complex 1. Mitophagy: Parkin-dependant mitophagy depends on the recruitment of parkin (green triangles)

to the outer mitochondrial membrane, which leads to the recruitment of PINK (orange circles) and eventually ubiquitin

(purple octagons) to signal mitochondrial breakdown. Mitochondrial Permeability Transition Pore (MPTP): Is formed of

Cyclophilin D (CypD), Adenine Nucleotide Translocator (ANT) and VDAC and controls the movement of calcium and ROS

out of the mitochondria.
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Evidence suggests that many of the above functions of mitochondria are altered in
AD [24–27]. The aim of this review is to present the evidence for altered mitochondrial
function in AD in both the nervous system and peripheral cells. As mitochondrial dysfunc-
tion can be detected early in the course of AD, it has the potential to be developed into a
future biomarker for the condition. A body of literature already exists which describes how
mitochondrial functional properties are utilised in imaging studies to identify metabolic
alterations associated with AD. This review will finish with a discussion of some of the
already used clinical imaging applications of mitochondrial dysfunction in AD, and what
further steps need to be taken to develop the measurement of mitochondrial function into
an AD biomarker of the future.

2. Electron Transport Chain Disruption in AD

Much of our knowledge about mitochondrial dysfunction in the human tissue of AD
patients comes from post-mortem brain samples, of which the vast majority of studies are
in patients with sporadic AD. Studies investigating the expression of OxPHOS proteins
and mitochondrial DNA (mtDNA) have revealed potentially conflicting results. A micro-
array analysis of post-mortem frozen hippocampal samples has revealed a global decrease
in nuclear encoded OxPHOS protein subunits and no change in mitochondrial DNA
(mtDNA) encoded subunits when AD brains are compared to both aged-matched controls
and patients with MCI [28]. A study investigating mRNA levels in the mid temporal
gyrus has revealed a decrease in the mRNA that encodes subunits MTCO1, and MTCO2,
of Complex IV within the mid-temporal lobe [29]. A similar reduction in RNA of subunit
MTCO3 of Complex IV has also been shown in the same brain areas [30]. These subunits
are all mitochondrially encoded [31], but do not appear to be associated with a loss in
mitochondria number, or correlate with amyloid brain levels [32,33]. Subunit MTCO2 RNA
of complex IV has also been shown to be decreased in the hippocampus of the AD brain,
but in the same study, no change was seen in the RNA of nuclear encoded subunits of
Complex IV [33]. In contrast, both total cellular mtDNA and Complex IV protein levels
in the AD hippocampus, frontal and temporal lobes have been found to be increased
in AD [34]. This latter study reports that the majority of the mtDNA and Complex IV
protein is not found within the mitochondria but in the cytoplasm, suggesting a greater
turnover of mitochondria or a decrease in their proteolytic breakdown [34]. This study
reports no difference in mtDNA expression in glial cells or neurons in areas of the brain
not classically affected by AD. Further studies have suggested that the expression of
mitochondrially encoded subunits of Complexes III and IV are increased in the AD brain,
whereas mitochondrially encoded subunits for Complex I are decreased [35,36]. Together,
these reports suggest that the turnover of mitochondria is altered in the AD brain, with the
potential consequence of alterations in the expression of ETC proteins.

The apparent conflicting nature of the results across the papers described above
may be explained by the fact that each study has small numbers of participants and uses
different techniques to preserve the brain samples used for analysis. RNA is known to be
unstable when prepared from preserved tissue samples, and this feature may be a source of
conflicting results. It has been shown that the AD brain has a higher load of both mtDNA
and nuclear DNA mutations, a finding that may also help to explain the differences in
results seen across studies [37–39]. Changes seen in these studies are not specific to AD,
with similar changes also seen in the brains of people with autism [40]. The fact that
differing expression profiles of the ETC RNA and protein subunits differ between these
studies may also highlight the heterogeneity of AD, and explain how, in sporadic AD,
there are likely to be multiple factors that affect the expression of ETC proteins. These
studies focus on cases that have high disease burden, and therefore changes may not be
triggers of AD, but more consequences of the progression of the disease. The changes
seen in post-mortem studies may be a consequence of disease progression and may not be
present at the start of disease. This would potentially make these changes unsuitable for
biomarker and therapeutic development.
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The functional assessment of Complex IV from post-mortem tissue has shown de-
creases in activity in brains from sporadic AD patients [41–46]. The frontal, temporal
and parietal lobes in certain studies show a selective reduction in the activity of Com-
plex IV [41,42], but this finding is not consistent across all studies, with studies using
very similar techniques showing deficits in Complex IV activity throughout the whole
brain [43,44,46]. The reason for the reduction in Complex IV activity seen in the AD brain
is not known, but the structure of the complex IV protein is changed in AD, potentially
as a result of oxidative stress [45]. The loss of neurons seen as AD progresses has also
been suggested as a cause for the apparent reduction in Complex IV activity [46]. This
theory is corroborated by evidence from animal models, showing Complex IV activity and
protein reduction as a consequence of loss of neuronal activation from the application of
tetrodotoxin [47–49]. A loss of neuron/synaptic number, though, would not fully account
for the selective loss of activity of complex IV reported in these studies, although it puts
forward the hypothesis that OxPHOS demand may modulate ETC activity and protein
expression [50]. Interestingly, the activity of the other ETC has been reported to be reduced
in AD post-mortem brain samples [43,44], but this finding is not repeated across all stud-
ies. Through post-mortem brain samples, it is difficult to ascertain if the changes seen in
Complex IV activity are present from birth or are the consequence of another pathological
process involved in AD, such as protein aggregation, or synapse loss.

The study of blood cells, almost exclusively in sporadic AD patients, has revealed
functional changes in the OxPHOS pathway. Peripheral blood mononuclear cells (PBMCs)
show decreased basal oxygen consumption rates (OCR) and proton leak in AD, but no
change in mitochondrial maximum respiratory capacity when compared to age matched
controls [51]. This work is complemented by work specifically in lymphocytes (a type
of PBMC), which shows a reduction in basal OCR, but also a reduction in maximum
respiratory capacity of lymphocyte mitochondria [52]. Lymphoblastic cell lines (LCL) from
AD and Down’s syndrome (DS) patients have a low mitochondrial membrane potential
(MMP) in both old and young DS patients, but ATP loss was not seen until later in the
disease, when AD developed [53]. This suggests that the loss of ATP maintenance is
developed through the course of AD as opposed to blood cells having a lower level
of cellular ATP prior to disease onset. In whole blood samples from people with AD
and mild cognitive impairment (MCI), the OxPHOS genes that are nuclear encoded are
downregulated and those that are mitochondrially encoded are unregulated [54]. It is
unclear if this affects the function of the ETC, but it is interesting that differences in the
expression of mtDNA genes are seen between peripheral and CNS tissue samples. This
observation may suggest that different mechanisms are present in a particular cell type to
combat the effects of altered OxPHOS gene expression and may go some way to explaining
why AD does not manifest itself in non-CNS tissues. These changes in OxPHOS seen in AD
blood cells are likely to be the cause of the decreased MMP and reduction in total cellular
ATP levels that have also been reported in platelets, and PBMCs [52,55].

