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Abstract
Forecasts with the European Centre for Medium-Range Weather Forecasts’
numerical weather prediction model are evaluated using an extensive set of
observations from the Arctic Ocean 2018 expedition on the Swedish icebreaker
Oden. The atmospheric model (Cy45r1) is similar to that used for the ERA5
reanalysis (Cy41r2). The evaluation covers 1 month, with the icebreaker moored
to drifting sea ice near the North Pole; a total of 125 forecasts issued four times
per day were used. Standard surface observations and 6-hourly soundings were
assimilated to ensure that the initial model error is small. Model errors can be
divided into two groups. First, variables related to dynamics feature errors that
grow with forecast length; error spread also grows with time. Initial errors are
small, facilitating a robust evaluation of the second group; thermodynamic vari-
ables. These feature fast error growth for 6–12 hr, after which errors saturates;
error spread is roughly constant. Both surface and near-surface air temperatures
are too warm in the model. During the summer both are typically above zero
in spite of the ongoing melt; however, the warm bias increases as the surface
freezes. The warm bias is due to a too warm atmosphere; errors in surface sen-
sible heat flux transfer additional heat from the atmosphere to the surface. The
lower troposphere temperature error has a distinct vertical structure: a substan-
tial warm bias in the lowest few 100 m and a large cold bias around 1 km; this
structure features a significant diurnal cycle and is tightly coupled to errors in
the modelled clouds. Clouds appear too often and in a too deep layer of the lower
atmosphere; the lowest clouds essentially never break up. The largest error in
cloud presence is aligned with the largest cold bias at around 1 km.
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1 INTRODUCTION

Weather forecasting for the Arctic Ocean is becoming
increasingly important (Jung et al., 2016). Arctic warm-
ing is at least twice as large as the global average
warming (Hartfield et al., 2018; IPCC, 2019; Meredith
et al., 2019); this is labelled “Arctic Amplification” (Hol-
land and Bitz, 2003; Serreze and Francis, 2009; Serreze
and Barry, 2011). The most obvious manifestation is the
rapid reduction in sea ice extent (Onarheim et al., 2018),
thickness, and age (Ricker et al., 2017; Kwok, 2018). This
opens up the Arctic Ocean for increased shipping (Smith
and Stephenson, 2013), creating opportunities for resource
extraction and tourism, and hence economic growth as
well as environmental risks. It changes living conditions
for indigenous peoples, who may no longer be able to trust
traditional knowledge, with extreme weather occurring
more often as sea ice becomes more vulnerable (Holland
and Stroeve, 2011).

To effectively predict and manage these opportunities
and risks, skilful prediction systems tailored to the special
conditions of the Arctic are needed (e.g. Jung et al., 2016).
Numerical weather prediction (NWP) is also the basis for
reanalysis, a powerful and sophisticated by-product from
NWP that has become a major source of scientific under-
standing on Arctic climate. Reanalysis is a series of anal-
yses based on short-term weather predictions, repeatedly
constrained by observations in a consistent data assimila-
tion cycle (Parker, 2016). Their quality is limited by both
that of the numerical models used to progress information
forward in time, and by the quality and availability of the
observations constraining the analyses.

A proper evaluation of how faithfully models repro-
duce processes unique to the Arctic Ocean environment
requires detailed observations from the Arctic Ocean. The
only way these can be obtained in sufficient amounts is
from icebreaker-borne field campaigns. This form of eval-
uation has a long tradition for climate models (e.g. Tjern-
ström et al., 2005; 2008; Wyser et al., 2008; Birch et al., 2009;
de Boer et al., 2014; Wesslén et al., 2014; Sotiropoulou et al.,
2016a; Sedlar et al., 2020), while evaluation of global NWP
models’ evaluations often focus on comparing larger-scale
model output against the modelling system’s own analysis
(e.g. Bauer et al., 2016; Jung and Matsueda, 2016). Espe-
cially challenging is evaluating model vertical structure.
Although there is a wealth of satellite observations in polar
regions, where polar-satellite orbital tracks converge, this
does not fully compensate for the lack of in situ observa-
tions over the Arctic Ocean, creating a problem for NWP
(e.g. Naakka et al., 2019).

In this article we use detailed observations from
the Arctic Ocean 2018 (AO2018) expedition (Vüllers
et al., 2020) to evaluate operational forecasts by the

F I G U R E 1 Map of the ship’s track for the Arctic Ocean 2018
expedition with the whole expedition (light red) and the ice drift
(dark red, also enlarged in the insert). Colour shading shows ice
concentration (%) for 1 September 2018, from the University of
Bremen satellite sea ice product (Spreen et al., 2008) and red
triangles indicate position for day-long research stations in the
marginal ice zone

European Centre for Medium-Range Weather Forecasts
(ECMWF) Integrated Forecasting System (IFS). The IFS
version evaluated is very similar to the model that pow-
ers the most recent ECMWF reanalysis: ERA5 (Hersbach
et al., 2020). We therefore argue that weaknesses and
strengths identified from evaluating operational forecasts
will also appear in ERA5. This evaluation thus provides
useful information for further development of the IFS
and of new reanalyses, for users of the operational IFS
forecasts, and on potential systematic errors in ERA5.

2 OBSERVATIONS AND MODEL

2.1 The Arctic Ocean 2018 (AO2018)
observations

The AO2018 expedition took place on the Swedish ice-
breaker Oden, leaving from and returning to Longyear-
byen on 1 August and 21 September 2018, respectively
(Figure 1). We focus on the period when Oden was moored
to, and drifted with, the sea ice: 13 August through to 14
September. The sea-ice fraction was >90%, dominated by
kilometre-sized or smaller ice floes with a melt-pond frac-
tion of∼30% upon arrival. Most ponds were small and shal-
low and later froze over and eventually became covered
by snow. A comprehensive set of atmospheric observations
were performed onboard Oden throughout AO2018, with
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additional instruments deployed on the sea ice during the
drift. A complete description of the instruments, and the
meteorological conditions during the expeditions, can be
found in Vüllers et al. (2020). Here we use a subset of the
instruments, mostly deployed onboard.

The 6-hourly radiosoundings, launched at 0000, 0600,
1200, 1800 UTC, are a core component for the model eval-
uation. Data from these were shared globally in near-real
time over the Global Telecommunication System (GTS),
along with the routine SHIP observations performed by the
ship’s crew, and were hence assimilated in the forecast sys-
tem. For winds and surface fluxes we use measurements
from an eddy-covariance turbulence flux system installed
on a foremast at the bow of Oden, with instruments located
at ∼20 m above the sea surface. Wind measurements are
corrected for platform orientation and motion and for flow
distortion around the ship (Prytherch et al., 2015; 2017).
Eddy-covariance fluxes were estimated using 30 min aver-
ages. We also use observations from a weather station
located on the seventh deck ∼25 m above the sea sur-
face for basic meteorology (pressure, temperature, relative
humidity, wind speed and direction), as well as broadband
downwelling solar and infrared radiation and ice-surface
skin temperature.

