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Abstract:	42 

As	global	environmental	change	continues	to	accelerate	and	intensify,	science	and	society	are	43 

turning	to	transdisciplinary	approaches	to	facilitate	transitions	to	sustainability.	Modeling	is	44 

increasingly	used	as	a	technological	tool	to	improve	our	understanding	of	social-ecological	systems	45 

(SES),	encourage	collaboration	and	learning,	and	facilitate	decision-making.	This	study	improves	46 

our	understanding	of	how	SES	models	are	designed	and	applied	to	address	the	rising	challenges	of	47 

global	environmental	change,	using	mountains	as	a	representative	system.	We	analyzed	74	peer-48 

reviewed	papers	describing	dynamic	models	of	mountain	SES,	evaluating	them	according	to	49 

characteristics	such	as	the	model	purpose,	data	and	model	type,	level	of	stakeholder	involvement,	50 

and	spatial	extent/resolution.	Slightly	more	than	half	the	models	in	our	analysis	were	participatory,	51 

yet	only	21.6%	of	papers	demonstrated	any	direct	outreach	to	decision	makers.	We	found	that	SES	52 

models	tend	to	under-represent	social	datasets,	with	ethnographic	data	rarely	incorporated.		53 

Modeling	efforts	in	conditions	of	higher	stakeholder	diversity	tend	to	have	higher	rates	of	decision	54 
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support	compared	to	situations	where	stakeholder	diversity	is	absent	or		not	addressed.	We	discuss	55 

our	results	through	the	lens	of	appropriate	technology,	drawing	on	the	concepts	of	boundary	56 

objects	and	scalar	devices	from	Science	and	Technology	Studies.	We	propose	four	guiding	57 

principles	to	facilitate	the	development	of	SES	models	as	appropriate	technology	for	58 

transdisciplinary	applications:	(1)	increase	diversity	of	stakeholders	in	SES	model	design	and	59 

application	for	improved	collaboration;	(2)	balance	power	dynamics	among	stakeholders	by	60 

incorporating	diverse	knowledge	and	data	types;	(3)	promote	flexibility	in	model	design;	and	(4)	61 

bridge	gaps	in	decision	support,	learning,	and	communication.	Creating	SES	models	that	are	62 

appropriate	technology	for	transdisciplinary	applications	will	require	advanced	planning,	increased	63 

funding	for	and	attention	to	the	role	of	diverse	data	and	knowledge,	and	stronger	partnerships	64 

across	disciplinary	divides.	Highly	contextualized	participatory	modeling	that	embraces	diversity	in	65 

both	data	and	actors	appears	poised	to	make	strong	contributions	to	the	world’s	most	pressing	66 

environmental	challenges.				67 

Keywords:		Dynamic	modeling;	knowledge	co-production;	mountain	social-ecological	systems;	68 

mutual	learning;	transdisciplinarity;	science	and	technology	studies	 	69 
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1. Introduction 70 

Social-ecological	systems	(SES)	are	facing	unprecedented	challenges	from	global	environmental	71 

change	(Turner	et	al.	2007).	Responding	to	these	changes	is	a	central	challenge	for	the	management	72 

of	sustainable	ecosystems,	with	far-reaching	consequences	for	human	well-being	(Lambin	et	al.	73 

2001;	Carpenter	et	al.	2009;	DeFries	et	al.	2012).	SES	are	characterized	by	complex	processes	with	74 

nonlinear	dynamics,	indirect	effects	and	feedbacks,	emergent	properties,	and	heterogeneous	links	75 

that	extend	across	spatial	and	temporal	scales	(Liu	et	al.	2007).	These	characteristics	can	cause	76 

unanticipated	outcomes	that	make	environmental	management	difficult,	particularly	as	decisions	77 

are	often	made	in	the	context	of	limited	data	and	high	uncertainty	(Polasky	et	al.	2011).	Due	to	the	78 

complexity	of	SES,	understanding	global	environmental	change	is	critical	for	developing	effective	79 

responses	(Ostrom	2007,	Turner	et	al.	2007,	Lambin	&	Meyfroidt	2010).		80 

As	global	environmental	change	continues	to	accelerate	and	intensify,	science	and	society	are	81 

turning	to	transdisciplinary	approaches	to	facilitate	transitions	to	sustainability	(Lang	et	al.	2012;	82 

Brandt	et	al.	2013).	Transdisciplinarity	is	a	reflexive	approach	that	brings	together	actors	from	83 

diverse	academic	fields	and	sectors	of	society	to	engage	in	co-production	and	mutual	learning,	with	84 

the	intent	to	collaboratively	produce	solutions	to	social-ecological	problems	(Cundill	et	al.	2015;	85 

Lemos	et	al.	2018;	Wyborn	et	al.	2019;	Norström	et	al.	2020).	Such	collaboration	enables	problems	86 

to	be	understood	from	multiple	perspectives,	and	can	expand	the	scope	of	potential	solutions	87 

(Tengö	et	al.	2014;	Hoffman	et	al.	2017;	Chakraborty	et	al.	2019;	Steger	et	al.	2020).	This	diversity	88 

also	contributes	to	the	perceived	credibility,	salience,	and	legitimacy	of	results	(Cash	et	al.	2003;	89 

Cundill	et	al.	2015),	empowering	participants	to	take	ownership	of	products	and	apply	new	90 

knowledge	to	sustainability	challenges	on	the	ground	(Lang	et	al.	2012;	Balvanera	et	al.	2017).	91 
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Modeling	is	increasingly	used	by	academics	and	development	experts	to	encourage	collaboration	92 

and	learning	among	diverse	groups	to	facilitate	decision-making	(Bousquet	and	Le	Page	2004;	93 