Platelets have also been shown to have abnormalities in the ETC in AD, and are often
suggested to be a good peripheral cell model for the disease [56]. Platelets contain the
enzymatic pathways needed to produce Aβ from the APP protein, and have been shown to
secrete Aβ into the blood stream [57,58]. AD patient platelet OCR is similar to controls until
platelets become activated through exposure to substances such as collagen, thromboxane
or monoamine neurotransmitters [58,59]. Reductions in basal and maximum OxPHOS
capacity are thought to be due to a combination of reductions in complex I substrates,
lower activities of complex IV, increased activities of complex I and reduced concentrations
of ubiquitin [55]. The evidence that platelets only start to show deficits in ETC function
when activated suggests capacity deficits in the ETC function in AD that may only be
measurable at times of physiological stress. Several studies have shown both a decrease in
the activity and the expression of the Complex IV enzyme and its subunits in the platelets
of patients with AD [59–61]. The changes seen in the metabolism of blood cells in AD
could be an example of inherent deficits in mitochondrial function, but some evidence from
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animal models suggests that the changes in blood cell ETC function may be precipitated
by the development of the pathological aggregates of AD within the brain [59]. A pro-
inflammatory environment within the brain is established that then activates platelets
leading to the OxPHOS deficits [59]. The changes in metabolic function seen in PMBCs
may also be a direct consequence of the changes seen within the brain, but this has not yet
been shown.

Fibroblasts from patients with both sporadic and familial AD have been extensively
studied for both functional and structural abnormalities in AD. Like platelets, fibrob-
lasts can produce Aβ, and this production is increased in fibroblasts from patients with
AD [33,62]. The function of the ETC of fibroblasts from patients with AD shows more vari-
able results than those from blood cells. ATP and MMP levels have been shown to be low
in some studies of both sporadic and familial AD fibroblasts [63–66]. However, normal and
higher than control levels of ATP and MMP have also been found in AD fibroblasts [67–69].
Alterations in the NAD+/NADH ratio, and how this is maintained, is seen in fibroblasts
from patients with sporadic AD who have high OCR and MMP compared to controls [68].
This suggests that the functional changes seen in the mitochondria of AD fibroblasts may
not be a direct consequence of ETC activity, but caused by the substrates that interact
with the different complexes. This paper also highlights how glucose uptake appears to
be impaired in AD fibroblasts, which again would affect ETC substrate availability [68].
The design of each of these studies on AD fibroblasts is quite different, with control group
comparators ranging from being completely disease free to having other forms of dementia
and neurological illness. Culture media differ between studies, with some using low
glucose media and others using high. This will obviously affect mitochondrial function
as substrate availability is different. The passage used between studies also varies, and as
cultured human fibroblasts are affected by aging, this could also affect metabolic function.
This may explain why fibroblast studies reach less of a consensus about the functional
mitochondrial alterations seen in AD. All these studies agree that there are deficits in
the function of the ETC, which may not necessarily affect mitochondrial function until a
stressor is added [67]. As with post-mortem samples, and blood cells, inhibition of the
Complex IV enzyme in fibroblasts is also stipulated to be the cause of the changes in ETC
function [67].

It remains unclear if the functional and structural changes to the ETC seen in AD are a
result of a primary mitochondrial change, as suggested in the mitochondrial hypothesis
of AD [70], or a consequence of the build-up of amyloid within the brain and body of
AD patients. Evidence from animal and cell models suggests that both amyloid and tau
have a direct effect on the function of the ETC. In triple transgenic 3xTg-AD mice (human
APPSWE, TauP301L, and PS1M146V genes) abnormalities in mitochondrial function are
seen in the embryonic stage and in young mice long before the build-up of amyloid [71].
In this AD mouse model, most of the subunits of Complexes I and IV are downregulated
and Complexes III and V are upregulated when the mitochondria are isolated and examined
at 6 months [72]. Interestingly, in the APP23 mouse, the upregulation of both glycolysis
and OxPHOS is seen before amyloid deposition, and this seems to increase the oxidative
stress within cells [73]. This appears to be opposite to the metabolic changes that are seen
in the transgenic 3xTg-AD mice. PSEN2 plays a role in maintaining MMP, as knock down
of PSEN2 in mouse embryos reduces MMP [74,75], showing that two of the key mutations
which cause familial AD may have a link to the altered metabolism seen in AD models.
Other studies using triple transgenic mice that have mutations in the APP gene and an
increased propensity to develop tau pathology (human APPSWE, TauP301L, and PS1NI41)
have shown deficits in MMP, total cellular ATP, mitochondrial spare respiratory capacity
(MSRC) and OCR. Rhein et al. 2009 have shown that tau preferentially disrupts complex
I of the ETC, whereas amyloid preferentially disrupts Complex IV [76]. The effect tau
has on Complex I has also been highlighted in studies looking at the effects of the plant
poison annonacin, which has a structure very similar to tau and can also cause Complex I
deficits [77]. This study shows that reduced Complex I activity leads to a redistribution of
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tau towards the cell stoma, which can potentiate the development of NFT and cell death,
suggesting that tau pathology can also be exacerbated by poor mitochondrial function.
The tau and amyloid effects on the ETC have also been shown to work synergistically to
increase the speed at which mitochondrial dysfunction happens in animal models [78].
It has been shown that the effects of tau on the function of the ETC are propagated by the
addition of amyloid [79].

Multiple cell line experiments have shown that overexpression of the APP protein
affects the activity and structure of mitochondria. APP overexpression has revealed that
Complexes I, II and IV all have reduced expression in the presence of Aβ [80,81], leading
to reduced MMP and ATP production. The trafficking around the cell and structure of
mitochondria is also affected by Aβ [26], with mitochondria shown to be more fragmented
and to have a reduced MMP [27]. Removal of the mitochondria from a cell line can stop
the toxic effect of Aβ on the cell line [81], again linking metabolism to Aβ pathology.