For cloud observations we use a suite of remote-sensing
measurements, either in isolation or combined using the
Cloudnet algorithm (Illingworth et al., 2007). Co-located
with the weather station was a ceilometer measuring
cloud-base heights and a so-called present-weather sen-
sor for visibility and precipitation observations. A scan-
ning Doppler Ka-band cloud radar was located on the
roof of a container on Oden’s foredeck, while a scanning
micro-pulsed Doppler lidar was deployed on top of another
container located on the foredeck laboratory roof; a scan-
ning microwave radiometer was installed alongside the
lidar.

Periods with flow from the aft of the ship are prob-
lematic for onboard in situ observations located around
the front of the ship, because of turbulence and flow dis-
tortion from the ship’s superstructure. Fortunately, Oden
re-oriented into the wind during the ice drift to maintain
clean sampling for aerosol measurements. In situ observa-
tions were excluded for the ∼1% of the evaluation period
when the relative wind direction was adverse, with one
exception: the soundings. These had to be done from the
helipad often in the lee of the superstructure, affecting
some results below ∼50 m.

2.2 The NWP model

We use operational forecasts issued at the time from
the high-resolution deterministic (HRES) version of the

ECMWF IFS, Cy45r1. The atmospheric model has a hor-
izontal resolution of ∼9 km and 137 vertical levels, the
lowest at 10 m with 8 levels below ∼200 m and 20
below 1 km, and is coupled to a 0.25◦ resolution ocean
and sea-ice model. A detailed description of IFS can
be found at https://www.ecmwf.int/en/publications/ifs-
documentation. Vertical profiles of state variables and
clouds were extracted from native model levels every 6 hr,
while near-surface and some integrated bulk variables
were extracted at hourly resolution.

Although ERA5 uses an older version of IFS (C41r2),
and also has a lower horizontal resolution (∼31 km), the
model physics is very similar (see https://www.ecmwf.
int/en/forecasts/documentation-and-support/changes-
ecmwf-model). The largest systemic difference is that the
operational model (C45r1) is coupled to ocean and sea-ice
models, while sea-ice cover and sea-surface temperature
(SST) are prescribed from observations in ERA5; however,
the sea-ice temperature is calculated in the atmospheric
model in both. Given the similarities, it is reasonable to
assume that ERA5 errors have similar characteristics to
the operational model.

2.3 Error analysis

Given the stochastic nature of the atmosphere, an inher-
ent limitation is the length of the evaluation period and
the number of forecasts evaluated. We use the first 3 days
of forecasts initialized four times per day (0000, 0600, 1200
and 1800 UTC) from 0000 UTC 12 August to 0000 UTC
12 September; a total of 125 forecasts for the period when
Oden was almost stationary. While the ice drift started
almost 2 days later, Oden remained stationary at the North
Pole on 12 August and the ice drift started nearby (within
∼30 km). The last forecast extends to the end of the ice drift
late on 14 September. This period spans the end of the melt
and the initial freeze of the surface (Vüllers et al., 2020).

To denote time, we use decimal Day of the Year (DoY),
defined with DoY= 1.0 at 0000 UTC on 1 January. We used
data from the model grid point closest to Oden’s location at
the forecast start, ignoring the drift of the icebreaker with
the ice, which may move it into neighbouring grid cells
during a forecast. The median velocity during the ice drift
was ∼0.1 m⋅s−1; Oden moved on average ∼25 km during a
forecast. Errors are defined as model minus observations,
and unless otherwise stated we use the median error.

Time-series observations are averaged over 10 min cen-
tred on the model times, except for the turbulent fluxes,
already averaged by definition; we use the 30 min aver-
aged flux closest to the model time. For cloud-base heights
we use the Vaisala ceilometer’s “sky-condition” algorithm,
incorporating data from 30 min with larger weight on the

https://www.ecmwf.int/en/publications/ifs-documentation
https://www.ecmwf.int/en/publications/ifs-documentation
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
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last 10 min (e.g. Šálek and Szabó-Takács, 2019). For sound-
ings we use actual launch time, disregarding the time it
takes for the balloon to ascend through the troposphere
and its horizontal displacement.

To make use of the higher temporal model resolu-
tion for near-surface temperature and wind, observations
are first interpolated to the respective 2 and 10 m stan-
dard heights using surface-layer theory (e.g. Foken, 2006).
The opposite approach, interpolating model profile data
to instrument heights, does not change the main results.
Turbulent fluxes and wind direction are assumed height
invariant in the surface layer. For vertical profiles, it is
not obvious how parametrizations and numerical meth-
ods affect the effective model resolution and therefore
unclear how to average observations to fit a model grid.
Once averaged, it becomes impossible to explore more
detail. Therefore, we interpolate model variables linearly
to a high-resolution observation grid using height above
the surface, rather than averaging observations over model
grid boxes in pressure or hybrid levels. Since the obser-
vations have higher vertical resolution than the model,
error profiles will feature many details that come only from
the observations. With this approach, however, error pro-
files can still be averaged to any scale needed and linear
interpolation does not add any variability.

The evaluation of modelled clouds and cloud-layer
characteristics is complicated for many reasons. There-
fore, we do not compare cloud details between model and
observations directly; this is only done for cloud pres-
ence and vertically integrated properties. The multi-sensor
Cloudnet algorithm is vertically limited by the lowest
radar range gate, 157 m. However, cloud bases below this
were detected by the ceilometer about half the time when
clouds were indicated; fog (visibility <1 km) was indi-
cated ∼25% of all time. Hence we chose not to use the
Cloudnet for cloud geometry. Vüllers et al. (2020) used the
less frequent radar range-height indicator (RHI) scans to
cover the lowest layer, but we instead adopted a simpler
method.

Cloud-radar reflectivity was used to indicate cloud lay-
ers, except for the lowest layer where we used the ceilome-
ter and visibility for cloud-base height, to bridge the gap
between the surface and the lowest radar height; this also
avoids misinterpreting precipitation as low clouds. If visi-
bility was below 1 km, the lowest cloud-base height was set
to zero. If the lowest cloud-base height was below 157 m
and the first cloud-radar height indicated cloud presence,
clouds were assumed to extend to the lowest cloud-top
height from radar, else lowest cloud-top height was set to
150 m. We then proceeded to search the cloud-radar reflec-
tivity profile upward for the next cloud layers, continuing
until reaching the highest radar range gate. Since the radar
cannot distinguish precipitation from clouds, multilayered

clouds may become underrepresented; precipitation
falling between two cloud layers will appear as one cloud.