Barnaud	et	al.	2008;	Verburg	et	al.	2016;	Voinov	et	al.	2018;	Schlüter	et	al.	2019).	While	modeling	94 

may	refer	to	any	kind	of	qualitative	or	quantitative	system	representation	used	to	identify	and	95 

understand	patterns	or	processes,	in	this	study	we	explicitly	focus	on	dynamic	models	showing	96 

change	over	time.	Designing	models	that	capture	the	complexity	of	SES	while	yielding	useful	97 

information	at	relevant	scales	for	management	remains	conceptually	and	methodologically	98 

challenging	(Elsawah	et	al.	2019).	SES	modeling	is	often	criticized	for	failing	to	address	broader	99 

contexts:	operating	at	too	large	a	scale	(O’Sullivan	2004;	Mahony	2014),	not	representing	or	100 

arbitrarily	reducing	complex	processes	to	abstract	quantities	(Taylor	2005;	Hulme	2011;	Dempsey	101 

2016;	O’Lear	2016),	or	overlooking	end-users’	interests	and	capabilities	(Rayner	et	al.	2005;	Nost	102 

2019).	These	critiques	highlight	the	need	for	more	widespread	integration	of	transdisciplinary	and	103 

co-production	processes	into	SES	modeling.	Researchers	have	begun	to	formulate	conceptual	104 

guides	for	transdisciplinary	applications	of	SES	models	(Schlüter	et	al.	2019),	though	gaps	remain	in	105 

the	development	of	theoretical	and	practical	recommendations.		106 

The	purpose	of	this	study	is	to	understand	how	SES	models	are	being	designed	and	applied	to	the	107 

challenges	of	global	environmental	change	and	to	develop	guiding	principles	for	transdisciplinary	108 

SES	modeling.	To	limit	the	scope	of	the	review,	we	analyzed	74	peer-reviewed	papers	describing	109 

applications	of	SES	models	in	mountain	areas.	Mountains	are	a	representative	system	for	modeling	110 

dynamic	processes	in	complex	SES	as	they	have	high	spatial	and	temporal	heterogeneity	and	attract	111 

diverse	actors	with	often	conflicting	worldviews	and	agendas	(Klein	et	al.	2019;	Thorn	et	al.	2020).			112 

To	analyze	the	design	and	application	of	SES	models,	we	turn	to	Science	and	Technology	Studies	113 

(STS)	to	conceptualize	models	as	scientific	artifacts	(Latour	1986).	The	field	of	STS	has	long	114 

advanced	the	social	study	of	science,	illustrating	how	material	devices	(Latour	1986),	embodied	115 
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practices	(Haraway	1988),	and	infrastructures	(Bowker	and	Star	1999)	shape	knowledge	116 

production.	Here,	we	focus	on	models	as	knowledge	infrastructures,	which	Edwards	et	al.	(2013)	117 

define	as	“robust	networks	of	people,	artifacts,	and	institutions	that	generate,	share,	and	maintain	118 

specific	knowledge	about	the	human	and	natural	worlds”	(p.	23).	We	draw	on	three	concepts	119 

related	to	knowledge	infrastructures	to	analyze	the	design	and	application	of	SES	models:	120 

appropriate	technology	(Fortun	2004),	boundary	objects	(Star	and	Griesemer	1989),	and	scalar	121 

devices	(Ribes	2014).	We	use	these	concepts	to	explore	how	SES	models	influence	collaboration	122 

around	environmental	problems	(Taylor	2005;	Sundberg	2010;	Landström	et	al.	2011),	shaping	the	123 

production	of	new	knowledge,	relationships,	and	decisions.		124 

1.1	Conceptual	framework:	SES	models	as	appropriate	technology	for	transdisciplinary	125 

applications	 126 

Scholars	are	calling	for	a	more	reflexive	consideration	of	models’	embeddedness	in	socio-cultural	127 

contexts	and	relevance	for	particular	places	and	problems	(Taylor	2005;	Crane	2010).	The	concept	128 

of	appropriate	technology	broadens	our	view	beyond	the	technical	correctness	of	models,	towards	129 

this	more	societal	focus.	Appropriate	technology	emerged	from	alternative	technology	movements	130 

of	the	mid-twentieth	century,	and	refers	to	tools,	techniques,	and	machinery	used	to	address	131 

livelihood	and	development	problems	in	ways	that	are	sensitive	to	place-based	needs,	as	opposed	132 

to	one-size-fits-all	solutions.	STS	researchers	have	applied	the	concept	to	other	contexts,	such	as	133 

questioning	how	scientists	acquire	"the	right	tools	for	the	job"	(Clarke	and	Fujimura	1992;	de	Laet	134 

and	Mol	2000).	Following	Fortun	(2004),	an	SES	tool	such	as	simulation	modeling	could	be	135 

considered	appropriate	technology	when	it	is	“designed	in	a	way	attuned	to	the	material,	political,	136 

and	technological	realities	with	which	it	works,	and	to	the	social	actors	who	will	be	its	users”	(p.54).	137 

For	example,	Fortun	(2004)	describes	the	development	of	a	publicly-available	pollution	database	138 

and	website	in	the	early	2000s,	which	allowed	the	public	to	search	for	toxic	releases	by	company	139 
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name	and	to	learn	about	subsequent	risks	to	human	and	environmental	health.	This	website	was	140 

appropriate	technology	for	the	time	given	that	key	aspects	to	US	environmentalism	were	open	141 

source	technologies,	corporate	transparency,	and	complexity	science.		142 

In	this	paper,	we	examine	whether	SES	models	are	appropriately	designed	for	contemporary	143 

transdisciplinary	applications	that	aim	to	understand	and	overcome	the	challenges	presented	by	144 

global	environmental	change.	These	challenges	demand	societally-relevant	integration	of	data	and	145 

stakeholder	perspectives	across	spatial	and	temporal	scales,	yet	this	is	difficult	to	accomplish	due	146 

to:	(1)	diverse	and	sometimes	contradictory	stakeholder	objectives	and	worldviews	(Etienne	et	al.	147 

2011;	Etienne	2013;	Lade	et	al.	2017),	including	epistemological	rifts	between	the	socio-cultural	148 

and	computational	sciences	that	prevent	detailed	representations	of	social	processes	in	SES	models	149 

