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Abstract: Oncolytic viruses (OVs) are emerging as promising and potential anti-cancer thera-
peutic agents, not only able to kill cancer cells directly by selective intracellular viral replication,
but also to promote an immune response against tumor. Unfortunately, the bioavailability
under systemic administration of OVs is limited because of undesired inactivation caused by
host immune system and neutralizing antibodies in the bloodstream. To address this issue, a
novel hyaluronic acid based redox responsive nanohydrogel was developed in this study as
delivery system for OVs, with the aim to protect the OVs following systemic administration.
The nanohydrogel was formulated by water in oil (W/O) nanoemulsion method and cross-
linked by disulfide bonds derived from the thiol groups of synthesized thiolated hyaluronic
acid. One DNA OV Ad[I/PPT-E1A] and one RNA OV Rigvir® ECHO-7 were encapsulated
into the developed nanohydrogel, respectively, in view of their potential of immunovirother-
apy to treat cancers. The nanohydrogels showed particle size of approximately 300–400 nm
and negative zeta potential of around −13 mV by dynamic light scattering (DLS). A uniform
spherical shape of the nanohydrogel was observed under the scanning electron microscope
(SEM) and transmission electron microscope (TEM), especially, the successfully loading of
OV into nanohydrogel was revealed by TEM. The crosslinking between the hyaluronic acid
chains was confirmed by the appearance of new peak assigned to disulfide bond in Raman
spectrum. Furthermore, the redox responsive ability of the nanohydrogel was determined by
incubating the nanohydrogel into phosphate buffered saline (PBS) pH 7.4 with 10 µM or 10 mM
glutathione at 37 ◦C which stimulate the normal physiological environment (extracellular) or
reductive environment (intracellular or tumoral). The relative turbidity of the sample was real
time monitored by DLS which indicated that the nanohydrogel could rapidly degrade within
10 h in the reductive environment due to the cleavage of disulfide bonds, while maintaining
the stability in the normal physiological environment after 5 days. Additionally, in vitro cyto-
toxicity assays demonstrated a good oncolytic activity of OVs-loaded nanohydrogel against
the specific cancer cell lines. Overall, the results indicated that the developed nanohydrogel is
a delivery system appropriate for viral drugs, due to its hydrophilic and porous nature, and
also thanks to its capacity to maintain the stability and activity of encapsulated viruses. Thus,
nanohydrogel can be considered as a promising candidate carrier for systemic administration
of oncolytic immunovirotherapy.
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1. Introduction

Cancer is one of the most severe diseases and has grown at a remarkable rate glob-
ally [1]. Effective strategies for cancer therapy are a pressing need. Over the last few
decades, chemotherapy, radiotherapy, and surgery have achieved significant advances as
three major treatment options in order to meet the challenge of cancer therapy. In spite
of this, the conventional cancer therapies are still limited due to the serious adverse side
effects [2–4]. Therefore, novel therapeutic approaches characterized by high cancer cell se-
lectivity are urgently needed for cancer therapy. Nowadays, oncolytic immunovirotherapy
using oncolytic virus (OV) as a novel and promising anti-tumor therapy has been exten-
sively studied in preclinical and clinical trials [5–9]. Compared with conventional cancer
treatments, oncolytic immunovirotherapy provides obvious virtues when administrated
OVs directly to tumors. OVs have been intensively investigated as therapeutic agents
inducing anti-tumor effect through only infection and competent replication into specific
cancer cells without causing unwanted influence on normal cells [10–12]. The OVs can be
released from previous infected cancer cell once the lysis happened due to the competent
replication, then future infect the neighbor cancer cells (Figure 1) [13]. Meanwhile, OVs
could also induce systemic anti-tumor immune response [14,15]. In October 2015, the first
OV talimogene laherparepvec (T-VEC) was approved by US Food and Drug Adminis-
tration (FDA) for melanoma immunotherapy [16]. Also, various OVs are being actively
developed in different phases of preclinical and clinical trials for different cancers, such
as melanoma, glioma, pancreatic, and breast cancers [17]. The most common approach
of OVs for cancer immunotherapy is intratumoral administration for solid tumor grown
at accessible position for a direct injection, such as head or neck [18–21]. Nevertheless,
for the solid tumor placed at an anatomic location which is inaccessible by a direct injec-
tion, or for the metastatic cancers, achieving systemic administration delivery of OVs has
attracted an increasing interest. However, the systemic administration of OVs can trig-
ger strongly immune response, inactivate by neutralizing antibodies in the blood stream,
subsequently cause decreasing circulation time and finally rapidly eliminated from body,
thereby, resulted a low therapeutic efficacy [22–26].

Figure 1. Schematic diagram of cancer cell-specific killing of oncolytic viruses (OVs) (Modified from [13]).