Limited evidence for a definitive primary mitochondrial pathology has been identified
so far in AD, but a recent study has shown that a point mutation in the PTCD1 protein,
encoded by nuclear DNA, is much more prevalent in people with AD [82]. This protein is
essential for the normal assembly of mitochondria and this mutation has been shown to
cause deficits in OxPHOS. Interestingly, cybrids (SH-SY5Y cell line with mtDNA removed
and human platelet mtDNA added) created from patients with AD and controls also reveal
reductions in the activities of Complexes I, II and IV, an increase in reactive oxygen species
production, and a 40–50% reduction in ATP generation [83]. Changes in mitochondrial
structure, including shorter length, increased fragmentation, and a collapse of the mito-
chondrial network were also seen. This is without the presence of APP, suggesting that the
Aβ protein may exacerbate a mitochondrial phenotype that already exists in AD.

Research into mitochondrial ETC deficits seen in AD reveals mixed results depending
on the situation in which the mitochondria are observed or the tissue in which they are
studied (e.g., post-mortem brain, peripheral blood cells in people living with AD or animal
models). Interestingly, the changes to ETC gene expression in peripheral cells are often
associated with a reduction in ATP production, suggesting a reliance on OxPHOS for ATP
production in the periphery. Inconsistency in findings could be explained by differences in
experimental techniques, or the dynamic nature of mitochondria. Constituents of media,
such as the concentration of metabolic substrates, can affect mitochondrial function and
may explain differences among studies. Studies investigating the function of the ETC in
sporadic AD rarely separate samples based of ApoE status (the greatest genetic risk factor
for developing sporadic AD), a methodological shortcoming that may also contribute to
conflicting results. The causes of ETC function and protein expression are very likely
to be different between sporadic and familial AD, as the genes that become mutated in
familial AD have functions within the mitochondria, independent of amyloid production.
An example of this is in the maintenance of calcium balance, which is discussed below.

3. Mitochondrial Dynamic Changes Seen in AD

In normal conditions, during mitochondrial fusion, the fusion of the outer mitochon-
drial membranes is mediated by mitofusin 1 and 2 (Mfn1) and (Mfn2), whereas the fusion
of the inner mitochondrial membrane is mediated by Optic atrophy 1 (OPA1). During
mitochondrial fission, dynamin-related protein 1 (Drp1) is recruited to the mitochondria
by four receptors on the outer mitochondrial membrane, fission 1 (Fis1), mitochondrial
fission factor (Mff) and mitochondrial dynamics proteins of 49kDa and 51 kDa in size
(MiD49/MiD51). Drp1 then forms an oligomeric ring structure around the mitochondrion
which constricts, dividing the mitochondrion into two. The post-translational modification
of Drp1 is known to be highly important in the action of Drp1. For example, the transloca-
tion of Drp1 is reliant on the phosphorylation state, Drp1 must be dephosphorylated at
ser637 and phosphorylated at ser616 [84].

The fusion proteins OPA1 and Mfn2 have been found to be increased in hippocampal
tissue taken from an APPsw/PS1dE9 mouse model by 12 months [85], though Calkins et al.



Biomedicines 2021, 9, 63 7 of 26

2011 [86] saw a decrease in Mfn1 and Mfn2 levels in primary neurons from a Tg2576 mouse
and Trushina et al. 2012 [24] saw no change in either APP, PSEN1 or APP/PSEN1 mice.
Changes to Mfn2 levels can be affected by age and sex in 3xTg mice, with reduced Mfn2
levels noted in cortical mitochondria at 6 and 14 months in both male and female mice,
but only in males at 2 months [87]. Decreased OPA1 has been noted in the M17 human
neuroblastoma line, overexpressing wild type APP [27], although OPA1 and the mitofusins
were found to be increased in HEK293 cells, an embryonic kidney cell line, when human tau
was overexpressed [88]. Reduced levels of several OPA1 isoforms have been seen in sporadic
patient-derived fibroblasts, with an increase seen in a particular short isoform [64], though this
is not consistent, as some have seen no change [66,89]. To date, few studies have investigated
these proteins in a disease relevant, patient-derived model, though Birnbaum et al. 2018 [90]
used iPSC-derived neurons from five sporadic AD patients and two controls, and saw no
change in Mfn1 or Mfn2.

Fission proteins have also been studied, in particular Drp1. Increased Drp1 has
been seen in both transgenic [85,91,92] and streptozotocin-induced [93] mouse models
of AD, although this was sex-dependent [87]. An increase in Drp1 was seen in cortical
and hippocampal mitochondria from 3xTg mice at 2 and 6 months in females only, whilst
males showed reduced Drp1 levels in cortical mitochondria at 6 months and no significant
difference in hippocampal mitochondria. Decreased levels of Drp1 have also been noted
in the M17 neuroblastoma line overexpressing wild type APP [27], and post-mortem
tissue [94], as well as in both sporadic and familial AD patient fibroblasts [27,66,95], though
this is not consistent [91]. In sporadic AD iPSC-derived neurons, no change was seen [90],
whereas astrocytes expressing ApoE4, a significant risk factor for sporadic AD, showed
decreased levels of Drp1 [92]. Mitochondria-localised Drp1 has also been seen to be reduced
in sporadic AD [66,95,96], which may be due to the reduced overall levels of Drp1, or may
suggest an impairment in the recruitment of Drp1 to the mitochondria.

Fis1 has been seen to be increased in various models of AD, both where Drp1 was
seen to be increased [97,98], and interestingly, where Drp1 was seen to be decreased [89,94].
The importance of Drp1 post-translational modification may somewhat explain these
potentially conflicting results. Whilst many studies focus on the mRNA or protein levels of
Drp1 and Fis1 in AD, Joshi et al. (2018) investigated the interactions between Drp1 and
Fis1, using an inhibitor of these interactions, P110. They found that treatment with P110
prevented alterations to mitochondrial morphology and function in a range of models of
AD, including sporadic patient fibroblasts, transgenic mice and cultured neurons.

As previously mentioned, post-translational modification is key in the action of Drp1.
S-nitrosylation, the covalent binding of a nitric oxide group to a cysteine thiol to form
an S-nitrosothiol (SNO), may be of particular significance in AD. Nitric oxide (NO) is
produced in response to Aβ, leading to the s-nitrosylation of Drp1 to SNO-Drp1. This
leads to increased mitochondrial fission, loss of synapses and neuronal damage in both rat
primary neuron cultures [95] and post-mortem tissue [99]. SNO-Drp1 has been found to
be increased in peripheral blood lymphocytes of AD patients [96], as well as post-mortem
AD patient brains, and preventing nitrosylation has been shown to attenuate neuronal
damage [99]. However, others have found that s-nitrosylation has no effect on Drp1 activity,
and SNO-Drp1 is not significantly different in AD compared to controls [100].