In the model data we used non-zero specific
cloud-water content to indicate clouds, similar to
cloud-radar echo’s. However, the model quite often has
very small cloud-water content, especially at low altitude;
hence, we threshold the model data. After subjective
inspection of the modelled cloud-water statistics (not
shown) we somewhat arbitrarily consider a grid point
cloudy when cloud water exceeded 0.001 (0.0001) g⋅kg−1

below 1 km (above 4 km), with linear interpolation in
between.

3 RESULTS

The development of some state variables are illustrated
in Figures 2 and 3. The model data were constructed
merging the second day of all forecasts initiated at
0000 UTC. The model reproduces the variability, tim-
ing and magnitude of high wind-speed events realis-
tically (Figure 2a,b) and captures the gradual cooling
from late summer to early autumn (Figure 2c,d), mani-
fested by the lowering of isotherms. The model also cap-
tures some higher-frequency temperature variations, for
example cooling events around DoY ∼230 and 245 and the
warming around DoY∼256. Similarly, deep high-humidity
events associated with weather systems and deep frontal
clouds also agree well with observations (Figure 2e,f); see
for example around DoY 233 and 240, and several systems
that appear during DoY 245–253.

But there are also differences, especially in humid-
ity. The model’s moist layer closest to the surface, with
RHi >90%, is 1–2 km thick in between passing weather
systems, while the observations show several extended
periods when this layer is considerably thinner, ∼500 m or
less. The model’s deep moist columns appear smeared in
time and some are consolidated into longer periods of high
humidity. Variability in the observations is not unexpect-
edly larger; compare for example the period DoY 243–252.
This is also seen in temperature, for example the warm
pulse around DoY ∼256 is almost a day longer in IFS than
in the observations. The strongest winds are somewhat
too weak in the model, especially for wind-speed maxima
below 4 km; see for example the episodes DoY 242–246 and
around DoY 256.

The thicker modelled moist layer has consequences
for low clouds. The cloud-radar reflectivity and ceilome-
ter cloud base (Figure 3a) display periods with only thin
low clouds or even cloud-free conditions. One such period
appears early in the ice drift, before DoY 230; the cloud
radar and ceilometer indicate only intermittent thin low
clouds with brief clear periods, while the model has
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F I G U R E 2 Time–height cross-sections of (a,b) scalar wind speed (m⋅s−1), (c,d) temperature (◦C), and (e,f) relative humidity w.r.t. ice
(%) for the AO2018 ice drift period, with (a,c,e) from observations (radiosoundings) and (b,d,f) from IFS (see the text for a discussion). Contours
are also shown: for wind speed at 5, 10 and 20 m⋅s−1; for temperature at 0, −5, −10 and −30 ◦C; and for relative humidity at 80 and 100%

solid cloud cover through the lowest 1–2 km. This hap-
pens again around DoY 244 and for a period starting at
DoY ∼253. The timing of deeper clouds associated with
synoptic-scale weather systems are captured by the model;
however, the amounts of the higher clouds appear some-
what underestimated.

Several interesting things can be seen in Figure 4,
showing observed air temperature at ∼20 m above the sur-
face and overlapping 2 m temperature forecasts from all
125 three-day forecasts. Prior to the freeze onset, estimated
to around DoY 240 (Vüllers et al., 2020), the surface is
melting and the surface temperature cannot respond to the

surplus in the energy budget due to the latent heat trans-
fer from the phase change and cannot exceed the melting
point of fresh water, 0 ◦C; hence the air temperature is
also constrained. However, the model’s air temperature is
persistently but unphysically larger than zero, by ∼0.5 ◦C.

This late in the melt season, periods when observed air
temperature suddenly drops are frequently observed (e.g.
Tjernström, 2005; Tjernström et al., 2012). This happens
when the low clouds become tenuous or dissipate, as the
loss of net long-wave radiation overwhelms the gain of net
solar radiation in the surface energy budget and the surface
temperature falls (e.g. Sedlar et al., 2011). One such period
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F I G U R E 3 Time–height cross-sections of clouds showing (a)
shading of 1 hr averaged cloud-radar reflectivity (dBz) with the
lowest ceilometer cloud-base height as black markers, and (b)
model cloud water mixing ratio (liquid plus ice, g⋅kg−1) from IFS.
The model data were constructed merging the second day of all
forecasts initiated at 0000 UTC

occurs during DoY 227–230; in the model low clouds per-
sist and hence it misses this entirely. Interestingly, how-
ever, the initial state of each forecast here is closer to
reality, likely because of the assimilated observations from
Oden, but in less than a day it reverts to the model’s
unphysical >0 ◦C state, from which it hardly deviates. As
the melt ends the structure changes and the model now
follows the observed trends and variability quite faithfully,
although with an even larger warm bias.

A picture emerges from Figures 2–4: the model has
a problem with moisture, clouds and temperatures, espe-
cially in the lower atmosphere. In the following we will
explore this in detail.

3.1 Near-surface variables

Here we explore forecast errors for a selection of
near-surface variables as a function of forecast length

F I G U R E 4 Time series of near-surface temperature (◦C) as
measured (blue solid) on Oden at ∼20 m above the surface and (red
dashed) from the IFS model. The model data are from overlapping
three-day forecasts initiated every 6 hr. The dashed black vertical
line indicates the estimated onset of the freeze-up from Vüllers
et al. (2020)

(Figure 5), showing the full error distribution (colour
shading) along with the median and the mean errors; the
latter is enclosed by the ±0.1% significance interval from
a two-sided Student’s t-test. If the error is normally dis-
tributed and this interval does not enclose zero, the null
hypothesis, that the error is not different from zero, is
rejected; there is <0.1% likelihood that the error is due to
insufficient sampling.

The near-surface temperature warm bias is obvious
(Figure 5a). The median error in the 2 m temperature is
slightly larger than 1 ◦C and changes very little with fore-
cast length. The error is strongly skewed; the peak of the
error distribution appears at slightly below 1 ◦C, while
the mean error is about 0.5 ◦C larger than the median.
Although the skewness renders the t-test inapplicable, it
is clear this is a statistically significant systematic error.
The skin-surface temperature error displays a similar pat-
tern (Figure 5f). The error distribution appears tighter but
more skewed, and the median error is slightly smaller. The
near-surface specific moisture is almost entirely controlled
by the surface temperature; unsurprisingly it is also biased
positive in the model (Figure 5b), and while also skewed
it is closer to a normal distribution than the temperature
errors. For temperature and moisture, the error spread is
roughly constant in time through the forecast, except for
during the first 6–12 hr.