In recent studies, it has been demonstrated that shelter the capsid protein of OVs by
polymers or nanoparticles could decrease the anti-viral immune response from host envi-
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ronment, consequently, improve the tumor accumulation of OVs [13]. Several strategies
have been studied in order to facilitate the systemic administration of OVs such as conjuga-
tion with polyethylene glycol (PEG) [27,28]. Cationic polymers, such as poly (ethylenimine)
(PEI) and poly (L-lysine) (PLL) were successfully applied to form nano-complex with
OVs via electrostatic interaction [29–32]. However, the cationic polymers possess high
cytotoxicity which could cause side effect to the host [33,34]. It has been evidenced that
electrostatic and polar interactions of external ligands in the extracellular environment
initiate an avalanche of signal transduction cascade via integrin stimulation in cancer
cells, triggering cancer cell proliferation [35] Recently, lipid-based non-viral nanocarrier,
liposome and extracellular vehicles (EVs), have attracting attentions to be employed as
protective carriers for OVs. The lipid bilayer membrane can provide an aqueous containing
cave assisting the encapsulated OVs escape from the immune clearance, but also improving
the uptake by target cells [36–38]. It is also possible to have un-encapsulated OV remained
in the suspension which is still a challenge to purify the OV loaded liposomes/EVs from
un-encapsulated OVs [37,39–42].

Recently, several studies demonstrated that locally injectable hydrogels have the po-
tential for efficient local and long-term delivery of OVs [43,44]. In particular, nanohydrogel,
as a nano-dimensional hydrogel, integrates the advantages from both hydrogel systems
and nanoparticle systems, thereby, it has been extensively developed and investigated as
drug carrier due to their biocompatibility, high water holding capacity, tissue-like mechani-
cal properties, biocompatibility, while also displacing long circulation time in the blood
stream, modifiable surface for targeting, and possibility for systemic administration [45].
However, there are no previous studies have used nanohydrogel as systemic delivery
system for OVs. Additionally, as a desirable drug delivery system, nanoparticles should
have the capacity to protect and preserve the stability of the payload during the delivery in
the circulation system, but also trigger the rapid release at the targeted position. Beside
temperature, pH or enzyme sensitive system, redox-response drug carriers have demon-
strated their promising potential for controlled release, recently [46–49]. In particular, redox
sensitive crosslinking based on disulfide bonds can be cleaved by reduction agent, such
as glutathione (GSH) [50]. GSH has been demonstrated that it possesses a relative high
concentration level at intracellular or tumor region (2–10 mM) compared with extracellular
environment (2–10 µM) [51,52]. Therefore, nanohydrogels containing disulfide bonds has
recently attracted increasing attention as intracellular or tumor drug delivery system by
taking advantages of this redox potential difference.

In light of these premises, it will be interesting to further develop a nano-dimensional
hydrogel with good biocompatibility, large hydrophilic lumen, proper degradation behav-
ior and easily prone to an appropriate purification process for encapsulation and intra-
venously delivery of OVs, that was actually the aim of this study. Therefore, a hyaluronic
acid based nanohydrogel equipped with redox sensitive disulfide bonds was designed and
developed in this study in order to provide a novel system for OVs delivery which can
overcome the previously discussed challenges. To our knowledge, using nanohydrogel
as delivery system for OVs has never been reported. For these purposes, adenovirus
Ad [I/PPT-E1A] (DNA virus) and echovirus Rigvir® ECHO-7 (RNA virus) were selected
as two model oncolytic viruses and loaded into the nanohydrogel, respectively. The
Ad[I/PPT-E1A], a prostate-specific oncolytic adenovirus, has been engineered to have
the E1A gene under the control of a recombinant regulatory sequence designated PPT
that comprises a prostate specific antigen (PSA) enhancer, a prostate specific membrane
antigen (PSMA) enhancer, and a T-cell receptor γ-chain alternate reading frame protein
(TARP) promoter for the specific OV replication in prostate cancer cells, as previously
described by Cheng et al. [53]. It has been verified that the Ad[I/PPT-E1A] specifically
and efficiently kills prostate cancer cells, in vitro and in vivo [54]. ECHO-7 belongs to the
Picornaviridae family, Enterovirus genus, Enteric Cytopathic Human Orphan (ECHO)
type 7, group IV, positive-sense single-stranded RNA virus [55,56]. It was selected and
adapted for melanoma therapy, and then has been approved and registered in Latvia
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since 2004. ECHO-7 has been verified to significantly inhibit the development of varies
cancers in the clinical trials such as melanoma, gastric cancer, and colorectal cancer, and
successfully improve the survival time of the patients [57,58]. These two model OVs were
encapsulated to investigate their stability under the formulation conditions, and prove
that the nanohydrogel is a suitable delivery system for encapsulation and release of OVs,
thereby providing protection for OVs against antibodies in circulation. The escape of
OV-loaded nanohydrogels from the host immune system would potentially allow effective
intravenous administration of the viral drug that can consequently act against inaccessible
cancers as well as metastatic diseases.

2. Materials and Methods

2.1. Materials

Sodium hyaluronic acid (HA) was purchased from Lifecore Biomedical (Chaska, MN,
USA) and used as received. Dithiothreitol (DTT), 1-ethyl-3-(3-dimethylaminopropyl)car-
bodiimide hydrochloride (EDC•HCl) and L-α-phosphatidylcholine from egg yolk (PC) were
bought from Sigma-Aldrich (Schnelldorf, Germany). 3,3′-Dithiobis(propanoic dihydrazide)
(DTP) was synthesized according to the procedure described by Vercruysse et al. [59] and
characterized by 1H-NMR. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
(MTT) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) cell viability assay kits were purchased from Sigma-Aldrich (Milano, Italy)
and Promega Corporation (Madison, WI, USA), respectively.