Mitochondrial biogenesis is also altered in AD. Mitochondrial biogenesis refers to
the generation of new mitochondria from the growth and division of an existing mito-
chondrion [101]. Studies have shown the master regulator of mitochondrial biogenesis,
peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), is downregu-
lated at the mRNA and protein level, specifically in hippocampal regions of the AD brain
rather than the cerebellum. Furthermore, the same reductions have been found in several
downstream regulators, including nuclear factor erythroid 2-related factor (Nrf2), Nrf1
and TFAM in the same brain region of the AD brain [102,103]. These reductions have also
been found in animal and cellular models of familial AD, showing that this is a pathway
which is dysregulated in both sporadic and familial disease [103–105]. This suggests a
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reduction in the ability of a cell to create new mitochondria in AD. It has also been shown
that Aβ-induced cellular death can be reduced by upregulation of Nrf2, which is thought
to be mediated by both increased oxidative stress resistance and improved mitochondrial
biogenesis [106,107]. Interestingly, Aβ has been shown to have a direct effect on mitochon-
drial biogenesis in the cell models of AD, which can be corrected with the application of
both drugs, such as diabetic medication pioglitazone and naturally occurring compounds
like curcumin [108–114].

4. Mitochondrial Calcium Signalling in AD

The tight control of both intracellular calcium and intramitochondrial calcium has
been shown to be affected in AD. PM samples from AD patient frontal cortex tissue show
that the Na/Ca exchanger that maintains mitochondria matrix calcium is remodelled, and
has reduced expression [15]. This leads to an increase in matrix calcium concentration.
In the same paper, a transgenic mouse (3xTg-AD) with the Na/Ca exchanger deleted is
shown to have an accelerated amyloid and tau pathology, as well as increased memory loss.
The cognitive deficit seen in the mouse model can be corrected by the normal expression
of the Na/Ca exchanger, suggesting that high levels of mitochondrial matrix calcium are
essential to the development of the pathology of AD. Aβ has also been shown to increase
intracellular calcium levels, which can increase cellular vulnerability to excitotoxicity [115].
This will also have an effect on mitochondrial function as the calcium buffering capacity of
the mitochondria is challenged by an increased intracellular calcium. A recent study using
an animal model of AD (the APPswe/PSEN1∆E9 (APP/PS1) Tg mouse) has suggested
that Aβ increases mitochondrial calcium levels via its actions on the mitochondrial calcium
uniporter [116]. The same study shows that in the post-mortem AD brain, the expression of
influx calcium transporters is reduced, while efflux transporters are increased, suggesting
an adaptive mechanism by neuronal cells to manage the increased mitochondrial calcium
load caused by Aβ. The efflux of calcium from mitochondria has been shown to be
further impaired by the presence of misfolded tau [117,118], giving further evidence
of the synergistic effect that both tau and amyloid aggregates have on the function of
mitochondria in AD.

The buffering of calcium by the mitochondria and endoplasmic reticulum is partic-
ularly affected by mutations in the proteins associated with familial AD (PSEN 1 and 2,
and APP genes) [119–121]. The presenilin proteins have a role in regulating endoplasmic
reticulum (ER) calcium release and maintaining cytosolic calcium concentrations [122]. The
presenilin-mediated release of calcium has been shown to have a direct effect on reducing
MMP, which in turn, can predispose cells to increased autophagy [119]. The presenilin-
1 and -2 proteins are enriched in a specialized part of the ER called the mitochondrial
associated ER membrane (MAM). The MAM sites are where the mitochondria and ER
directly interact, and as they are enriched in presenilin proteins, this may explain why
mitochondria accumulate Aβ and why presenilin-mediated calcium release leads to re-
duced MMP [123]. In cell models, the application of Aβ to neurons increases mitochondrial
calcium levels via upregulating the inositol-1,4,5-triphosphate receptor-voltage-dependent
anion channel (IP3R3-VDAC) contacts, also part of MAMs [124]. This same study showed
that the IP3R3-VDAC contacts are increased in post-mortem AD brain samples, although
the article did not state if the post-mortem samples come from patients with a familial or
sporadic form of the disease. A research consensus, though, does not exist on the effect that
familial AD associated protein mutations have on MAM contacts, with both increases [125]
and decreases [126,127] in MAM contacts reported in several different model systems.

The fact that presenilin proteins are a key part of the MAMs highlights what is
very likely to be an important difference in what determines the pathogenesis of the
mitochondrial dysfunction in familial and sporadic forms of AD. Current literature appears
to suggest that the abnormal mitochondrial calcium concentration and signalling seen in
AD is a direct effect of the Aβ and Tau proteins or caused by the presence of mutations
with the PSEN1 and 2 genes associated with familial AD. Evidence of an inherent change
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in calcium concentration, or signalling abnormality is yet to be found, although since most
models that investigate calcium signalling in AD rely on the pre-exposure to Aβ, then
inherent calcium changes would be difficult to identify. It has been shown that MMP is
reduced in both sporadic and familial AD patient cells; therefore, since mitochondrial
calcium concentration is dependent on MMP, this may indicate that mitochondrial calcium
concentrations are affected independently of the effect of amyloid and tau.

5. Mitochondrial ROS Production in AD

Mitochondria are the main source of ROS production within a cell, accounting for 90%
of all ROS production [128]. ROS are used by cells as signalling molecules, but in AD, the
tight balance between the production of ROS and breakdown is altered. As ROS molecules
are difficult to study directly, often evidence of ROS activity is identified via the oxidization
of biological molecules. In AD, there is evidence of increased lipid, protein, DNA and RNA
oxidation, both centrally [16–19] and peripherally [129,130], suggesting an increase in ROS
production associated with the disease. As a result of increased oxidation, cell physiology
in AD is put under strain, as the oxidized molecules either cease to function or develop
abnormal function.

Studying patients with DS has shown that oxidative stress in AD is an early event.
The brains of patients with DS develop oxidative damage years prior to the build-up of the
amyloid and tau aggregates [131,132]. This finding is also replicated in animal and cell mod-
els of AD that show increased oxidative damage prior to amyloid deposition [27,133,134].
In human post-mortem brain tissue, increased oxidative stress is seen, but as the disease
progresses and aggregations of both amyloid and tau expand, the level of oxidative dam-
age appears to decrease [18,135,136]. This has led researchers to suggest that the amyloid
protein may have an increased expression in AD because it acts as an antioxidant against
mitochondrially induced oxidative stress [16–18,137]. Of the different isoforms of the
amyloid beta protein, Aβ1-40 was shown to have the biggest antioxidant effect, but other
isoforms, including Aβ1-42, also showed antioxidant properties [137]. This is an interesting
theory, as it links several aspects of AD pathology together (mitochondrial dysfunction,
oxidative stress and protein aggregation) and gives a physiological role to the amyloid
protein, which has, to a certain extent, remained elusive.