(Taylor	2005;	Crane	2010;	Verburg	et	al.	2016;	Voinov	et	al.	2018);	and	(2)	mismatching	scales	of	150 

social	and	ecological	processes	and	associated	data	(Zimmerer	and	Basset	2003;	Cumming	et	al.	151 

2006;	Bakker	and	Cohen	2014;	Rammer	and	Seidl	2015;	Lippe	et	al.	2019).	By	employing	the	152 

conceptual	framework	of	models	as	“appropriate	technology,”	our	evaluation	focuses	on	how	SES	153 

models	span	social	boundaries	and	spatial	scales.	We	use	the	concepts	of	“boundary	objects”	and	154 

“scalar	devices”	to	explore	how	SES	models	bring	together	diverse	groups	of	people	with	the	aim	of	155 

improving	understanding	and	management	of	SES	(boundary	objects,	section	1.1.1),	and	how	SES	156 

models	can	help	understand	cross-scale	and	cross-level	dynamics	(scalar	devices,	section	1.1.2).	We	157 

propose	that	SES	models	that	achieve	these	dual	objectives	can	best	function	as	appropriate	158 

technology	(Figure	1).		159 
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	160 

Figure	1.	Conceptual	relationship	between	boundary	objects	and	scalar	devices,	indicating	that	SES	161 

models	may	function	as	appropriate	technology	for	transdisciplinary	applications	when	they	162 

simultaneously	span	social	boundaries	and	spatial	scales	(green	area).		163 

1.1.1	Models	as	boundary	objects	164 

Traditionally,	model	design	has	been	the	purview	of	scientific	research	communities.	However,	165 

recent	attempts	to	incorporate	more	diverse	stakeholder	perspectives	have	led	to	the	co-design	of	166 

SES	models,	allowing	for	different	understandings,	values,	and	worldviews	to	be	elicited,	visualized,	167 

and	negotiated	in	the	pursuit	of	a	shared	“boundary	object”	or	system	representation	(Zellner	168 

2008;	Etienne	et	al.	2011;	Etienne	2013;	Edmonds	et	al.	2019).	Boundary	objects	are	conceptual	or	169 

material	items	that	emerge	through	collaboration,	remaining	both	adaptable	to	local	needs	yet	170 

“robust	enough	to	maintain	a	common	identity”	across	different	groups	(Star	and	Griesemer	1989,	171 

pg.	393).	Stakeholders	can	hold	different,	sometimes	conflicting,	ideas	about	boundary	objects	yet		172 

still	collaborate	through	them.	One	example,	described	by	Star	and	Griesemer	(1989),	includes	a	173 
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bird	in	a	natural	history	museum:	the	specimen	carried	different	value	and	meaning	to	amateur	174 

bird	watchers,	professional	biologists,	and	taxidermists,	who	worked	together	using	the	boundary	175 

object	while	maintaining	different	epistemic	perspectives.	In	this	way,	boundary	objects	enable	176 

people	to	work	together	across	knowledge	systems	despite	syntactic	and	semantic	differences	in	177 

understanding	(Carlile	2002),	illustrating	how	collaboration	can	occur	without	requiring	178 

consensus.		179 

The	boundary	object	concept	has	been	widely	applied	outside	STS	given	its	utility	in	understanding	180 

the	process	of	collaboration	in	inter-	and	trans-disciplinary	settings	(Clark	et	al.	2011;	Steger	et	al.	181 

2018).	Here,	we	examine	how	SES	models	can	function	as	boundary	objects	for	transdisciplinary	182 

work,	exploring	how	a	model	can	span	multiple	social	worlds	beyond	one	system	or	knowledge	183 

type	(Clarke	and	Star	2008).		184 

1.1.2	Models	as	scalar	devices	185 

A	core	challenge	of	modeling	SESs	is	the	scalar	mismatch	(Zimmerer	and	Bassett	2003)	occurring	186 

between	social	and	ecological	processes	and	the	data	that	represent	them	(Walker	et	al.	2004;	187 

Cumming	2006;	Rammer	and	Seidl	2015).	For	example,	models	that	forecast	regional	climate	188 

change	may	not	have	adequate	spatial	resolution	to	incorporate	local	level	human	drivers	like	land	189 

use	change,	yet	it	is	the	combination	of	these	multi-scalar	drivers	that	could	pose	the	highest	risk	190 

and	uncertainty	for	the	system	(Altaweel	et	al.	2009).	Efforts	to	address	these	scalar	issues	are	191 

limited	by	computing	power,	data	availability,	and	the	ability	to	make	inferences	from	highly	192 

complex	or	complicated	models	(Kelly	et	al.	2013;	Verburg	et	al.	2016;	Lippe	et	al.	2019).	Here,	we	193 

examine	how	models	are	used	as	“scalar	devices”	to	conceptually	shift	between	temporal	or	spatial	194 

scales,	thus	aiding	users	in	overcoming	this	scalar	mismatch.	195 
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	Ribes	(2014)	proposed	the	ethnography	of	scaling	as	a	methodological	approach	for	studying	long-196 

term	scientific	enterprises,	where	scalar	devices	are	the	tools	and	practices	researchers	use	to	197 

represent,	understand,	and	manage	large-scale	objects	or	systems	that	cross	multiple	levels	of	198 

organization	(Ribes	and	Finholt	2008).	For	example,	Ribes	examines	how	scientists	used	agendas,	199 

slides,	and	notes	as	scalar	devices	to	summarize	current	and	future	disciplinary	needs	across	200 

multiple	scales	when	creating	the	geosciences	network	known	as	GEON.	These	tools	condensed	201 

months	of	work	across	disparate	groups	of	scientists	into	concrete	objects	and	representations	that	202 

could	be	examined	and	questioned	within	the	same	room	at	the	same	time,	thus	translating	a	large	203 

and	complex	system	into	a	more	approachable	format.	Scalar	devices	can	also	refer	to	social	204 

activities	such	as	all-hands	meetings	that	bring	together	networks	of	people	to	deliberate	and	205 