2.2. Synthesis of Thiolated Hyaluronic Acid

The synthesis of thiolated hyaluronic acid (HA-SH) was slightly modified according
to the procedure described in our previous study [60]. HA was coupled with DTP by
carbodiimide chemistry firstly, and then the disulfide bonds were reduced by DTT to
obtain free thiol groups as terminal group for HA pending side chains. The number of thiol
group substituted per 100 disaccharide units is defined as substitution degree (DS). Briefly,
1 g HA reacted with 245.54 mg DTP in 100 mL ultrapure water at room temperature and
pH 4.75. EDC•HCl (197.48 mg) was added as a carboxyl activating agent. The reaction
was sustained for 48 h and then stopped by increasing the pH to 7. Subsequently, 4.07 g
DTT was added to the reaction mixture as reducing agent and the pH was changed to
8.5. The reaction continued for 24 h and final completed by decreasing the pH to 3.5.
The reaction solution was purified by dialysis (Mw cutoff = 12–24 kDa) against 100 mM
sodium chloride (NaCl) solution at 4 ◦C, pH 3.5 for 3 days, then dialyzed against deionized
water for additional 24 h. The final product was isolated as dry powder by lyophilization
(Freeze dryer, FreeZone, Labconco, Kansas City, MO, USA) and stored at −20 ◦C. 30%
DS of thiol groups was obtained and characterized by 1H-NMR in D2O, δ in ppm: 2.03
(3H, -NHC(=O)CH3); 2.67(2H, -CH2CH2SH); 2.85 (2H, -CH2CH2SH); 3.34–4.5 (protons of
hyaluronic acid main chains).

2.3. Proton Nuclear Magnetic Resonance (1H-NMR)

The chemical structure and substitution degree (DS) of thiol group of HA were charac-
terized by proton nuclear magnetic resonance (1H-NMR, Varian Mercury plus 400, Crawley,
UK) using deuterium oxide (D2O) as solvents. Chemical shifts was referred to the solvent
peak δ = 4.79 ppm for D2O.

2.4. Oncolytic Viruses

The genetically modified oncolytic adenovirus Ad[I/PPT-E1A] was kindly provided by
Prof. Magnus Essand (Uppsala, Sweden) in stocks of 1 × 1012 particle forming units (PFU)
in PBS. All vials were stored at −80 ◦C and freshly thawed on ice before each experiment.

Rigvir® ECHO-7 was provided by the marketing authorization holder SIA Latima
(Riga, Latavia). It is a PBS solution of an adapted and selected ECHO-7 virus stain at a titer
≥ 1 × 106 TCID50/mL stored at −80 ◦C and transported frozen.
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2.5. Formulation of Empty/OV-Loaded Nanohydrogel

Empty nanohydrogel and OVs-loaded nanohydrogel were prepared by W/O na-
noemulsion method (Figure 2). In details, the viruses were firstly suspended in a PBS
solution at a concentration of 6.8 × 109 PFU/mL and 7.9 × 105 PFU/mL for Ad[I/PPT-
E1A] and ECHO-7, respectively. Then, HA-SH was dissolved in pure PBS or virus PBS
suspension at a concentration of 5% w/v to act as water phase for the preparation of empty
or OV-loaded nanohydrogel, separately. Meanwhile, lecithin was dissolved in chloroform
(CHCl3) at a concentration of 2.5% w/v as organic phase. Subsequently, water phase was
added dropwise into organic phase along homogenization (Ultra-Turrax® T25 digital, IKA,
Staufen, Germany) at a speed of 9500 rpm for 30 min at 4 ± 1 ◦C. The formed nanoemulsion
was kept at 4 ± 1 ◦C overnight under gentle stirring at 380 rpm to allow the nanohydrogel
crosslinking. The next day, the nanohydrogel was collected by centrifugation (High speed
micro-centrifuge, D3024R, Scilogex, Rocky Hill, CT, USA) at 8000 rpm for 20 min. The upper
water phase containing nanohydrogels was collected and washed by CHCl3 to remove the
residual surfactant. Subsequently, 7% sucrose PBS solution was added and residual CHCl3
was removed by stirring under the fume hood for 2 h. Finally, the empty nanohydrogel or
OV-loaded nanohydrogel was stored at −80 ◦C with 7% sucrose as cryoprotectant.

Figure 2. Schematic diagram of empty nanohydrogel and OV-loaded nanohydrogel formulation by water in oil (W/O)
nanoemulsion optimized method.

2.6. Dynamic Light Scattering (DLS)

The particle size, polydispersity index (PDI) and zeta potential were characterized by
dynamic light scattering (DLS,) using a Zetasizer Nano-S90, Malven instruments (Malvern
Panalystical, Malvern, UK) at a fixed 90◦ scattering angle at 25 ◦C. The measurements were
performed in triplicate.