Conversely, oxidative stress has been shown to be highest around AP within the brain
of a mouse model of AD [138], although this does potentially contradict the findings from
post-mortem human brain studies, showing less oxidative damage in brain areas with high
amyloid load [17]. Fragments of the Aβ protein have been shown to have the ability to
cause ROS production [139], and both β secretase activity and tau hyperphosphorylation
are increased by the activity of ROS [133,139]. This evidence suggests that mitochondrial
ROS production may actually exacerbate the accumulation of amyloid and tau aggregates,
as opposed to these proteins being produced as antioxidants. The Aβ protein can also
interact with a beta-binding alcohol dehydrogenase (ABAD), a dehydrogenase, which has
roles in controlling mitochondrial exposure to oxidative stress [134]. Binding of Aβ to
ABAD distorts the dehydrogenase’s shape stopping the binding of NAD, and increasing
mitochondrial oxidative stress in both mouse models and human neuronal tissue. ABAD
would normally bind to CypD, but in the presence of Aβ, this reaction is impaired, which
can also lead to an increased MPTP opening in AD neurons, and therefore an increased
risk of cellular death cascades being initiated [134,135].

Mitochondrial efficiency in AD is likely to be the source of the increased damage
seen by the production of ROS. It could be postulated that the AD brain expresses less
dismutase enzymes, which are involved in the reduction of ROS. However, work on post-
mortem specimens has shown that the expression of these enzymes in AD brains is the
same as found in control samples, with differential expression occurring in places of higher
oxidative stress [136]. The ETC is the main site of ROS production in the mitochondria,
which links the production of ATP with the production of ROS. The altered balance
of ROS and oxidative stress within the AD brain further highlights the importance of



Biomedicines 2021, 9, 63 10 of 26

understanding how the function of the ETC changes in AD. As the Aβ protein has been
shown to have potentially both positive and negative effects on the level of ROS production
in AD, this could be another example of how the capacity of mitochondrial function is
key to the development of AD pathology. The Aβ protein may have an antioxidant role at
the start of the disease but, as the capacity of mitochondrial function is already impaired,
the antioxidant role of Aβ may not be able to rescue the established mitochondrial AD
phenotype, leading to increased Aβ and to the development of more ROS.

6. Mitophagy and Cell Death in AD

There is a significant body of literature showing that the dynamics of mitophagy
are altered in AD [140–148]. Most of these reports focus on the Pink–Parkin mitophagy
pathway, but abnormalities in cardiolipin-induced mitophagy have also been reported in
AD mouse models [147]. It has been shown in several studies that there is an increased
recruitment of Parkin to defective mitochondria in both CNS and peripheral cells in AD,
but the mitophagic destruction of these mitochondria is impaired [149–151]. As the disease
progresses, markers of mitophagy increase in both animal models and post-mortem brain
tissue, but the amount of Parkin available for mitophagy is reduced in the cytosol [149].
The reason for the build-up of mitochondria signalled for mitophagy is not fully understood
in the current literature, but there is evidence of lysosomal dysfunction (a key part of
mitochondrial clearance) in cells that have either the PSEN1 mutations [150], or express the
ApoE ε4 allele [152]. The cause for the increased recruitment of Parkin to the mitochondria
is not fully understood, but is very dependent on the depolarization of the MMP that,
as described above, can be caused by amyloid interacting with the mitochondria. Amyloid
also has a propensity to increase ROS production, which may also lead to increased Parkin
recruitment, as a further signal to initiate mitophagy. Tau has an effect on mitophagy,
but experiments from animal and cell models have shown that tau can both increase Parkin
recruitment to mitochondria [141] or stop its translocation from the cytoplasm [142,143].

Both ROS production and the dissipation of MMP can be key factors in determining
whether a mitochondrion should undergo mitophagy. The function of the mitochondrial
permeability transition pore (MPTP), a complex ion pore that is made of a combination
of proteins found in the matrix, inner mitochondrial membrane and outer mitochondria
membrane [153] also has a key role in determining both the level of cellular mitophagy
and cellular death. The function of the MPTP has been shown to be altered in AD, with
some studies showing a more constant activation of the pore in cells when compared to
controls [151]. The constant opening of the MPTP exposes the cytoplasm to increased
ROS and calcium release, which can be signals for mitophagy and cell death. The Aβ

protein has been shown to interact directly with the MPTP protein cyclophilin D (CypD),
which increases the pores activation [154,155]. There is also evidence that the increased
calcium concentration mitochondria are exposed to in AD, due to the increased number
of MAM contacts, causes the MPTP to open more frequently to normalize matrix calcium
concentration [151]. Inhibiting or knocking down the CypD protein in mouse and cell
models, which essentially stops the formation of the MPTP, removes the toxic effect that
Aβ has on the mitochondria [154]. This has led to the suggestion that blockage of the
MPTP could be used as a therapeutic target in AD, but this negates the fact that MPTP
has a physiological role. It is interesting that the blockage of MPTP stops the effect that
amyloid has on the mitochondria, but this work has only been performed in mouse models
of a relatively young age. It is reasonable to conclude that the blockage of MPTP does not
take into account any potential effects that minor changes in mitochondrial function may
have on the development of AD, and does not account for the other effects outside of the
mitochondria that amyloid has on many different organelles. Cell death can be mediated
in many ways in AD via the actions of Aβ. As well as MPTP-mediated cell death, Aβ has
a direct effect on caspase signalling, highlighting the complex nature of the disease [156].
Figure 2 summarizes the changes seen to mitochondria in AD.
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Figure 2. Changes to mitochondrial function seen in Alzheimer’s disease (AD) Highlighted in this figure are the different

pathophysiological changes that occur to the mitochondria through the course of AD.
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7. Mitochondrial Abnormalities in AD Summary

The sections above highlight the key role that mitochondrial function and homeostasis
has in the development and progression of AD. Functional deficits in the ETC lead to
a reduction in MMP and ATP generation, which affect the ability of mitochondria to
meet the active demands of the cell in AD. There is evidence from multiple studies and
multiple cell types that Complex IV has a reduced activity in AD, but functions of the
other ETC proteins are also impaired. The pathological process of AD affects the ability
of the mitochondria to store and buffer calcium, but it is not yet known if mitochondria
have inherent calcium homeostasis deficits independent of the actions of tau and amyloid.
AD mitochondria are more likely to produce ROS, which leads to higher levels of cellular
and mitochondrial oxidative stress that, as the disease progresses, further disrupts the
functions of the ETC. Mitophagy is increased in both the AD brain and peripheral cells at the
start of the condition, and becomes more affected as the disease progresses. Mitochondrial
dynamics are affected in AD as in mitochondrial biogenesis, with several mitochondrial
biogenesis pathways affected.