Simulating winds accurately is difficult (e.g. Sed-
lar et al., 2020) and wind forecasts are often consid-
ered more uncertain than those for temperature (e.g.
Haiden et al., 2019), however, the 10 m scalar wind-speed
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F I G U R E 5 Distribution of model forecast error, defined as model minus observation, as a function of forecast length for the
near-surface variables: (a) temperature (◦C), (b) specific water vapour (g⋅kg−1), (c) scalar wind speed (m⋅s−1), (d) wind direction (◦), (e)
mean-sea-level pressure (hPa), and (f) skin-surface temperature (◦C). Each panel shows the relative distribution of the forecast error (colour
shading), the median error (red dashed), and the mean error (thin solid black), along with the Student’s t-test ±1-percentile confidence
intervals in grey shading

(Figure 5c) reveals only a modest error, growing with fore-
cast length to ∼0.5 m⋅s−1 on the third day; the spread of the
wind-speed error increases with forecast length. This error
is close to a normal distribution and is statistically signif-
icant only after the first forecast day. The wind direction
(Figure 5d) has a significant error of about 10◦, consistent
with a too small boundary-layer wind turning (Lindvall

and Svensson, 2019). The spread of this error is±20◦, grow-
ing marginally with forecast length. The high quality of the
wind forecasts is consistent with anecdotal experience (cf.
e.g. Tjernström et al., 2019).

The median sea-level pressure error (Figure 5e) is
somewhat surprising: zero at forecast start, as expected
due to data assimilation, then growing almost linearly
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F I G U R E 6 As Figure 5 but for some surface energy fluxes, showing (a) friction velocity (m⋅s−1), (b) net long-wave radiation (W⋅m−2),
turbulent (c) sensible and (d) latent heat flux (W⋅m−2) and downwelling (e) long-wave radiation and (f) short-wave radiation (W⋅m−2)

in time becoming significant after ∼12 hr, and reaching
∼1.5 hPa at the end of the third day. Since the ice moves
with the wind, which is related to the pressure gradient,
the ice drift may contribute systematically to the pressure
error. However, even moving perpendicular for 3 days with
a speed of 0.1 m⋅s−1 toward lower pressure across a gra-
dient corresponding to a wind of 10 m⋅s−1 would only
cause an observed pressure drop by less than 0.5 hPa.

An analysis of average pan-Arctic IFS surface pressure
errors (not shown) reveals a previously unknown positive
summer bias, with interannually varying magnitude and
spatial structure. For late summer 2018 it has a widespread
maximum near the Pole, larger than for a few years before
and after. The reason is not understood; however, Renfrew
et al. (2019) suggested that surface pressure is sensitive to
surface momentum exchange and found that changing the
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surface drag parametrization to more realistically depend
on sea-ice concentration can cause pressure differences of
this magnitude.

Figure 6 similarly explores model performance for
some of the surface-energy budget terms. The first hourly
value is always missing; parametrized variables are only
calculated during the forecast and are undefined in the
analysis. Unlike the previously inspected near-surface
state variables, these errors seem to all have a distinct
6-hourly periodicity of unknown origin. Some of this is
an artefact from a combination of rare but large and con-
sistent errors and the evaluation procedure; their origins
are not understood at present. Appearing consistently at
the same actual time in all consecutive forecasts initiated
6 hr apart, one single event reappears 12 times in the error
analysis: once per day for three forecasted days and four
initializations per day. When evaluating errors as a func-
tion of forecast length, the same occasion will appear as a
6-hourly periodicity. However, even after removing these
few very large errors, some 6 hr periodicity remains; this
will not be explored further in this study.

Consistent with the wind speed error, friction veloc-
ity (Figure 6a) is slightly too large initially and grows with
forecast length; the error spread also increases with fore-
cast length. This is very likely due to the wind-speed error;
roughness-length may also play a role, here coming from
the sea-ice model. Turbulent sensible heat fluxes are too
low on average by about 8–9 W⋅m−2 (Figure 6c). Both the
error and its spread are nearly constant. This is due to a
combination of too small upward and too large downward
fluxes; hence, too much energy is transferred from the
atmosphere to the surface. The turbulent latent heat flux
is slightly too large; this error is not significant (Figure 6d).

The error in net surface long-wave radiation is not sig-
nificantly different from zero (Figure 6b); however, incom-
ing long-wave radiation from the too warm model atmo-
sphere is, as expected, too large by 5 W⋅m−2 (Figure 6e).
Incoming solar radiation is too small by ∼5 W⋅m−2

(Figure 6f); both these errors are significant. Unfortu-
nately, it is impossible to observe net surface solar radia-
tion from a ship. Although there were albedo observations
from the ice, these are for a shorter time period and are
local, not representing the areal-average albedo a model
needs.

From Figure 5 it is clear that both atmosphere and sur-
face skin temperatures are too warm. Closer inspection
shows that the median temperature bias in the atmosphere
is larger than that of the surface by ∼0.2 K during days
two and three of the forecast; however, it starts out oppo-
site but changes sign during the first ∼12 hr. Hence the
net long-wave forcing error on average remains close to
zero while the deficit in incoming short-wave solar radi-
ation is smaller than the excess energy transferred to the

surface by the turbulent heat flux. This indicates that the
surface is too warm because of energy transferred to it
from the atmosphere, and not the other way around. The
warm-biased air temperatures therefore do not appear to
rest with the surface energy budget, but with some other
problem causing the lower atmosphere to be too warm. In
this perspective, the unphysically warm (>0 ◦C) surface
temperature during the melt season is a noticeable but less
important problem, while the too warm lower atmosphere
is concerning.

3.2 Exploring the vertical structure
of errors

In this section we use the 6-hourly soundings to explore
the vertical structure of some of the model errors discussed
in the previous section. Figure 7a shows a distinct verti-
cal structure in the median temperature error as a function
of forecast time. Below 200 m the model is up to ∼1 ◦C
too warm, but around 300–400 m the bias changes sign
and between 500 m and 2 km the model is too cold, at
∼1 km by >1 ◦C. Initially, the model is close to observa-
tions, again likely due to assimilating the local soundings,
but the low-level warm bias establishes within <6 hr and
variations after this appear random. The cold bias cen-
tred around 1 km develops more slowly; however, most
of the error is established after 24 hr, although the depth
of the cold-bias layer continues to increase. Above 3 km
the error again changes sign and the model is slightly too
warm up to∼10 km; this error grows more slowly, reaching
∼0.5 ◦C at 4–5 km on day three. In the uppermost tropo-
sphere/lower stratosphere there is an increasing cold bias.
The specific humidity error (Figure 7b) is consistent with
the temperature error: too moist in the lowest layer and
too dry between 500 m and 3 km; aloft, specific humid-
ity becomes so low that defining an absolute bias becomes
pointless.