communicate	about	large-scale	spatial	and	temporal	dynamics.	In	this	paper,	we	conceptualize	SES	206 

models	as	scalar	devices	to	understand	how	they	are	used	to	isolate	certain	components	and	207 

feedbacks	in	SES	so	that	these	systems	might	be	more	clearly	understood,	predicted,	and	managed	208 

across	scales.		209 

Below,	we	describe	patterns	in	how	SES	models	are	designed	and	used	to	address	cross-210 

disciplinary	and	cross-scalar	processes.	We	draw	on	these	results	to	re-examine	our	conceptual	211 

framework	(Figure	1)	that	places	appropriate	technology	for	SES	modeling	at	the	intersection	of	the	212 

boundary	object	and	scalar	devices	concepts.	In	light	of	these	results,	we	propose	a	set	of	guiding	213 

principles	to	facilitate	the	development	of	SES	models	as	appropriate	technology	for	214 

transdisciplinary	applications.		215 

	2.	Materials	and	Methods	216 

2.1	Search	strategy	217 
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We	reviewed	literature	employing	dynamic	social-ecological	models	in	mountain	systems,	218 

searching	combinations	of	keywords	in	the	search	engine	Google	Scholar	(model*;	‘coupled	human	219 

natural	systems’	or	‘coupled	natural	human	systems’;	‘social-ecological	systems’	or	‘socio-ecological	220 

systems’;	‘change’;	‘management’;	‘mount*’	or	‘highland’	or	‘alpine’).	Keywords	were	compiled	221 

during	meetings	with	experts	from	the	Mountain	Sentinels	Collaborative	Network	222 

(mountainsentinels.org),	a	group	of	researchers	and	other	stakeholders	working	towards	mountain	223 

sustainability	worldwide.	We	expanded	this	search	by	following	references	included	in	these	224 

papers	to	other	studies	and	via	consultations	with	experts.	All	papers	published	in	English	prior	to	225 

August	2017	were	considered	for	inclusion	if	they	contained	one	overarching	modeling	effort,	226 

which	in	some	cases	consisted	of	multiple	modeling	approaches	either	integrated	or	presented	227 

alongside	one	another.	To	be	included,	models	needed	to	be	dynamic	(showing	change	over	time)	228 

and	include	both	social	and	ecological	components.	Although	this	search	was	not	systematic,	the	74	229 

papers	we	reviewed	represent	a	significant	proportion	of	the	literature	available.		230 

2.2	Data	collection	231 

Each	of	the	74	papers	(Appendix	A)	was	coded	independently	by	two	team	members	according	to	a	232 

codebook	developed	and	tested	on	five	papers.	Differences	were	discussed	and	resolved	by	a	third	233 

reviewer	as	needed.	We	operationalize	the	concept	of	appropriate	technology	by	assessing	234 

characteristics	of	SES	model	design	and	application,	including	the	model	purpose,	stakeholder	235 

involvement,	and	spatial	extent/resolution	(Table	1).	We	use	these	codes	as	“sensitizing	concepts”	236 

(Blumer	1954)	to	guide	our	exploratory	analysis	and	to	conceptually	bridge	between	measurable	237 

SES	modeling	characteristics	and	the	relative	ambiguity	of	the	STS	concepts	we	described	above.			238 

Design	

codes	

Description	 Measurement	 Appropriate	

Technology	
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Model	
purpose	
(intended)	

System	understanding;	prediction	
and	forecasting;		decision	support;		
and	communication/learning	
(Kelly	et	al.	2013)	

Not	addressed	/	secondary	
purpose	/	primary	purpose	

Scalar	devices	

Boundary	
objects	

Model	
specificity	

Level	of	context-specificity	and	
level	of	generalizability	

None/low/medium/high	 Scalar	devices	

Model	
orientation	

Level	of	scientific	orientation		and	
level	of	societal	orientation		

None/low/medium/high	 Boundary	
objects	

Model	types	 Agent-based,	integrated	
simulation,	systems	dynamics,	
Bayesian	Network,	cellular	
automata,	mathematical,	
statistical,	or	GIS	

Present	or	absent	 Scalar	devices	

Boundary	
objects	

Data	types	 Biophysical	(e.g.	climatic,	
ecological,	hydrological,	
geologic/topographic)	

Social	(e.g.	economic,	political,	
demographic,	ethnographic)	

Social-Ecological	(e.g.	land	use	or	
livelihoods)	

Present	or	absent	 Boundary	
objects	

Scalar	devices	

Model	extent	 Social	

	

	

The	broadest	
organizational	level	
addressed:	individual,	
household,	community,	

Scalar	devices	
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Spatial	 region,	nation,	multi-
nation,	or	global	

The	size	of	the	study	area	
(e.g.,	km2)	where	available	

Model	
resolution	

Social	

	

	

	

Spatial	

The	narrowest	
organizational	level	
addressed:	individual,	
household,	community,	
region,	nation,	multi-
nation,	or	global	

The	size	of	the	smallest	
pixel	or	modeling	unit	(e.g.,	
km2)	where	available	

Scalar	devices	

Public	
participation	

Whether	or	not	non-researchers	
were	involved	in	modeling	

Present	or	absent	 Boundary	
objects	

Stakeholder	
diversity	

What	level	of	stakeholder	diversity	
was	present	in	the	system	being	
modeled	

Not	
mentioned/none/low/high	

Boundary	
objects	

Application	

codes	

		 	 		

Model	
purpose	
(achieved)	

System	understanding;	prediction	
and	forecasting;		decision	support;		
and	communication/learning	
(Kelly	et	al.	2013)	

Not	addressed	/	secondary	
purpose	/	primary	purpose	

Scalar	devices	

Boundary	
objects	

Policy	or	
planning	
outreach	

Whether	or	not	modeling	results	
were	communicated	to	

Present	or	absent	 Boundary	
objects	
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decisionmakers	(e.g.,	policy	
makers,	planners,	managers)	