Much research has focused on mitochondria function in the presence of either amyloid
or tau. Less research focuses on whether deficits in mitochondria function are present
within a cell without the addition of these pathological aggregates. Having a full under-
standing of the function of the ETC changes in AD that are independent of the accumulation
of amyloid or tau may help identify a group of patients that have a mitochondrial phe-
notype to the disease. The function of the ETC is fundamental in maintaining calcium,
ROS, and mitophagy homeostasis, so a complete understanding of any deficits that occur
in ETC function would help to develop our understanding of how these mitochondrial
functions are altered when amyloid and tau start to aggregate. Identifying changes in
mitochondrial ETC function that are independent of amyloid or tau aggregation requires
models of AD that source mitochondria from humans with the condition, and uses model
paradigms in which the mitochondria are maintained in a system that is as close to what
is seen in vivo as possible. Mitochondrial deficits are seen very early in the course of AD,
so a better understanding of how the mitochondrial ETC function predisposes people to
the condition may open a pathway to earlier diagnosis and treatment. Table 1 highlights
the main changes seen to mitochondrial structure and function in AD.

Table 1. Mitochondrial changes in AD: This table highlights the key papers described in this study and changes to

mitochondrial function and form that they describe. Cell type where abnormality has been identified is also highlighted. ↑

indicates an increase, and ↓ indicates a decrease.

Mitochondrial Property Organ/Cell Type Change Seen to Mitochondrial Property Reference

ETC mRNA/Protein
Expression

Brain

↑ OxPHOS protein expression
↓ mRNA subunits 1 and 2 Complex IV

↓ RNA of subunit 3 Complex IV
↑ Mitochondrial Subunits of Complex IV and III

↓ Mitochondrial Subunits of Complex I

[157]
[158]
[30]

[33,35,159]
[36]

RBC ↓ OxPHOS genes [54]

Platelets ↓ Complex IV subunits [59–61]

ETC Activity Brain ↓ Complex IV activity [41–49]

Fibroblasts
↓ Mitochondrial Spare Capacity
↓ OxPHOS, ↓NAD/NADH ratio

↓ Complex IV activity

[66]
[68]
[67]

RBC ↓ Oxygen Consumption rates [106]

Platelets ↓ Oxygen consumption rates [110]
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Table 1. Cont.

Mitochondrial Property Organ/Cell Type Change Seen to Mitochondrial Property Reference

Mitochondrial Dynamics Brain
↓ and ↑ of both fission and fusion proteins

↑ SNO-Drp1
[95,99]

Fibroblasts
↓ and ↑ of both fission and fusion proteins

and ↑Fis1
[27,66]
[97,98]

Blood Cells ↑ SNO-Drp1 in lymphocytes [96]

Calcium Homeostasis Brain

↑ IP3R3-VDAC
↑ efflux transporters
↓ influx transporters

↑ Mitochondrial Calcium
↑ MAM Contacts

[124]
[124]
[123]
[116]
[116]

Fibroblasts ↑ MAM Contacts [123]

ROS Production Brain
↑ ROS production in areas with lower AP

↑ ROS around AP
[16,138,160]

[27,138]

Fibroblasts ↑ ROS production [129,130]

Bloods ↑ ROS production [137]

Mitophagy Brain
↑ Parkin Recruitment to mitochondria

↑ Mitochondrial accumulation
↑ Lysosomal dysfunction

[140–148]
[149–151]
[150,152]

Fibroblasts ↑ Parkin Recruitment to mitochondria [146]

8. Mitochondrial Dysfunction and Its Current Clinical Imaging Applications

Direct measures of mitochondrial function require laboratory-based analyses of cellu-
lar material, which can be sourced via post-mortem or in vivo methodological paradigms.
While the histopathological assay of brain tissue at post-mortem is still considered the gold
standard for making a definite diagnosis of AD [161], it also offers the opportunity to inves-
tigate cellular mechanisms on a region-by-region basis. This is of central importance, since
the pathophysiological processes of AD do not affect the brain in a homogeneous manner,
but tend instead to progress, showing a degree of preference for certain neural systems,
especially in its earliest clinical stages [162,163]. In this respect, the use of neuroimaging
is a key methodological resource, as it allows the whole-brain characterization of neural
properties and it can also be applied in vivo, with the additional opportunity of monitoring
test-retest longitudinal changes.

Two main neuroimaging methods have been devised and used to study brain parame-
ters that act as indirect proxies of mitochondrial function: positron emission tomography
(PET) and magnetic resonance spectroscopy [164]. PET is a nuclear medicine method based
on the administration of a tracer that binds to a target and is then subjected to a phase of
radioactive decay, with the generation of gamma photons. The topographical origin and
strength of gamma radiation are then recorded by the instrumentation to reconstruct a 3D
map of the (patho)physiological process under investigation.

Moreover, [18F] 2-fluoro-2-deoxy-D-glucose (FDG) is by far the most frequently used
PET tracer in the field of AD diagnosis, since it undergoes intracellular decay and allows
whole brain visualization of glucose utilization. This is normally done at resting state,
when basal metabolic levels tend to be particularly pronounced in the territory of the
so-called ‘default-mode network’, i.e., including the postero-medial territory of the posterior
cingulate cortex and precuneus, the inferior parietal lobe, the medio-prefrontal cortex,
the lateral temporal cortex and the hippocampal formation [159]. It is against this baseline
configuration that the effect of neurological conditions on glucose metabolism is described.
The use of FDG-PET in AD has revealed that patients show reduced metabolism in this ter-
ritory, in particular in the posterior cingulate cortex and in the inferior parietal cortex [165].
Qualitatively, similar findings emerge when patients with mild cognitive impairment (MCI)
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are compared with healthy controls [160] and when patients with MCI who convert to
dementia are compared to non-converters [166]. Although glucose consumption is tightly
coupled to the efficiency of ATP production, other neural mechanisms may, however,
contribute to these reductions in AD. First, the amount of ATP required by the brain is pro-
portional to the number of cells [167]. Since the neurodegenerative processes of AD result
in cellular loss in the same areas that show hypometabolism, it is possible that reduced
resting-state glucose metabolism may at least be due to a reduction in the number of cells
(hence, the need to correct for atrophy [168]). A second physiological process showing
significant changes in these same areas in AD is blood hypoperfusion [169]. Blood flow
and glucose metabolism are tightly coupled in patients with AD [170]. It has thus been
proposed that pathology affecting the vascular system (e.g., endothelial and blood–brain
barrier dysfunction) results in reduced perfusion, which deprives the neurons from the
molecules necessary to generate ATP [171]. As a consequence, although FDG-PET has been
widely used as an in vivo marker of cellular metabolism, it is not specific to any specific
defined cellular process, such as, for example, mitochondrial integrity.