2.7. Scanning Electron Microscope (SEM)

The morphology and particle size of the nanohydrogel were studied by a scanning
electron microscope (field emission-SEM Zeiss Σigma 300, Zeiss, Oberkocken, Germany).
SEM sample stage was prepared by placing a double-sided adhesive carbon tape on an
aluminum stub. A small amount of nanohydrogel lyophilized powder was placed on the
sample stage. Subsequently, the sample was sputtered under vacuum with a chromium
layer of approximately 100 Å thickness (Quorum Q150T ES, Quorum Technologies, Lewes,
UK).
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2.8. Transmission Electron Microscope (TEM)

A transmission electron microscope (TEM, Tecnai G2 F30 S-TWIN, Thermo Scien-
tific, Waltham, MA, USA) at an acceleration voltage of 300 keV was used for observing
the interior structure of empty and OV-loaded nanohydrogels. A copper grid was cov-
ered with a layer of carbon and treated by hydrophilic electric ionic. Then, a droplet of
nanohydrogel suspension was placed on the treated copper grid and stained by 0.75%
phophatungstic acid. Excess water of sample was removed by filter paper carefully dried
at room temperature.

2.9. Raman Spectroscopy

Cross-linked nanohydrogel and HA-SH polymer were characterized by Raman spec-
troscopy. Raman experiments were performed using a micro-Raman spectrometer (iHR320,
Horiba, Kyoto, Japan) in backscattering geometry and a microscope (Olympus BXFM-ILHS,
Olympus Corporation, Tokyo, Japan).

A diode-pumped solid state laser of 532 nm emission wavelength was used as the
excitation source. Raman scattering light was collected using a 50× microscopy objective
and dispersed with 600 grooves mm−1 grating and detected using a cooled charge coupled
device array detector (Horiba Syncerity, Horiba, Japan).

2.10. Redox Sensitive and Stability Test of the Nanohydrogel

Glutathione (GSH) was used as reduced agent to detect redox responsive ability of
nanohydrogel. Nanohydrogels were incubated at 37 ◦C in pH 7.4 PBS in the presence
of 10 µM and 10 mM GSH as mimicking the extracellular environment and reducing
intracellular environment, respectively, while in pH 7.4 PBS without GSH as negative
control. The redox responsiveness was evaluated by determining relative turbidity of these
two groups nanohydrogel by DLS along with time. The stability of the nanohydrogel
in normal physiological environment was examined by monitoring the particle size and
PDI in pH 7.4 PBS at 37 ◦C along with time in order to verify the systemic stability of the
nanohydrogel after administration.

2.11. Cell Culture

HT-29 (ATCC® HTB-38™, American Type Culture Collection, Manassas, VA, USA)
colorectal carcinoma cell line [61] was selected for the in vitro cytotoxicity study of ECHO-
7 virus. The HT-29 colorectal carcinoma cell line was grown in Dulbecco’s modified
eagle medium (DMEM) supplemented with 10% fetal calf serum (FCS), 1% penicillin-
streptomycin (PS) and 2 mM glutamine cultured at 37 ◦C and 5% CO2 incubator.

LNCaP metastatic prostate cancer cell line was provided by Professor Magnus Es-
sand [62] and selected for the in vitro cytotoxicity study of adenovirus Ad[I/PPT-E1A]. The
LNCaP metastatic prostate cancer cell line was grown in Roswell Park Memorial Institute
(RPMI) 1640 supplemented with 10% fetal calf serum (FCS) and 1% penicillin-streptomycin
(PS) cultured at 37 ◦C and 5% CO2 incubator. Cells were routinely tested for mycoplasma
and authenticated using PCR.

2.12. In Vitro Cytotoxicity Assay

The in vitro cytotoxicity of empty nanohydrogel, Ad[I/PPT-E1A] virus and Ad[I/PPT-
E1A]-loaded nanohydrogel against LNCaP cells was evaluated by MTT assay. LNCaP
cells were cultured in 12-well plate at a density of 5 × 104 cells per well in a 5% CO2
incubator at 37 ◦C overnight. The next day, the old medium was replaced with RPMI
containing different concentration of pure Ad[I/PPT-E1A] virus, empty nanohydrogel or
Ad[I/PPT-E1A]-loaded nanohydrogel, respectively, and co-incubated in 5% CO2 incubator
at 37 ◦C. After 3 or 5 incubation days, the medium was removed and the cells were three
times washed by PBS. Then, 375 µL MTT PBS solution (2.5 mg/mL) was pipetted into
each well and further incubated in 5% CO2 at 37 ◦C for 4 h. The resulting formazan was
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solubilized by DMSO for 5 min and read by microplate reader at 540 nm (SpectraMax iD3,
Molecular Devices, San Jose, CA, USA).

The viability of HT 29 colorectal carcinoma cells was inspected by MTS assay to
characterize the cytotoxicity of ECHO-7 virus, empty nanohydrogel, and ECHO-7-loaded
nanohydrogel. HT-29 cells were cultured in 96-well plate at a density of 1 × 104 cells per
well in a 5% CO2 incubator at 37 ◦C overnight. The next day, the old medium was replaced
with DMEM containing different concentration of ECHO-7 virus, nanohydrogel suspension
with or without ECHO-7 virus loaded, respectively, and co-incubated in 5% CO2 at 37 ◦C.
After 5 or 7 incubation days, the medium was removed and the cells were three times
washed by PBS. Twenty µL MTS solution was pipetted into each well and future incubated
in 5% CO2 at 37 ◦C for 1 h. Subsequently, the plate was read by microplate reader at 490 nm
(SpectraMax iD3, Molecular Devices, San Jose, CA, USA).

The cell viability percentage of the MTT and MTS assay was calculated according to
Equation (1).