Table	1.	Codebook	organization.	239 

	240 

Design	codes	focused	on	the	methods	used	to	build	the	models.	Model	types	included	eight	non-241 

mutually	exclusive	categories	each	study	could	include:	agent-based,	integrated	simulation,	systems	242 

dynamics,	Bayesian	network,	cellular	automata,	mathematical,	statistical,	and	GIS.	We	also	noted	243 

whether	toy	models	or	role-play	games	were	used	to	engage	participants.	Data	types	were	coded	244 

into:	“biophysical”,	“social”,	or	“social-ecological”	categories,	which	were	further	specified	into	sub-245 

categories	(Table	1).	We	drew	on	the	data	types	used	to	understand	how	models	act	as	boundary	246 

objects	by	integrating	diverse	perspectives	through	data,	and	what	kinds	of	data	are	most	247 

frequently	applied	to	model	cross-scale	dynamics.	See	Appendix	B	for	detailed	definitions	of	data	248 

and	model	types.	249 

Coders	identified	information	on	the	social	and	spatial	scale	of	the	models,	which	we	used	to	assess	250 

how	models	function	as	scalar	devices.	We	divided	these	data	into	extent	(broadest	level)	and	251 

resolution	(narrowest	level).	We	classified	social	scale	according	to	the	organizational	or	252 

administrative	levels	addressed	in	the	model	(Gibson	et	al.	2000;	Cash	et	al.	2006;	Preston	et	al.	253 

2015),	organizing	them	into	seven	qualitative	and	hierarchical	categories:	individual,	household,	254 

community,	region,	nation,	multi-nation,	or	global.	We	determined	whether	a	model	considered	255 

cross-scale	processes	by	calculating	the	number	of	social	levels	crossed	between	the	extent	and	256 

resolution	of	the	model.	For	example,	a	model	that	crossed	two	scales	might	go	from	a	regional-257 

level	extent	to	a	household-level	resolution.	We	also	recorded	the	quantitative	size	of	the	study	area	258 

(extent)	and	the	size	of	the	smallest	pixel	or	unit	of	the	model	(resolution),	when	available.		259 



14 

The	level	of	model	specificity	was	assessed	via	two	questions	regarding	the	degree	of	a)	contextual	260 

understanding	and	b)	general,	transferable	understanding	emphasized	in	the	model	development	261 

and	application.	Contextual	and	general	understanding	were	ranked	independently	of	one	another	262 

(Table	1;	none/low/medium/high),	contributing	to	our	understanding	of	how	SES	models	act	as	263 

scalar	devices.	A	highly	contextual	model	presented	a	detailed	description	of	the	study	site	and	264 

clarified	how	this	context	influenced	model	design	and	application,	while	a	highly	generalizable	265 

model	explicitly	and	repeatedly	emphasized	how	their	modeling	effort	was	relevant	to	other	266 

systems.	Similarly,	the	theoretical	orientation	of	the	model	was	assessed	via	two	questions	(ranked	267 

independently)	regarding	the	advancement	of	a)	theoretical/scientific	knowledge	and	b)	societal	268 

goals/processes.	According	to	our	rubric,	a	highly	scientifically-oriented	model	clearly	advanced	269 

some	research	field	or	theory,	while	a	highly	societally-oriented	model	supported	a	social	objective	270 

or	laid	the	foundation	for	locally-relevant	decision-making	(e.g.,	policy	making,	management	action,	271 

planning	processes,	educational	tools).	Thus	the	orientation	of	the	model	sheds	light	on	how	these	272 

models	function	as	boundary	objects.	These	four	questions	allow	us	to	determine	which	models	273 

were	both	highly	contextual	and	also	highly	generalizable	to	other	systems,	or	which	models	274 

managed	to	achieve	high	scientific	as	well	as	high	societal	relevance.	275 

Coders	extracted	all	textual	references	to	public	participation,	which	included	the	involvement	of	276 

any		non-researcher	stakeholder	group.	These	data	were	categorized	into	a	binary	participatory	or	277 

non-participatory	variable.	Any	level	of	engagement	with	the	public	-	from	model	278 

conceptualization,	design,	development,	or	implementation	-	was	considered	participatory.	279 

Stakeholder	diversity	was	another	variable	that	was	either	not	mentioned	in	the	paper,	or	coded	as	280 

none,	low,	or	high	levels	of	diversity.	Together	these	variables	clarify	the	diversity	of	people	281 

involved	in	the	modeling	activity,	an	important	criteria	for	functioning	as	a	boundary	object.		282 
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Model	purpose	refers	to	the	goals	of	the	modeling	work	and	were	adapted	from	Kelly	et	al.	(2013)	283 

to	include:	system	understanding,	prediction/forecasting,	decision	support,	and	284 

learning/communication	(see	Appendix	B).	We	define	the	learning/communication	purpose	as	a	285 

contribution	towards	“the	capacity	of	a	social	network	to	communicate,	learn	from	past	behaviour,	286 

and	perform	collective	action”	(Kelly	et	al.	2013,	pg.	161),	which	distinguishes	it	from	more	general	287 

system	understanding.	Models	designed	for	decision	support	include	a	wide	variety	of	decision	288 

contexts,	including	multi-criteria	analyses,	trade-offs	in	decision-making,	land	use	planning,	and	289 

management	actions.	Coders	recorded	the	intended	model	purpose	and	classified	whether	each	290 

intention	and	outcome	was	addressed	as	a	primary	or	secondary	purpose	of	the	project.	We	used	291 

quotations	from	the	text	to	resolve	any	differences	between	coder	ranking.	Due	to	this	potential	292 

subjectivity,	and	sometimes	small	sample	sizes,	we	treated	the	model	purpose	variables	as	binary	293 