Magnetic resonance spectroscopy is another technique that allows the in vivo quan-
tification of proxies of mitochondrial function within the brain. Exposed to a magnetic
field, various metabolites resonate at different frequencies and generate a distinctive return
signal. It is based on this principle that is possible to reconstruct the spectrum of regional
expression of a series of molecules, some of which are associated with mitochondrial
functioning. This is the case with N-acetylaspartate and lactate, the level of which in
posteromedial regions are diminished and raised, respectively, in AD [172,173]. A crucial
limitation to the use of this methodology, however, has been the prevalent use of a volume-
of-interest approach to establish regional metabolite expression in a hypothesis-based
fashion. Whole-brain MRI spectroscopy is still in its infancy and, to our knowledge, only
one study has applied this methodology to the study of AD, describing an “FDG-like”
pattern of N-acetylaspartate reduction in patients, i.e., in posteromedial, posterior parietal
and mediotemporal regions [174].

Over the most recent years, an innovative PET radiotracer compound (18 F-BCPP-EF)
has been devised to study mitochondrial function in more detail, as it selectively binds
to the mitochondrial complex I [175]. Uptake of this compound shows age association
reductions in most areas of the brain, with a particularly steep trend observed in the caudate
nucleus [176]. AD was shown to be associated with significantly reduced tracer uptake in
the parahippocampal gyrus [177], indicating reduced mitochondrial function in this region.
Although limited, this evidence warrants further exploration of the investigative role of
this radiotracer, above and beyond the indirect evidence provided by the study of glucose
hypometabolism and metabolite spectra.

Additional to these methodologies, a further set of neuroimaging techniques can
indirectly help the profiling of the ATP metabolic cascade by measuring whole-brain
blood-oxygen utilization. One of the earliest methodologies introduced to measure this
neurofunctional property has been the use of PET with an oxygen-labelled tracer, either
injected or inhaled. Evidence collected with this methodology indicates that, in patients
with dementia due to AD, the rate of oxygen consumption (i.e., ‘cerebral metabolic rate of
oxygen’) is reduced in temporoparietal regions, while no significant differences are observed
in the ‘oxygen extraction coefficient’ quantifying the ratio between oxygen consumption and
delivery [178]. Moreover, in a study comparing patients with AD and patients with
vascular dementia, the former had a reduced cerebral metabolic rate of oxygen in the
hippocampus and in the inferior parietal lobe, and reduced oxygen extraction coefficient
in the hippocampus and thalamus [179]. This pattern confirms the results obtained with
methodologies sensitive to glucose utilization, and indicates that temporal, mediotemporal
and parietal regions are particularly susceptible to the metabolic abnormalities observed
in AD.

Finally, the use of functional MRI enables the study of voxel-by-voxel oxygenation
levels along the axis of time. Of particular interest has been the study of resting-state
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‘functional connectivity’, a term that indicates the pattern of time-dependent linear associa-
tion calculated across multiple brain regions. Ample evidence has in fact demonstrated
that there is topographical correspondence between pathological mechanisms of neu-
rodegenerative diseases (including AD) and specific neural systems identified with these
methodologies [162,180]. One of these systems (mentioned above), the default-mode net-
work, shows reduced functional connectivity in AD in the posterior cingulate cortex and
hippocampus [181], suggesting that metabolic dysfunction in these regions not only affects
these areas, but also affects the way in which these areas are correlated with one another.

In conclusion, although the field of mitochondrial function imaging is still under de-
velopment, there seems to be converging preliminary evidence from a spectrum of multiple
indirect methodologies, indicating that inferior parietal, posteromedial and mediotemporal
regions are particularly vulnerable to metabolic dysfunction. From a methodological stand-
point, it is important to consolidate the study of whole-brain patterns of mitochondrial
dysfunction in AD to inform and standardise the process of selection of more precise target
regions of interest. Region-specific magnetic resonance phosphorous spectroscopy, for
instance, has been successfully applied to the study of motor neuron disease [182,183],
which is a condition that has the tendency to affect a well-defined target neural system
(i.e., the pathways responsible for motor function). This relative selectivity has certainly
facilitated the definition of the regions to investigate, in more detail, motor neuron disease.
This particular method of imaging can visualize relative amounts of phosphate-containing
molecules within the brain and muscle, one of these compounds being ATP. This imaging
technique therefore offers another potential mitochondrial imaging target. A comparable
effort is thus needed to explore mitochondrial dysfunction in AD using this technique
to define the most appropriate regions to be further studied with dedicated experimen-
tal paradigms. Table 2 highlights the different imaging techniques discussed and the
advantages and disadvantages.

Table 2. Mitochondrial imaging techniques: This table highlights the different imaging techniques that explore mitochondrial

content and function in neurodegenerative diseases. Listed are some of the advantages and disadvantages of each technique.

Imaging Technique Advantages Disadvantages

FDG-PET

• Technique can be combined with
MRI

• Directly images glucose uptake
• Can show brain network

metabolism in vivo

• Uses radiation
• Resolution of imaging not at a

cellular level
• Not specific to a particular

metabolic pathway
• No temporal information obtainable

18 F-BCPP-EF

• Binds to ETC complex I
• Direct marker of mitochondrial

function/content

• Uses radiation
• Resolution of imaging not at a

cellular level
• No temporal information obtainable

MRI Spectroscopy
• Can image several different

metabolites

• Resolution is limited
• Typically, no whole-brain

information is acquired

MRI Phosphorous Spectroscopy
• Directly images phosphorus

containing compounds such as ATP

• Relatively new technique
• No standardized methodologies

developed yet
• Typically, no whole-brain

information is acquired
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9. Mitochondrial Dysfunction: A Future Biomarker of AD?