The wind-speed error (Figure 7c) below 100 m is much
larger (>2 m⋅s−1) than the near-surface wind-speed error
in Figure 5c. A large fraction of this is very likely due
to sondes being caught in the lower-speed wake behind
the superstructure of the ship. Above 50–100 m and up to
∼2 km the wind speed bias is close to zero initially, increas-
ing with forecast time reaching∼0.5 m⋅s−1, consistent with
Figure 5c. Above ∼3 km the bias is again positive, reach-
ing 1–1.5 m⋅s−1 around 5 and 9 km in separate maxima.
Wind direction errors are small below 5 km during the first
1.5 days (Figure 7d), smaller than the 10◦ bias in Figure 5d;
then they increase but stay at ∼10◦. Note that the winds
from the soundings away from the surface are independent
from measurements on board, affected by the ship’s flow
distortion only in the lowest 50–100 m.
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F I G U R E 7 Time–height (hr–km) contour plots of median forecast errors using all forecasts during the AO2018 ice drift: (a)
temperature (◦C), (b) specific water vapour (g⋅kg−1), (c) scalar wind speed (m⋅s−1), (d) wind direction (◦). Red, white and blue isolines outline
positive, negative and zero errors, respectively, in (a) at 0.5 ◦C, in (b) at 0.1 g⋅kg−1, in (c) at 1 m⋅s−1 and in (d) at 5◦ intervals. Note the
logarithmic vertical scale

Combining moisture and temperature, the lowest-layer
bias in equivalent potential temperature (Figure 8a)
reaches ∼2 ◦C, while the lower free troposphere cold
bias around 1 km reaches −2 ◦C at day three. This sig-
nificantly changes the moist-static stability in the lower
half of the atmosphere and should have consequences
for parametrized convection, especially mid-level convec-
tion not initiated at the surface. For relative humidity
(Figure 8b), temperature and moisture errors compensate
for a<±3% error, positive below 1 km and negative around
3–5 km; these errors are within the measurement accuracy.

3.3 Errors over different time-scales

Figure 4 indicates that the near-surface temperature error
is larger after the onset of the freeze-up. Figure 9 shows
the vertical structure of the temperature error, similar to

Figure 7a, separating forecasts into before (Figure 9a) and
after (Figure 9b) DoY 240, spanning the seasonal change
with 47 and 53% of the data before and after, respectively.
The vertical structure is similar but with larger variabil-
ity due to the smaller sample. However, the magnitude
of the error is substantially larger after the freeze-up in
all three layers; the lowest-troposphere error goes from
<∼1 to >1.5 ◦C, while the thickness of the too warm layer
shrinks slightly from ∼500 to 300 m. The lower free tro-
posphere cold bias goes from −1 to −1.5 ◦C, while the
mid-troposphere error changes less. Hence, the warm bias
in the lowest layer is weaker but deeper during the end
of the melt season and stronger but more shallow as the
freeze-up has started.

Analysing errors as a function of forecast length using
forecasts initiated at different times during each day effec-
tively averages over local time and hides any poten-
tial diurnal signal. In Figure 10 this is circumvented by
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F I G U R E 8 Same as Figure 7 but for (a) equivalent potential
temperature (◦C) and (b) relative humidity (%). Red, white and blue
isolines outline positive, negative and zero errors, respectively, in
(a) at 0.5 ◦C and in (b) at 2% intervals

evaluating forecasts initiated at different times of the day
separately; each evaluation now uses only a quarter of the
forecasts. A clear near-diurnal cycle now becomes evident
in the temperature error. In forecasts initiated at 0000 UTC
(Figure 10a), the errors are at maximum at 24, 48 and 72 hr.
In forecasts initiated at 1200 UTC (Figure 10c) the same
pattern emerges, only shifted 12 hrs earlier in the forecast;
at 12, 36 and 60 hr into the forecast, the same local time
as for the 0000 UTC forecasts. The same pattern appears
in the forecasts initiated at 0600 and 1800 UTC, shifted 6
and 18 hr compared to the 0000 UTC forecast. There also
seems to be a corresponding cycle aloft, in the 0.5-to-2 km
cold-bias layer. The error magnitudes are in phase but the
signs are out of phase, also affecting lower troposphere
static stability.

The timing of the diurnal peaks in Figure 10 are some-
what smeared and the cycle does not always appear exactly
at 24 hr. However, first, early in the forecast any diurnal
cycle is muted by the initial error growth. Second, there

F I G U R E 9 Same as Figure 7 but for temperature (◦C) (a)
before and (b) after DoY 240 when the freeze-up period is assumed
to have begun

is a local timing difference relative to UTC across the ice
drift. While Oden was drifting, the longitude shifted and
therefore the true local time (LT) in each forecast deviated
from the mean LT over all forecasts by as much as ±2 hr;
on average LT was about 2 hr ahead of UTC. Finally, with a
6 hr time resolution in both model output and soundings,
smearing of a diurnal cycle is expected.

Combining both time aspects discussed above,
Figure 11 show the same as Figure 9 but only for the
forecast initialized at 0000 UTC. Note that the number of
forecasts in each evaluation is now down to only about
15. There appears to be a weak diurnal cycle of the error
during the end of the melt season (Figure 11a), but a
much more pronounced cycle appears after the freeze.
While the median amplitude of the temperature error
cycle is ±∼0.3 ◦C for the whole ice drift, it doubles to
±∼0.6 ◦C during the freeze-up. To explore this further, we
use near-surface temperature forecasts but calculate the
median error separately for forecasts initiated at different
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F I G U R E 10 Same as Figure 7a but separately for forecasts initialized at (a) 0000, (b) 0600, (c) 1200, and (d) 1800 UTC

times. We then plot the results shifted in time by 6 hr, to
correspond to the same LT regardless of when the forecast
was started. Figure 12a shows the end of the melt and
Figure 12b the freeze-up. During the melt, the forecasts
errors do have distinct peaks at 24 hr intervals: at 12, 36,
60 and 84 hr, corresponding to early afternoon. However,
variations are not sinusoidal; instead they have a strange
spike-like appearance, exceeding a baseline by ∼0.4–0.5
◦C every 24 hr. During the freeze-up, errors grow larger
and noisier. It appears, however, that the diurnal cycle
in the temperature errors has grown to an amplitude of
±∼0.8 ◦C, consistent with the results from the soundings,
but the timing of the maxima is different from during the
melt, at 24, 48 and 72 hr after 0000 UTC, which would be
in the early morning.