Yes	(primary	or	secondary	purpose)	or	No	(not	addressed)	in	most	of	our	analyses.	Finally,	coders	294 

extracted	all	references	to	policy	and	planning	outreach,	which	we	translated	into	a	binary	code	295 

indicating	whether	or	not	the	model	or	study	results	were	directly	communicated	to	decision	296 

makers.				297 

	2.3	Analysis	298 

We	present	summary	statistics	that	describe	trends	in	SES	modeling	design	and	application.	We	use	299 

chi-square	or	Fisher’s	exact	tests	and	t-tests	as	relevant	to	look	for	associations	between	model	300 

purpose	outcomes	and	the	various	design	codes	described	above.	For	all	tests,	we	consider	p<0.05	301 

to	be	statistically	significant.		302 

3.	Results	303 

3.1	Model	purpose:	Intention	vs.	outcome	304 
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Many	studies	successfully	achieved	the	outcome	they	intended	(Figure	2).	Almost	three-quarters	305 

(73%)	of	the	papers	intended	system	understanding	to	be	a	primary	purpose	of	the	model	(n=54),	306 

yet	only	57%	(n=42)	achieved	it	as	a	primary	outcome.	Instead,	most	of	these	papers	achieved	307 

secondary	system	understanding	outcomes.	Prediction/forecasting	was	not	a	frequent	primary	308 

model	purpose	(n=21,	28%),	but	was	commonly	considered	a	secondary	model	purpose	(n=35,	309 

47%).	There	was		little	difference	between	intentions	and	outcomes	for	the	prediction/forecasting	310 

purpose,	indicating	these	SES	models	generally	achieved	their	intended	purpose.	These	model	311 

purposes	require	integrating	information	about	the	world	across	different	geographic	levels	and	312 

multiple	time	horizons,	thus	aligning	with	the	scalar	devices	concept.						313 

There	was	considerably	greater	difference	between	intentions	and	outcomes	for	both	decision	314 

support	and	learning/communication	model	purposes	(Figure	2),	indicating	that	SES	models	may	315 

face	barriers	when	created	for	these	purposes.	Decision	support	was	commonly	intended	as	a	316 

primary	model	purpose	(n=35,	47%).	However,	almost	half	of	the	papers	that	intended	decision	317 

support	as	a	primary	purpose	instead	achieved	it	as	a	secondary	purpose	(n=16),	and	44%	of	the	318 

papers	that	intended	it	as	a	secondary	purpose	failed	to	report	any	successful	decision	support	319 

outcomes	(n=11).	Most	papers	we	reviewed	did	not	consider	learning/communication	to	be	an	320 

intended	model	purpose	(n=46,	62%).	Nevertheless,	39%	of	the	papers	that	intended	it	as	a	321 

secondary	purpose	failed	to	report	any	learning/communication	outcomes	(n=7),	while	the	same	322 

number	of	papers	discovered	unexpected	learning	outcomes	despite	having	no	intention	of	it.	323 

These	results	point	to	gaps	in	the	ability	of	SES	models	to	contribute	to	decision	support	outcomes,	324 

and	a	general	inattention	to	learning/communication	model	purposes.	These	model	purposes	are	325 

aligned	with	the	boundary	object	concept	as	they	typically	rely	on	significant	stakeholder	326 

engagement.	The	fact	that	their	intended	use	fell	short	of	their	realized	use	suggests	critical	gaps	in	327 

the	role	of	SES	models	as	boundary	objects.		328 
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	329 

Figure	2.		Number	of	papers	per	model	purpose,	for	both	intentions	and	outcomes.	330 

3.2		Model	specificity	and	orientation	331 

Most	models	(n	=	47,	63.5%)	had	a	highly	context-specific	focus,	while	only	10.8%	(n=8)	were	332 

considered	highly	generalizable,	illustrating	a	preference	for	SES	models	to	focus	on	particular	333 

places	and	their	relevant	scales	of	operation	rather	than	generic	systems	or	processes.	Most	models	334 

(n=40,	54%)	were	also	classified	as	having	medium	scientific	orientation.	While	scientific	or	335 

theoretical	advancement	was	a	common	goal	of	SES	modeling	efforts,	there	was	less	consistency	for	336 

societal	goals,	as	models	were	roughly	evenly	distributed	across	low,	medium,	and	high	levels	of	337 
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societal	orientation.	These	results	again	highlight	potential	gaps	in	how	SES	models	are	used	as	338 

boundary	objects.	When	analyzing	the	relationship	between	model	specificity	and	orientation,	our	339 

results	indicated	that	SES	models	used	to	advance	societal	goals	also	tended	to	be	highly	context	340 

specific	(p<0.01;	Figure	3a),	while	scientific	goals	appeared	to	be	advanced	even	at	low	or	341 

nonexistent	levels	of	system-specific	context	(p=0.02;	Figure	3b).	This	points	to	potential	synergies	342 

between	the	STS	concepts,	where	SES	models	are	more	likely	to	function	as	boundary	objects	(i.e.,	343 

by	advancing	societal	goals)	when	they	are	created	at	scales	relevant	to	a	particular	context.		344 

	345 

Figure	3.	Percent	of	papers	per	level	of	context-specificity,	according	to	a)	societal	orientation	and	346 

b)	scientific	orientation.	347 
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We	found	significant	associations	between	learning/communication	outcomes	and	context-348 

specificity	(p	<	0.00),	where	most	models	with	learning	outcomes	were	also	highly	context-specific	349 

(n=24,	89%;	Figure	4a).	This	indicates	that	context	specificity	is	an	important	characteristic	of	SES	350 

models	that	function	as	boundary	objects,	perhaps	by	enabling	stakeholders	to	recognize	and	relate	351 

to	the	system	represented.	Learning	outcomes	also	occurred	with	more	regularity	across	medium	352 

to	high	levels	of	societal	orientation	(p	<	0.00;	Figure	4b),	supporting	the	idea	that	societally-353 

oriented	models	are	more	likely	to	function	as	boundary	objects.	Decision	support	outcomes	were	354 

highest	at	low	to	medium	levels	of	generalizability	(p	=	0.04;	Figure	4c)	and	almost	non-existent	355 

when	the	models	lacked	societal	orientation	(p	<	0.00;	Figure	4d).	This	suggests	there	was	some	356 

flexibility	in	achieving	decision	support	outcomes;	if	modeling	efforts	included	a	modest	degree	of	357 

generalizability	and	societal	focus,	decision	support	outcomes	tended	to	occur.	However,	both	358 

learning	and	decision	support	outcomes	were	most	common	at	medium	to	high	levels	of	societal	359 

orientation,	indicating	that	the	pursuit	of	these	model	purposes	may	promote	the	use	of	SES	models	360 

as	boundary	objects.			361 

	362 
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Figure	4.	Model	purpose	outcomes	were	significantly	associated	with	the	context-specificity,	363 

generalizability,	and	societal-orientation	of	the	models.		364 

3.3	Model	types	365 

Of	the	eight	model	types,	agent-based	models	(ABM)	were	the	most	frequently	used	(n	=	48,	366 