The development of a disease biomarker starts with identifying a biological param-
eter which can differentiate between a normal and pathological change in a biological
process [184]. Several types of biomarker exist depending on what stage of disease needs
tracking. Biomarkers are developed usually to either identify disease, track the response to
treatment, or allow physicians to develop a prognosis for a patient with a given underlying
condition. As deficits in mitochondrial function are common to several cell types and
present in both sporadic and familial AD, there is potential that a mitochondrial biomarker
could be developed for AD at any of the three above mentioned stages. In any of the
three biomarker types, the approach to developing a mitochondrial biomarker could be
done by taking a particular marker of mitochondrial function and investigating if this is
affected in large cohorts of AD patients. The imaging of mitochondrial function using
functional MRI has shown that mitochondrial dysfunction is already used to differentiate
surrogate markers of normal brain mitochondrial function from the abnormalities seen in
AD. A recently published study described how fibroblast MSRC may have the potential to
be developed into a biomarker of AD, as deficits in MSRC correlate with changes seen in
established biomarkers early in the AD disease process [69].

When developing a mitochondrial biomarker of AD, identifying a mitochondrial
abnormality present in both the CNS and peripheral tissues would be a good starting
point. The function of complex IV of the ETC may be a possible future marker, as deficits
in the function of this complex are present in CNS and peripheral tissue, suggesting a
deficit common to several cell types. This is important when developing a biomarker of
AD, as a systemic change in mitochondrial function must reflect a change in the CNS that
leads to disease. If a biomarker can be developed through taking peripheral samples, this
non-invasive approach would also be beneficial over sampling tissue or fluid from the
CNS. A difficultly with using a parameter of mitochondrial function as a biomarker would
be the methods of measurement used. Functional assessment of mitochondria currently
requires several weeks of processing of biological samples from patients. This would
be both expensive and time consuming, making the development of a practical widely
available biomarker difficult. If mitochondrial dysfunction did, however, improve the
specificity of AD diagnosis, or provide a robust marker of treatment response, then this
may be an appropriate time frame to wait.

These issues could be potentially avoided by measuring protein expression within
the blood of a protein marker known to cause the abnormalities in mitochondrial function.
Measurement of the NAD+/NADH ratio or Complex II levels may be a useful surrogate
marker of MSRC, as Complex II activity has been shown to be directly linked to MSRC [185].
The expression of Complex IV could also be measured, but again, this would not be a
direct measurement of mitochondrial function. A metabolomics-based approach to the
assessment of the function of the ETC could also be trialled [186]. This method would allow
for the measurement of the substrates of the separate complexes, as well as the molecules
that are metabolised to create these substrates. This method may also infer mitochondrial
functional changes without directly measuring complex function.

Another approach to develop the changes in mitochondrial function into a future
biomarker would be to include mitochondrial assessment as part of a battery of biomarkers
for AD. This methodology would include performing multiple tests of mitochondrial
function in AD patient cells to define an AD metabolic phenotype. The clinical biomarker
system referred to as the “ATN” system has been developed to help characterize people
with a diagnosis of AD [187]. This system is based on the presence or absence of amyloid
(A), tau (T) or signs of neuronal injury (N) on brain imaging or CSF testing. Since its devel-
opment, the ATN system has been applied to patients with MCI with the aim of assessing
progression to developing AD [188]. By adding mitochondrial functional assessment to
the ATN biomarker system, this may increase the reliability of an AD diagnosis at the
prodromal or preclinical stage, when therapeutic engagement may be more effective at
halting or delaying disease progression. Potentially, adding cellular metabolic assessment



Biomedicines 2021, 9, 63 17 of 26

to the biomarkers performed on MCI patients may help to predict which patients, and at
what time point they will develop dementia. There is already evidence that combining
different biomarkers of AD increases the accuracy of clinical diagnosis [189], therefore,
the additional assessment of another biological property in people with suspected AD may
further improve diagnostic accuracy.

Understanding the full range of metabolic abnormalities that are common to all cell
types in AD may also be a way to develop metabolic functional assessment into a risk
stratification tool for people known to be at risk of AD. ApoE ε4/4 genotype [190] and
CSF amyloid and tau levels [191,192] can predict, to a certain extent, progression to AD in
cognitively normal subjects. Performing a full metabolic assessment of peripheral cells in
people who are at risk of AD may again be a way to improve diagnostic accuracy.

Before a peripheral assessment of metabolic function can be developed into a clinically
useful biomarker, studies with much larger patient cohorts are needed to validate the
findings of the studies described in this review. Very few studies that have investigated
mitochondrial function in AD have included large patient cohorts; therefore, further
investigations of mitochondrial function on a large scale are needed to identify deficits that
are common to the majority of AD patients. The development of improved high throughput
screening assays of metabolic functional abnormalities in peripheral cells from patients
with AD will allow for large numbers of patients to be screened in this way. A consensus
needs to be reached on what an appropriate comparator group might be for a large-scale
study investigating the use of mitochondrial function as an AD biomarker. As mentioned in
this review article, studies differ in the choice of control groups used, with some researchers
preferring to compare mitochondrial changes in AD to other neurodegenerative diseases, as
opposed to healthy controls. Mitochondrial functional deficits are common across multiple
neurodegenerative disease types [193–196]. Control groups with other neurodegenerative
diseases may, therefore, be the most appropriate reference controls for studies developing
and testing an AD specific biomarker. As multiple types of biomarker exist, study control
groups could differ depending on the stage of disease that the biomarker is targeted at.

10. Conclusions

Mitochondrial dysfunction is seen early in AD and affects both the CNS and non-
nervous system cells and organs. Several abnormalities are present in the function of the
mitochondria, especially in the roles regarding ATP production, calcium homeostasis, ROS
production, biogenesis and mitophagy. The alterations seen in mitochondrial function may
be caused by changes seen to the mitochondrial dynamics in AD, but are also influenced
by cellular exposure to both tau and amyloid aggregates seen in AD. Imaging tools al-
ready exist that can measure properties of mitochondrial function in the brain indirectly,
but this field needs to be developed further. As well as developing imaging biomarkers
of AD, there is a potential to turn peripheral mitochondrial functional changes into a
metabolic biomarker of the condition. Further work on much larger patient cohorts is,
however, needed, including appropriate disease controls. These potentially novel metabolic
biomarkers should then be compared with currently available biomarkers and longitudinal
sampling to determine if they can be used to provide prognostic or objective monitor-
ing/response to treatments. Future works should focus on deepening the understanding of
the mitochondrial structural changes in AD that lead to abnormal mitochondrial function,
and to clarify how this knowledge could be developed into future disease modifying
therapies for AD and other dementia syndromes sharing similar failing mechanisms.
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