The diurnal cycle in the solar forcing in the summer
Arctic is weak and therefore we expect only a weak diur-
nal cycle in near-surface temperature from observations
(Tjernström, 2007). However, exploring this in the pres-
ence of larger synoptic or sub-synoptic variability is diffi-
cult. A diurnal cycle in the error can be due to the presence
of one in the model, absent or very weak in reality – or the

opposite. There can also be a diurnal cycle in both, but too
strong or out of phase in the model. We analysed the tem-
perature cycle in the observations by first adjusting obser-
vations from UTC to LT, then resampling and high-pass
filtering to retain variability corresponding to diurnal
and shorter fluctuations. When averaging these accord-
ing to time of the day (not shown) we do find a median
near-surface temperature diurnal anomaly for the whole
ice drift with a weak,<±0.05 ◦C amplitude, consistent with
Tjernström (2007). When exploring the melt and freeze
periods separately, the cycles are out of phase and stronger
in both, still only <±0.1 ◦C. The maximum temperature
during the melt (freeze) was at 0200 LT (1700–2000 LT)
while the minimum was at 1300 LT (0100 and 1100 LT).
Hence, the diurnal cycle in the observations is much
smaller and out of phase with that in the model error.

The presence of a diurnal cycle in the error for other
variables is more difficult to detect. An obvious source of a
diurnal cycle is the radiative forcing. Although noisy, there
seems to be a signal in the error of incoming short-wave
radiation (Figure 13a), peaking at −8 W⋅m−2 around 9,
33, 57 and 81 hr, relaxing to near-zero at a 12 hr lag. This
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F I G U R E 11 Same as Figure 7a but only for the forecast
initialized at 0000 UTC and split between (a) before and (b) after
DoY 240, when the freeze-up period is assumed to have begun

is likely caused by an error in the cloud attenuation. The
error in net long-wave radiation (Figure 13b) is also noisy
but also features a diurnal cycle, in sync with that for
incoming short-wave radiation. Assuming that any error in
surface albedo has no diurnal component, there is hence
a diurnal variability in surface radiative forcing error with
maximum forcing around 1900 LT and minimum around
0700 LT. Using the median longitude of the ice drift, this is
consistent with a maximum lower-layer temperature error
6 hr after the forcing maximum, close to the observed
periodicity in Figure 10.

3.4 Errors in the representation
of clouds

The vertically integrated cloud condensate, the cloud liq-
uid and ice water paths (LWP and IWP), were observed
using microwave radiometry and cloud radar reflectivity,
respectively; the uncertainties are typically ±0.02 kg⋅m−2

F I G U R E 12 Median near-surface air-temperature error (◦C)
calculated separately for forecasts initialized at different times of
the day (hr UTC), plotted against forecast time (hr) relative to 0000
UTC for the first day, split between (a) before and (b) after DoY 240,
when the freeze-up period is assumed to have begun. The dashed
line is the mean error of all forecasts over the overlapping period

for LWP (Westwater et al., 2001) and a factor of two for IWP
(Shupe et al., 2005). Displaying the error distribution for
these two bulk cloud variables (Figure 14) suggests that the
model has too much cloud water, both liquid and ice. The
overestimation is substantial; the median errors are ∼0.04
and∼ 0.008 kg⋅m−2 in LWP and IWP, respectively; with
median values at 0.11 and 0.015 kg⋅m−2 the overestimation
is 36 and 53%, respectively.

To evaluate the vertical structure of cloud errors we
defined a “cloudiness error” parameter. Using cloud radar
reflectivity to indicate cloud presence, we set this param-
eter to zero everywhere the model and the radar agree
on absence or presence of clouds. If the model indicates
clouds and the radar does not it is set to unity, while if there
is a cloud in the radar but not in the model, it is set to minus
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F I G U R E 13 Same as Figure 12 but for forecast errors for the
whole ice drift of (a) downwelling surface short-wave and (b) net
long-wave radiation (W⋅m−2)

unity. This method does not indicate any magnitude of the
error; however, when averaged over time and over many
forecasts it still contains some quantitative information;
larger than zero averages can be interpreted as too much
cloud and vice versa. Figure 15 indicates a substantial over-
estimation of clouds below 3 km, with a maximum in
the 400–800 m layer, larger initially but gradually improv-
ing somewhat with forecast time. This is consistent with
the discussion of Figures 2f and 3, where IFS often had a
too thick and persistent cloud layer. In a shallow layer of
growing depth close to the surface, conditions gradually
improve, while in the 1–3 km layer, the mean error remains
essentially unchanged through forecasts. Farther aloft, the
results indicate a lack of clouds initially that grows worse
with forecast time.

Figure 16 shows profiles of cloud liquid- and ice-water
content averaged across the whole ice drift excluding all
clear values; the observations use the Cloudnet retrieval
(Achtert et al., 2020; Vüllers et al., 2020). The magnitudes

of cloud water in the model when clouds appear are rea-
sonable, compared with the retrieved values, with a slight
overestimation of cloud ice below ∼2 km and an even
smaller underestimation around 4–7 km. The highest
values of liquid water in the lower troposphere around
0.1 g⋅kg−1 are similar in the IFS and the retrieval. The
main difference is an overestimation of cloud liquid in the
1–3 km layer: the upper fraction of the thick layer where
clouds appear too often in Figure 15. The cloud phase par-
titioning in IFS is also in agreement with the observations,
although with much more layering in the observations.
Hence clouds in IFS are at least on average realistic; they
just appear too often below 3 km, consistent with the too
large LWP.

We also analyse the cloud layering in Figures 17 and
18. Directly comparing the geometry of individual cloud
layers is very difficult because of differences in how they
are defined in observations and in the model; what is two
cloud layers in one could in the other be a single layer
without there being any real difference in the physics.
Therefore, we compare the separate cloud-layer statistics
for observations and the model. The number of cloud lay-
ers are quite similar between the observations and the
model (Figure 17). Single-layer clouds dominate in both,
at 36 and 39%, respectively, with decreasing occurrence for
multiple layers, for two-layer systems 25 and 35%, respec-
tively. There are more cases with >3 cloud layers in the
observations than in the model, expected from the higher
cloud-radar vertical resolution. An important difference is
for clear conditions. This happens only 3% of the time in
the observations, but the model has no cases without at
least one cloud layer, consistent with Figure 3b. The lack
of cloud-free cases in the model forecast is also consistent
with anecdotal experience (e.g. Tjernström et al., 2019).