Cell viability% =

Average absorbance o f triplicate treated wells

Average absorbance o f triplicate untreaated wells
× 100% (1)

2.13. Statistical Analysis

The experimental results were reported as mean ± standard deviation. One-way
ANOVA was applied for statistical analysis via SPSS software (24.0 version, IBM, Chicago,
IL, USA), while a p value less than 0.05 was considered statistically significant.

3. Results and Discussion

3.1. Encapsulation of Oncolytic Adenovirus into the Nanohydrogel

The nanohydrogel was developed by water in oil (W/O) nanoemulsion method
using synthesized HA-SH polymer (Figure 2) and characterized from the physicochemical
point of view. HA-SH polymer was dissolved into OVs PBS suspension and then added
dropwise to the chloroform along with homogenization at 9500 rpm for 30 min to form
nanoemulsion. The homogenization time and speed was screened from different conditions
in order to process the nanohydrogel with a suitable size which is bigger than naked OV
for protection, but also smaller than 400 nm in order to penetrate the tumor vascular
system [63,64]. Then, the nanoemulsion was gently stirred overnight for the formulation of
disulfide cross-linking among thiol groups of HA-SH polymer. During the cross-linking
procedure, the OVs are supposed to be maximum entrapped into the nano water drop
due to the viscosity of HA polymer, but also the hydrophilicity nature of OVs, therefore
avoiding the harsh and degrading environment of the outer organic phase. In time, OVs are
expected to be stabilized inside the nanohydrogel by simultaneous disulfide crosslinking
of the nanohydrogel. Chloroform was chosen as an organic phase in order to form a
nanoemulsion benefiting the incompatibility with water. Additionally, it can inactivate the
un-encapsulated OVs via denaturing the lipid or protein capsid. Thereby, the OV-loaded
nanohydrogel can be easily separated from un-encapsulated OVs by centrifugation to break
the nanoemulsion. In order to maximally retain the activity of OVs, the homogenization
and cross-linking procedure were carried out at 4 ◦C. Additionally, a control group was
operated with same homogenization parameters but did overnight cross-linking at room
temperature. As expected, there was no oncolytic activity of OV-loaded nanohydrogel
detected via in vitro cytotoxicity assay which indicated that operating temperature is one
of the most important conditions for OV encapsulation.

The particle size, PDI and zeta potential of the nanohydrogels were characterized by
DLS and summarized in Table 1. The results demonstrated that all the nanohydrogels
possessed an approximate particle size of 300–400 nm, with a relatively uniform poly-
dispersity distribution as supported by the low PDI. In details, the particle sizes of the
OV loaded nanohydrogels were 362 ± 19 nm and 347 ± 10 nm for Ad[I/PPT-E1A] and
ECHO-7-loaded nanohydrogels, respectively; they were both around 50 nm smaller in
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diameter compared with respective empty nanohydrogels (426 ± 12 nm and 431 ± 13 nm).
The greater size of the OV encapsulated nanohydrogels with the respect to the empty
ones can be easily explained as follows: The empty nanohydrogel is composed of HA-SH
polymer able to undergo to a swelling of large extent once in the hydrated state. OVs are
composed of a nucleoprotein core and an icosahedral nonenveloped capsid possessing a
size around 50–100 nm [65,66], which do not make a distinct variation of volume in the
aqueous environment. The interior cross-linked matrix of the OV-loaded nanohydrogel
was partly occupied by OVs, as a result, represented less swelling in the hydrated state. The
replacement of the HA-SH swelling polymer of the nanohydrogel with the virus reduces
the swelling tendency of the nanohydrogel, thus leading to a particle smaller in size.

Table 1. Particle size, polydispersity index (PDI) and zeta potential of empty and OV-loaded nanohydrogels characterized
by dynamic light scattering (DLS).

Name Particle Size (nm) PDI Zeta Potential (mV)

Empty nanohydrogel 426 ± 12 0.29 ± 0.03 −13.2 ± 1.6
Ad[I/PPT-E1A]-loaded nanohydrogel 362 ± 19 0.29 ± 0.03 −12.7 ± 0.9

Empty nanohydrogel 431 ± 13 0.24 ± 0.01 −13.2 ± 3.2
ECHO-7-loaded nanohydrogel 347 ± 10 0.26 ± 0.01 −13.1 ± 2.9

To investigate the external and internal morphology of the nanohydrogels, the nanohy-
drogels were further observed by SEM and TEM (Figure 3). As shown in Figure 3a, the
nanohydrogels adopted a spherical shape with a smooth surface under the SEM. The
nanohydrogel presented a uniform particle size distribution of around 100 nm, which is
much smaller than the size measured by DLS, but in a good agreement with the one mea-
sured by TEM (Figure 3b). The explanation of the discrepancy in the nanohydrogel particle
size is due to the differences in the experimental conditions: During DLS measurement,
nanohydrogel swells in the aqueous environment, while, on the contrary, SEM and TEM
are performed in anhydrous conditions and thus the nanohydrogel incurs in an extreme
shrunk that impacts the size reduction.