64.8%),	followed	closely	by	cellular	automata	models	(n	=	46,	62.1%).	In	fact,	ABM	and	cellular	367 

automata	models	were	used	together	in	almost	half	the	studies	(n	=	36,	48.6%),	though	decision	368 

support	outcomes	were	more	common	when	cellular	automata	models	were	absent	(p	=	0.02).	369 

Mathematical	models	were	also	relatively	common	(n=34,	45.9%).	Learning	outcomes	were	370 

significantly	higher	when	toy	models	or	role-play	games	were	used	(p	<	0.01),	indicating	that	371 

models	built	with	stakeholder	involvement	in	mind	tended	to	function	as	boundary	objects.	No	372 

other	model	types	were	associated	with	higher	model	purpose	outcomes.		373 

Studies	used	one	modeling	approach	(n	=11,	14.8%),	or	combined	two	(n=30,	40.5%),	three	(n=21,	374 

28.3%),	or	four	(n=12,	16.2%)	modeling	approaches	to	represent	and	scale	the	system	in	different	375 

ways.	When	only	one	modeling	approach	was	used,	system	dynamics	and	mathematical	models	376 

were	most	frequent.	When	multiple	approaches	were	used,	ABM	and	cellular	automata	models	377 

were	most	frequent.	We	did	not	find	any	associations	between	model	purpose	outcomes	and	the	378 

number	of	modeling	approaches	used.		379 

We	did	not	find	significant	associations	between	model	type	and	scientific	orientation,	though	380 

mathematical	models	and	system	dynamics	models	do	have	significant	associations	with	societal	381 

orientation.	Specifically,	mathematical	models	were	more	likely	than	non-mathematical	models	to	382 

have	intermediate	(low	or	medium)	levels	of	societal	orientation	(p<0.00).	We	also	observed	a	383 

higher	proportion	of	system	dynamics	models	with	high	societal	orientation	(71%),	compared	to	384 

only	18%	of	non-system	dynamics	models	(p=0.01).	This	suggests	that	system	dynamics	and	385 
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mathematical	models	tend	to	be	used	as	boundary	objects.	We	did	not	find	any	associations	386 

between	model	type	and	model	specificity,	indicating	that	the	type	of	modeling	approach	is	387 

unrelated	to	the	context-specificity	or	generalizability	of	the	model.	Together,	these	results	388 

demonstrate	that	the	question	of	model	type	is	related	more	to	the	role	of	the	model	as	a	boundary	389 

object	rather	than	as	a	scalar	device.			390 

3.4	Data	types	391 

We	found	that	SES	models	tend	to	under-represent	social	datasets,	and	are	more	likely	to	rely	on	392 

pre-existing	datasets.	Models	used	significantly	higher	numbers	of	biophysical	(μ	=	5.0,	SE±	1.2,	p	<	393 

0.00)	and	social-ecological	(μ	=	4.3,	SE±	0.9,	p	=	0.04)	datasets	compared	to	social	datasets	(μ	=	3.4,	394 

SE±	0.8).	The	similar	number	of	biophysical	and	social-ecological	datasets	suggests	these	data	types	395 

are	roughly	equally	valued	for	representing	dynamic	SES.	However,	the	relative	lack	of	social	396 

datasets	may	point	to	gaps	in	how	SES	models	span	multiple	social	worlds.	For	all	data	types,	397 

secondary	datasets	(e.g.,	from	the	literature	or	published	data)	were	significantly	more	common	398 

than	primary	datasets	collected	from	the	study	site.	The	most	common	datasets	were	ecological	399 

(median	=	2),	followed	by	land	use	(median	=	1.5)	and	demographic,	economic,	climatic,	400 

geologic/topographic,	and	SES	livelihood	datasets	(median	=	1).	Meanwhile	political,	ethnographic,	401 

and	hydrologic	datasets	were	infrequently	included	in	models	(median	=	0).		402 

Our	results	point	to	potential	tradeoffs	between	the	number	of	biophysical	datasets	used	and	model	403 

purpose	outcomes	related	to	system	understanding	and	learning/communication.	Models	with	404 

system	understanding	outcomes	used	significantly	higher	numbers	of	biophysical	datasets	(u	=	5.1)	405 

than	those	without	understanding	outcomes	(u	=	2.8,	p	<	0.02).	However,	models	with	learning	406 

outcomes	used	significantly	fewer	biophysical	datasets	(u	=	3.7)	compared	to	those	without	407 

learning	outcomes	(u	=	5.7,	p	<	0.00).	408 
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3.5	Extent	and	resolution	409 