Yet another perspective on this is offered in Figure 18,
showing the statistics for the lowest cloud-base height and
the thickness for the three lowest cloud layers, counting
from below. All results are scaled to the total cloud occur-
rence, hence, cumulative probability for a lowest cloud
layer tends to 100%, while for the second and third layers
it is proportional to the occurrence of more cloud layers.
In the observations, the lowest cloud base is most often
below 200 m (Figure 18a); finding a lowest cloud base
>400 m is an order of magnitude, and >2 km two orders
of magnitude, less likely. This is in line with previous late
summer/early autumn central Arctic studies (e.g. Tjern-
ström, 2005; 2007; Tjernström et al., 2012; Sotiropoulou
et al., 2016b). In the model (Figure 18b), a lowest cloud
base below 200 m dominates even more than in the obser-
vations; there are almost no cases with a lowest cloud base
above 300 m. When a second cloud layer is observed, this
often appears around ∼200 m indicating that boundary
layer clouds were often thin and multi-layered; however, a
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F I G U R E 14 Same as Figure 5 but for (a) cloud liquid water path and (b) cloud ice path, both in kg⋅m−2

F I G U R E 15 Time–height cross-section of cloud occurrence
agreement as a function of forecast length (hr) and altitude (km),
see the text for a discussion. The red (blue) solid lines are for every
0.1 (−0.1) while the white line indicates zero error

higher second layer is about equally likely to appear over
a broad range 1–8 km. If a third layer is present, it almost
always appears above 1 km. Second cloud layers in the
model most often happens around 1 km, although there is
also some probability for a second cloud base at ∼100 m,
not present in the observations; third layers are too few for
stable statistics.

Cloud thickness probability distribution in observa-
tions (Figure 18c) is very similar for all the first three
cloud layers, peaking at <300 m; deep clouds, thicker than
4 km, are associated with single-layer frontal clouds and
hence appear less often but mostly as the first cloud layer.
While the model has a lowest absolute cloud-thickness
peak at ∼100 m, it has a broad secondary but dominat-
ing peak at 0.5–2 km (Figure 18d); the first layer is hence
quite often much thicker in the model than observed. Also,

second cloud layers are often thicker than in observations,
∼0.2–1 km. In general, clouds in the model are thicker than
in observations.

4 DISCUSSION

Many of the errors diagnosed in this study are system-
atic, with a very rapid growth over the first 6–12 hr, then
becoming quasi-constant; the error spread is also roughly
constant. It thus appears that, at least for the thermody-
namics, the inherent model climate is different from obser-
vations. However, for dynamic variables, such as wind
or pressure, assimilation keeps the model true at initial-
ization. It is important to realize that the well-behaved
dynamics allows the closer study of the thermodynamics.
Hence, assimilation of observations later used for model
evaluation is an advantage. Without this, the initial state
of the model might have been sufficiently far off from real-
ity that it would become difficult to separate random and
systematic errors.

Both the reanalysis and the forecast versions of IFS
have previously been found to have a near-surface warm
bias (e.g. Jakobson et al., 2012; de Boer et al., 2014;
Sotiropoulou et al., 2016a); in particular, the above
melting-point near-surface temperatures during summer
melt was pointed out by Sotiropoulou et al. (2016a) and
Wesslén et al. (2014). This is also where this study started
(Figure 4), assuming that this is due to errors in either
the coupling to the sea ice or in the surface energy bud-
get. That also the surface skin temperature is above the
melting point, not discussed by previous studies, seems to
indicate a problem with the energy budget. Our results,
however, indicate that even with too little solar radiation
reaching the surface there is still an excessive turbulent
sensible heat flux from the atmosphere to the surface.



TJERNSTRÖM et al. 1293

F I G U R E 16 Profiles of mean
modelled and observed (a) liquid and
ice cloud water (g⋅kg−1) and (b) ice to
total cloud water ratio for the AO2018
ice drift period

F I G U R E 17 Histogram showing the frequency of occurrence for the number of cloud layers in (a) observations and (b) model

We therefore conclude that, while the unphysical >0 ◦C
surface temperature during melt may be a sign of a cou-
pling problem, the only way this error can be sustained
over time is if it has its roots in a too warm model atmo-
sphere, incompletely held back by the surface during the
melt; this is consistent with larger errors when the surface
temperature is well below freezing.

Both Jakobson et al. (2012) and Wesslén et al. (2014)
pointed out that the warm bias was not confined to near
the surface but occurred over a layer. We find that the
two most striking errors, in temperature and cloudiness,
have consistent and partly coherent vertical structure. The

average error profiles of cloudiness (Figure 15) and tem-
perature (Figure 7a) are almost mirror images (Figure 19).
The largest cold bias appears between 0.6 and 1.4 km,
while the largest overestimation of cloudiness appears in
the 0.4 to 1.2 km layer. Further exploring this relation-
ship, Figure 20 shows the temperature error distribution
sampled according to cloud liquid water content; cloud
water typically increases toward the cloud top. For low
cloud liquid water content temperature errors are dis-
tributed roughly around zero, but for increasing cloud liq-
uid water the error gradually shifts toward negative values.
For cloud liquid water content >∼0.2 g⋅kg−1, the median
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F I G U R E 18 Statistics of cloud boundaries showing the relative probability (%) of (a,b) the cloud base and (c,d) thickness of the three
lowest cloud layers; (a,c) are observations, (b,d) are from the model. Note the logarithmic scales

temperature error is <−3 ◦C. For the largest cloud liquid
water values, the distribution becomes increasingly com-
plicated, partly because of sampling, but at ∼0.4 g⋅kg−1

the median error is around −5 ◦C. A link between cloudi-
ness errors and the lower troposphere cold bias maximum
seems obvious. Attributing one error to the other is more
difficult; are clouds overestimated because of the cold bias
or is the cold bias due to cloudiness errors?

If the maximum cold bias was located at the top of
a deep well-mixed boundary layer, both it and the excess
cloudiness could be a consequence of too vigorous tur-
bulent mixing. The thermodynamic state near the sur-
face is governed by the surface energy budget, while
temperature and cloudiness at the top of a well-mixed
boundary layer is given by adiabatic processes, enforced
by mixing. With a too deep well-mixed layer, cloud-top
cooling would provide positive feedback; more clouds
lead to additional cloud-top cooling, increased nega-
tive buoyancy, cloud-overturning turbulence and more

mixing that maintains or deepens the well-mixed layer
and hence leads to more cloud condensation. However,
analysing surface-based mixed-layer depths in the model
indicates that the median difference in altitude between
the cold-bias maximum and corresponding mixed-layer
tops is ∼700 m, although <200 m for ∼25% of the time (not
shown). Hence, the top of the clouds is more often than not
decoupled from the surface. Therefore, excessive vertical
mixing cannot be the cause of the cold bias.

At this point it is useful to discuss the atmospheric
boundary layer (ABL); a term that we have, until now,
tried to avoid. Brooks et al. (2017) struggled with this in
the context of stratocumulus decoupling (cf. e.g. Shupe
et al., 2013; Sotiropoulou et al., 2014). As a compromise
they use ABL for the whole layer below the main inversion,
separating it into a surface-mixed layer (SML) forced by
surface friction, and a cloud-mixed layer (CML) forced
by cloud-top cooling. Using slightly different techniques
and metrics, Brooks et al. (2017), Shupe et al. (2013) and
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F I G U R E 19 Profiles of the model “cloudiness” and the
temperature errors, averaged over all forecasts and forecast times,
excluding the first 24 hr

F I G U R E 20 Probability (colour shading) of temperature
error (◦C) as a function of total cloud water (g⋅kg−1) for the whole
AO2018 ice drift period, with the median (solid red) and mean
(dashed red); white contour lines show 5 and 10% probability

Sotiropoulou et al. (2014) suggested that these layers are
decoupled about two-thirds of the time.