Figure 3. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization: (a) SEM
photo of the empty nanohydrogel; (b) TEM photo of the empty nanohydrogel; (c) TEM photo of Ad[I/PPT-E1A]-loaded
nanohydrogel; (d) TEM photo of naked Ad[I/PPT-E1A] virus.
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Interestingly, the successfully encapsulation of Ad[I/PPT-E1A] virus was distinctly ob-
served under the TEM (Figure 3c). While pure Ad[I/PPT-E1A] virus (Figure 3d) and empty
nanohydrogel (Figure 3b) images were used as positive and negative control. According to
the TEM image of pure Ad[I/PPT-E1A], the icosahedral capsid was clearly observed with a
size around 80 nm, consistent with previous study [67]. Compared with the homogeneous
transparency core of empty nanohydrogel (Figure 3b), there is an apparent shadow where
the arrow points revealed in the center of Ad[I/PPT-E1A]-loaded nanohydrogel (Figure 3c)
which suggests effective OVs encapsulation. It also turns out that the virus was encapsu-
lated into the nanohydrogel one to one. Additionally, in Figure 3c, the shape of the virus
icosahedral capsid was exposed along with the shrinkage of the nanohydrogel but with a
bigger size compared with naked OV (Figure 3d) which further indicated the successful
encapsulation of Ad[I/PPT-E1A] virus.

Concerning the nanoparticle charge, Table 1 clearly showed that there was no dif-
ference in zeta-potential between empty nanohydrogel and OV loaded nanohydrogel,
as expected. Zeta potential is the surface charge of nanoparticles which is an important
parameter to evaluate for the colloidal stability of the nanoparticle system [68,69]. The
formulated nanohydrogels displayed negative zeta potential (~−13 mV) which depends
on the contribution of by both hyaluronic acid and the residual surfactant lecithin. It is
of paramount importance for the nanohydrogel administration and shelf life to evaluate
the zeta potential in order to avoid aggregation and preserve stability in suspension. It
has been demonstrated that a nanoparticle system possessing a zeta potential approximate
±30 mV can lead to a good stabilization of the suspension, and smaller than 5 mV may
cause severe undesired aggregation [70–72]. Nonetheless, the absence of aggregation of
our nanohydrogel in water was proven by DLS immediately after preparation, that shows
only single peak was detected without particle populations larger in size range confirming
the absence of aggregates (Figure 4). The stability of the nanohydrogel suspension was
evaluated by particle size and PDI monitoring for 5 days and the results are described in
following (Section 3.3). As a consequence, these preliminary results lead to envisage a good
colloidal stability of nanohydrogel system in the circulatory system after administration.

Figure 4. Size distribution curve of developed nanohydrogels examined by DLS.

3.2. The Nanohydrogel Is Successfully Cross-Linked by Disulfide Bonds

As illustrated in the Figure 5, the formulation of the nanohydrogel was engineered
getting the contribution of the disulfide bonds derived from the HA-SH polymer. Raman
spectroscopy was conducted to verify disulfide cross-linking of the nanohydrogel. HA-SH
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(DS 30%) polymer was examined as a reference Raman spectrum for the nanohydrogel. Ta-
ble 2 summarized the Raman bands observed in HA-SH polymers and nanohydrogel, and
also the corresponding data cited from literatures. As shown in Figure 6a, Raman spectrum
of HA-SH polymer exhibiting all the characteristic peaks of hyaluronic acid [73–75] with a
specific peak at 2557 cm−1 which is assigned to thiol group [76,77].The Raman spectrum of
the nanohydrogel (Figure 6b) maintains the characteristic peaks of hyaluronic acid, which
proves that hyaluronic acid represents almost the majority of the nanohydrogel. Indeed,
the comparison between spectra of the HA-SH polymer and the nanohydrogel reveals the
disappearance of the thiol group peak, and the appearance of two new peaks at 501 and
565 cm−1 ascribed to the stretching vibration and bending vibration of the new formed
disulfide bonds. This result indicates that all the thiol groups of HA-SH polymer were
consumed and the nanohydrogels were chemical cross-linked by disulfide bonds derived
from the thiol groups of HA-SH polymer.

Figure 5. Illustration of cross-linking and redox response degradation behavior of the nanohydrogel.
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Table 2. Assignment of observed Raman bonds in the HA-SH polymer and the nanohydrogel.

Raman Shifts (cm−1) Assignment

Measurements
References Bonds Contributed Polymer

No. HA-SH Nanohydrogel

1 – 501 498 [76–78] S-S str disulfide cross-linked core
2 – 565 560 [76–78] S-S bend disulfide cross-linked core

3 666 662 660 [76] C-S str
linkage of thiol group on HA

chain
4 889 883 889 [73–75] – HA
5 941 940 949 [73–75] – HA
6 1037 1038 1047 [73–75] C-Cstr C-Ostr HA

7 1084 1090 1091[73–75] C-OHbend
acetyl group HA

8 1120 1118 1125 [73–75] C(4)-OHbend
C(4)-Hbend

HA

9 1207 1206 1205 [73–75] CH2twist HA
10 1329 1316 1328 [73–75] C-Hbend Amide III HA
11 1374 1366 1372 [73–75] C-Hbend HA
12 1409 1405 1406 [73–75] C-Nstr C-Hdef HA
13 1645 1644 1660 [73–75] C=C Amide I HA
14 2557 – 2574 [76] -SHstr thiol group
15 2905 2905 2904 [73–75] C-Hstr HA
16 2933 2933 2933 [73–75] N-Hstr HA

Figure 6. Raman spectra of (a) thiolated hyaluronic acid (HA-SH) polymer and (b) nanohydrogel.

3.3. The Nanohydrogel Possesses Stability and Redox Responsiveness

The nanohydrogel was cross-linked by disulfide bonds which has been identified
can be cleaved by reduce agent, thereby inducing degradation of nanohydrogel in the
environment with high GSH concentration [79]. To study the redox response ability of the
nanohydrogel, different amount of GSH were added into the nanohydrogel PBS suspension
pH 7.4, to achieve the final GSH concentrations of 10 µM and 10 mM in order to mimic
the extracellular and intracellular circumstances, respectively [80]. The turbidity of the
samples was monitored by detecting the scattering intensity using DLS. The degradation
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of nanoparticles can be directly detected according to reduce of sample turbidity and
a relative turbidity % is calculated according to the Equation (2) in order to study the
dynamic degradation progress [81].

Relative turbidity % =

Real time scattering intensity

Orignal scattering intensity
× 100% (2)

As displayed in Figure 7, almost no obvious change in the relative turbidity was
determined in the nanohydrogel suspension with 10 µM GSH in 20 h compared with
the negative control (absence of GSH), demonstrating that the nanohydrogel is stable
in the extracellular environment, i.e., blood circulation. Then, once the concentration of
GSH increased to 10 mM, the relative turbidity of the sample showed a rapid drop in
the first 5 h and then decreased gradually in next several hours, which suggests that the
particle size and/or the particle number were reducing due to the reductive cleavage of the
disulfide bonds in the high concentration of GSH. The nanohydrogel is supposed to finally
degraded into single HA chain that can be efficiently cleared from body circulation due
to its hydrophilicity and biocompatibility (Figure 5) [82]. Additionally, as demonstrated
in Figure 8, the developed nanohydrogel provide a stable particle size and PDI around
450 nm and 0.25 in the time range considered for the study, which further confirmed that
the nanohydrogel possessed a good stability in the normal physiological environment. The
results indicate that this nanohydrogel system can capably protect the payload from leaking
out during the delivery, while rapidly releasing the payload in the reductive environment,
such as tumor cells [83]. Therefore, it can be concluded that this nanohydrogel possesses
significant redox responsiveness and promising potential to be developed for intracellular
therapy or cancer treatment.

Figure 7. Characterization of redox response of nanohydrogel by relative turbidity measurements.
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Figure 8. Characterization of the nanohydrogel stability in phosphate buffered saline (PBS, 10 mM, pH 7.4) at 37 ◦C by
particle size and PDI determination.

3.4. Oncolytic Activity of OV-Loaded Nanohydrogels

The cytolytic ability of OV-loaded nanohydrogel was determined by measuring the
cytotoxicity in the corresponding cancer cell lines according to the specificity of the encap-
sulated OVs. As described in the introduction (Figure 1), the anti-cancer mechanism of
OVs is to replicate following cellular infection of cancer cells and ultimately resulting in
oncolysis. The oncolysis effect indicates that OV can efficiently replicate in the specific cell
lines and then be cytolytic. A lag time must be generally considered prior to observe the
cythopathic effect on cancer cells after the OVs treatment, and this is explained with the
necessity to complete a sufficient cytolytic replication of OVs [13,84].

The in vitro MTT cytotoxicity assay of Ad[I/PPT-E1A]-loaded nanohydrogel was
carried out against LNCaP metastatic prostate cancer cell line due to the prostatic cancer
specificity of Ad[I/PPT-E1A] [54]. Cytolytic effect was observed in the LNCaP cells treated
with Ad[I/PPT-E1A]-loaded nanohydrogel, at concentration of at least 100 µg/mL after
3 days infection (Figure 9a). This result is in agreement to the literature that showed that
the pure Ad[I/PPT-E1A] virus possesses evident toxicity in LNCaP cell line after 3 days
transduction [53]. Cell viability markedly decreased from 3 to 7 days once concentration
rose to 100, 150, and 200 µg/mL (Figure 9b). The Ad[I/PPT-E1A]-loaded nanohydrogel
showed the most efficient cythopathic effect after 7 days at a concentration of 200 µg/mL.
In contrast, the empty nanohydrogel did not cause cytotoxicity at the same concentration
range of the Ad[I/PPT-E1A]-nanohydrogel, which confirmed that the cells death was
actually induced by the encapsulated OVs. This result proves that, despite the encap-
sulation procedure involves the use of chloroform, the encapsulation procedure did not
compromise the cytolytic ability of Ad[I/PPT-E1A] and confirms its ability to successful
transduce the LNCaP prostatic cancer cells, causing efficient oncolysis. In addition, even if
we hypothesized that most of the Ad[I/PPT-E1A] viruses have been encapsulated into the
nanohydrogel, in our experiments, we did not exclude that, some viruses escaped from the
HA water core during the nanohydrogel formulation and thus could be the responsible
for cytolytic activity. To further confirm that the cytolytic effect was caused by encapsu-
lated Ad[I/PPT-E1A] but not free ones, the activity of chloroform treated Ad[I/PPT-E1A]
was evaluated by MTT assay against LNCaP cancer cells. Even if literature reports that
only around 20% cell viability was observed in LNCaP prostate cancer cells treated by
Ad[I/PPT-E1A] at an MOI of 1 after 5 days [53], in our study no cytotoxicity was observed
by chloroform treated Ad[I/PPT-E1A] at the MOI from 1 to 25 after 5 days. It verified that
the assumed free viruses escaped from water core were inactivated once exposed overnight
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in the chloroform that could denature the lipid or protein capsid of OVs. This results indi-
cated that this W/O nanoemulsion method can efficiently encapsulated Ad[I/PPT-E1A]
virus into the nanohydrogel and simultaneously isolated from free viruses. Furthermore,
according to the GSH results reported in the previous paragraphs, this nanohydrogel shows
stability in the mimic extracellular environment, while degradation occurs in the reductive
conditions such as intracellular or tumor environment, due to the redox responsive prop-
erty. Since it has been proved that redox-responsive nanosystem can control the release
of payload into the cancer cells after internalization [79,85,86], thereby, we supposed that
the resulting cytotoxicity of Ad[I/PPT-E1A] could only possible after the Ad[I/PPT-E1A]
nanohydrogels up taken and then cytoplasmic Ad[I/PPT-E1A] release. Our study proves
that the Ad[I/PPT-E1A] was successfully encapsulated into the nanohydrogel, then up
taken into the cancer cells and finally released by nanohydrogel degraded intracellularly,
with consequent cancer cells apoptosis.