In this context, one may hypothesize that the low-
est too-warm layer is the SML and that the low tro-
posphere too-cold layer corresponds to the CML. The
CML is too cold because of excessive cloud-top cool-
ing and a lack of vertical mixing; with more mixing the
intense cooling at the cloud top would be mixed over
a deeper cloud and sub-cloud layer and SML and CML
would eventually connect. Sotiropoulou et al. (2016a)
used IFS simulations of the ASCOS expedition and con-
cluded that IFS, with its first-order closure turbulence

scheme, is unable to respond to turbulence generated by
cloud-top cooling and hence could not develop decoupled
stratocumulus.

However, this does not explain why there is too much
cloud in such a deep layer. To explain this, we turn to a
specific parametrization in the IFS: so-called mid-level
convection. This scheme triggers convection from any-
where in the troposphere, provided sufficiently low
moist-static stability, relative humidity >80%, and
large-scale ascending motions. The relative humidity
in the Arctic ABL rarely drops below 80% (e.g. Tjern-
ström, 2005, Tjernström et al., 2014; Vüllers et al., 2020;
also see Figure 2e), while Figure 7a shows that the partic-
ular vertical structure of temperature and moisture errors
in IFS contribute on average to a reduced moist-static
stability; this reduction also has a diurnal cycle.

We hypothesize that if this stability by chance is suf-
ficiently low at the same time as large-scale ascent is
present, mid-level convection transports water vapour out
of the ABL that condenses to clouds as the air is cooled,
leading to excess cloud-top cooling while absorption of
solar radiation excessively warms the cloud interior; the
latter is consistent with too low incoming solar radiation
at the surface and the diurnal cycle in the temperature
error. This reinforces a vertical error structure that triggers
mid-level convection too often, providing the positive feed-
back to sustain the vertical structure in the temperature
error.

The mid-level convection is a construct to allow con-
vection in rain bands at warm fronts and in the warm
sector of extratropical cyclones (see https://www.ecmwf.
int/en/elibrary/19308-part-iv-physical-processes, Chapter
6.4.3) and its design may be inappropriate in the Arctic
with its very moist and shallow ABL. This is, however, very
difficult to ascertain from the model results; the only way
to test this hypothesis is to run the model with and without
this mechanism active, which is outside the scope of this
article.

5 CONCLUSIONS

We evaluate operational ECMWF/IFS HRES forecasts
using an extensive observational dataset from the Arc-
tic Ocean 2018 expedition, deployed on the Swedish ice-
breaker Oden. The evaluation covers a month-long period
when Oden was drifting with the ice close to the Pole,
mid-August to mid-September, spanning the late-summer
melt and early-autumn freeze conditions, and includes 125
three-day forecasts issued 6-hourly. Three-hourly routine
surface observations and 6-hourly soundings were assimi-
lated to provide the initial state for the forecast. The atmo-
spheric model is essentially the same as in ERA5; hence

https://www.ecmwf.int/en/elibrary/19308-part-iv-physical-processes
https://www.ecmwf.int/en/elibrary/19308-part-iv-physical-processes
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results provide information to both model developers and
users of the IFS forecasts and of ERA5.

Most errors in the thermodynamics appear system-
atic and do not grow with forecast length; error spread is
also constant. There is, however, a rapid growth the first
6–12 hr; we attribute this to the data assimilation and sub-
sequent spin-up. For a few evaluated variables, related to
dynamics, the error growth is more linear and then, error
spread also grows with time.

A summary of our main findings is:

1. There are considerable temperature errors featuring
distinct vertical and temporal structures:

(a) IFS is too warm below∼0.5 km (by 0.5–1 ◦C), too cold
between∼0.5 and∼3 km (by 1–2 ◦C), too warm again
around 3–5 km (by <0.5 ◦C) and too cold through
the tropopause and lower stratosphere. The error
magnitudes are substantially larger after the surface
freezes permanently, especially in the lower half of
the troposphere.

(b) The surface skin temperature is also too high. During
the melt it is unphysically stuck at ∼0.5 ◦C, when it
should be zero, and errors increase substantially as
the surface freezes and the temperatures drop.

(c) Lower troposphere temperature errors have a dis-
tinct diurnal cycle, almost ±1 ◦C in the lowest layers
after the freeze-up. The largest (smallest) error below
500 m (at 1–3 km) is from midnight to 0400 LT.
Observed near-surface temperatures display a very
weak diurnal cycle even after the melt, O(±0.1 ◦C).

2. A few variables show a gradual growth with fore-
cast length of error and its spread. This includes
the mean-sea-level pressure, from initially zero to
1.5 hPa at +72 hr, scalar wind-speed also close to zero
initially, growing to 0.5 m⋅s−1 at +72 hr. Turbulent
momentum-flux errors are small initially and grow
with the wind speed error. The wind-direction error,
however, is constant with forecast time and <10◦.

3. The surface energy budget has two larger systematic
errors. There is an enhanced downward turbulent sen-
sible heat flux and the incoming surface solar radiation
is too low. This error combination suggests that the sur-
face is on average being warmed by the atmosphere
and not the opposite. The annoying unphysically warm
surface during the melt season, that first caught our
interest, must hence be related to the coupling to the
ice but it is forced by the main problem; the too-warm
boundary layer.

4. While cloud characteristics (cloud-water contents,
phase partitioning, etc.) appear reasonable, IFS has too
much cloud, in time and space. Cloud cover is persis-
tent and lower troposphere non-frontal clouds are too

deep. Consequently, liquid and ice water paths are sys-
tematically too large. The error in cloud occurrence has
a distinct vertical structure; too much cloud below 3 km
and too little between 3 and 5 km. The largest overrep-
resentation of clouds is around 1 km, aligned with the
temperature error.

Of more technical import is an apparent but hith-
erto unexplained 6-hourly noise cycle in the error of most
parametrized parameters, not appearing in errors in the
model state variables.

We suggest that most of the errors are related to the
model physics, resulting in an erroneous model climate to
which the model drifts back after initialization. Many of
the errors likely have their roots in the description of cloud
formation in IFS, either directly or from cloud-related
feedback from other model physics; we specifically point
to the so-called mid-level convection as a parametrization
that needs to be reviewed; Untangling these coupled rela-
tionships will require targeted experimental simulations
outside the scope of this study.
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