Figure 9. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cytotoxicity assays in LNCaP metastatic
prostate cancer cell line of: (a) Empty nanohydrogel vs. Ad[I/PPT-E1A]-loaded nanohydrogel after 3 days infection;
(b) Empty nanohydrogel vs. Ad[I/PPT-E1A]-loaded nanohydrogel after 5 days infection.

To further verify the ability of nanohydrogel for OV encapsulation, in vitro MTS cy-
totoxicity assay was carried out for ECHO-7 encapsulated nanohydrogels against HT29
colon cells. The ECHO-7 virus is an OV that has been approved and registered in Latvia
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since 2004 for cutaneous melanoma [56]. According to the recent case-report, it improved
colorectal cancer treatment in combination with other drugs [57]. However, limited data
about in vitro cytotoxicity of ECHO-7 against HT 29 colon cells are available in existing
researches, the cytolytic ability of pure ECHO-7 viruses were studied first. Our results
indicate that pure ECHO-7 virus induced an evident cytotoxic effect after 5 days of treat-
ments at a different range of MOIs from 0.25 to 1.5, and then caused the most efficient
cythopathic effect after 7 days of virus transduction (Figure 10a,b). In contrast, there was
no evident cytotoxicity observed on HT 29 colon cells after 5 days co-incubation for all
tested concentrations of ECHO-7-loaded nanohydrogels (Figure 10c). Cell viability was
reduced of around 50% by the treatment with 500, 1000, and 2000 µg/mL EHCO-7-loaded
nanohydrogel once the transduction phase was prolonged to 7 days (Figure 10d). Com-
pared with pure ECHO-7 virus replicating in 5 days, the efficacy of anti-cancer activity
was delayed approximately of two days. This observation can be possibly explained by
the fact that the internalization procedure and redox triggered degradation delayed the
virus replication, assembly and release [37,42]. Our study also proves again the successful
encapsulation and controlled release of OVs by this nanohydrogel delivery system.

Figure 10. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cytotoxicity
assays in HT29 colon cancer cell line of: (a) ECHO-7 after 5 days infection; (b). ECHO-7 after 7 days infection; (c) Empty
nanohydrogel vs. ECHO-7-loaded nanohydrogel after 5 days infection; (d) Empty nanohydrogel vs. ECHO-7-loaded
nanohydrogel after 7 days infection.

In conclusion, these results indicate that different OVs are stable at the W/O na-
noemulsion conditions used for the nanohydrogel formulation as proven by their cytolytic
ability, and that they can be successfully encapsulated into the nanohydrogel. Results also
suggest that the OV-loaded nanohydrogel can efficiently controlled release of the OV into
cancer cells, able to infect them, and induce cell lysis in specific cancer cell lines.
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4. Conclusions

In this work, a hyaluronic acid based redox-responsive nanohydrogel was developed
as delivery system for OVs. One DNA OV Ad[I/PPT-E1A] and one RNA OV ECHO-
7 were used as model viral drugs. The results indicated that these two different OVs
were both successfully encapsulated into the nanohydrogel, redox-stimulate released
into cells and finally killed the specific cancer cells. This study investigates that, besides
liposome and EVs, nanohydrogel can also be considered as a novel candidate to protect
and carry OVs to their target location, such as tumors, without being neutralized by the
immune system. Additionally, this W/O nanoemulsion method can provide insights in the
preparation of nanoparticle system for OVs. It takes advantages of water phase to protect
OVs during the cross-linking and inactive the un-encapsulated OVs via organic solvent,
thereby improve the purification procedure. These proof-of-principle results suggest
that this nanohydrogel delivery system has potential to be used as OV protector and
carrier in order to achieve systemic administration and site-specific targeting of oncolytic
immunovirotherapy. Further studies should be developed to determine the oncolytic
activity and also the anti-virus neutralization ability of the OV-loaded nanohydrogel,
in vivo. Furthermore, adding cancer targeting moieties or peptides/proteins on the surface
of the nanohydrogel is also significant to further develop this nanohydrogel into site-
specific intracellular delivery system.
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