Most	models	had	social	extent	at	the	regional	and	community	levels	and	social	resolution	at	either	410 

the	household	or	individual	level	(Figure	5).	No	models	had	coarser	than	a	regional	resolution.	We	411 

grouped	models	according	to	small	or	large	social	extent	as	well	as	fine	or	coarse	social	resolution,	412 

and	found	no	association	with	model	purpose	outcomes.	We	examined	patterns	between	social	and	413 

spatial	scale,	finding	that	regional-level	extent	corresponded	to	an	average	study	area	of	10,815	414 

km2	(SE±	4,855	km2)	and	community-level	extent	had	an	average	study	area	of	385	km2		(SE±	348	415 

km2).	We	also	found	the	average	resolution	was	0.54	km2	(SE±	0.31	km2)	for	household-level	416 

models,	and	0.22	km2	(SE±	0.09	km2)	for	individual-level	models.	However,	quantitative	417 

information	was	only	provided	by	69	papers	(93%)	for	spatial	extent	and	56	papers	(76%)	for	418 

spatial	resolution.		These	results	shed	light	on	how	SES	models	act	as	scalar	devices	by	integrating	419 

information	across	different	geographic	scales	into	more	compressed	representations	of	the	420 

system.		421 
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	422 

Figure	5.	The	number	and	percentage	of	models	at	each	extent	and	resolution	level.		423 

	424 

Only	seven	models	in	our	review	focused	on	a	single	scale	(i.e.,	had	the	same	extent	and	resolution),	425 

and	these	were	found	across	all	model	types	except	toy	models	(Figure	6).	Models	crossed	either	426 

one	(n=17,	23.0%),	two	(n=31,	41.9%),	three	(n=13,	17.6%),	four	(n=2,	2.7%),	or	five	(n=2,	2.7%)	427 

scales.	Bayesian	networks	tended	to	maintain	the	same	extent	and	resolution	(i.e.,	were	not	cross-428 

scalar),	and	system	dynamics	models	were	most	likely	to	cross	just	a	single	scale.	Of	all	the	model	429 

types,	only	ABMs,	ISMs,	and	mathematical	models	were	observed	to	cross	five	spatial	scales	430 

between	their	extent	and	resolution.	We	examined	whether	the	number	of	scales	crossed	between	431 

extent	and	resolution	impacted	model	outcomes,	but	found	no	significant	associations.	These	432 
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results	indicate	that	certain	model	types	may	be	more	useful	than	others	for	representing	highly	433 

cross-scalar	dynamics.	However,	the	number	of	scales	crossed	is	not	by	itself	an	adequate	measure	434 

of	what	constitutes	a	scalar	device,	because	a	higher	number	of	scales	crossed	does	not	appear	to	435 

support	higher	model	purpose	outcomes.		436 

	437 

Figure	6.	The	proportion	of	each	model	type	according	to	the	number	of	scales	crossed.		438 
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	439 

3.6	Public	participation,	stakeholder	diversity,	and	policy	or	planning	outreach	440 

Roughly	half	the	models	in	our	analysis	were	participatory	(n	=	38,	51.4%).	However,	only	21.6%	(n	441 

=	16)	demonstrated	any	direct	outreach	to	decision	makers	(e.g.,	through	a	presentation	of	results	442 

or	workshop).	We	found	higher	learning	outcomes	in	participatory	models	(p	<	0.00)	and	models	443 

with	policy	or	planning	outreach	(p	<	0.00).	While	not	significant,	decision	support	outcomes	were	444 

also	more	likely	with	participatory	models	(n=30,	79%)	compared	to	non-participatory	models	445 

(n=21,	58%).	Perhaps	unsurprisingly,	we	found	a	strong	association	between	decision	support	446 

outcomes	and	models	with	policy	or	planning	outreach	(p	<	0.00).	Finally,	we	found	a	significant	447 

association	between	outcomes	of	decision	support	and	levels	of	stakeholder	diversity,	indicating	448 

that	modeling	efforts	where	stakeholder	diversity	is	present	tend	to	have	higher	rates	of	decision	449 

support	compared	to	situations	where	stakeholder	diversity	is	not	present	or	not	addressed.		450 

Together,	these	results	support	our	characterization	of	SES	models	as	boundary	objects	that	invite	451 

successful	collaboration	(i.e.,	learning	or	decision	support)	between	diverse	actors	who	may	not	452 

otherwise	agree.		453 

4.	Discussion	454 

This	study	improves	our	understanding	of	how	SES	models	are	designed	and	applied	to	address	the	455 

rising	challenges	of	global	environmental	change,	using	mountains	as	a	representative	system.	In	456 

this	section,	we	discuss	the	results	outlined	above	by	drawing	on	the	concepts	of	boundary	objects	457 

and	scalar	devices	to	understand	how	SES	models	operate	as	appropriate	technology	(Table	1,	458 

Figure	1).	While	we	initially	proposed	that	appropriate	technology	for	SES	modeling	would	sit	at	459 

the	intersection	of	boundary	objects	and	scalar	devices,	our	results	stress	the	importance	of	SES	460 

models	functioning	as	boundary	objects	for	effective	transdisciplinary	work	to	occur.	Meanwhile,	461 
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crossing	multiple	temporal	and	spatial	scales	was	less	critical	for	appropriate	SES	modeling,	and	we	462 

encourage	modelers	to	instead	remain	flexible	and	sensitive	to	end	user	needs	and	contexts	when	463 

designing	models.	We	propose	four	guiding	principles	to	facilitate	the	development	of	SES	models	464 

as	appropriate	technology	for	transdisciplinary	applications:	(1)	increase	diversity	of	stakeholders	465 

in	SES	model	design	and	application	for	improved	collaboration,	(2)	balance	power	dynamics	466 

among	stakeholders	by	incorporating	diverse	knowledge	and	data	types,	(3)	promote	flexibility	in	467 

model	design,	and	(4)	bridge	gaps	in	decision	support,	learning,	and	communication.		468 

4.1	Increase	diversity	in	SES	model	design	and	application	for	improved	collaboration	469 

We	found	that	models	incorporating	diverse	stakeholders	through	public	participation	and	policy	470 

outreach	act	as	transdisciplinary	boundary	objects	by	supporting	higher	learning	and	decision	471 

support	outcomes.	For	example,	Anselme	et	al.	(2010)	used	an	agent-based	model	to	better	472 

understand	and	manage	high	biodiversity	habitats	threatened	by	shrub	encroachment	in	the	473 

French	Alps.	Through	this	collaborative	process,	a	forest	manager	came	to	appreciate	the	need	for	474 

genetic	diversity	in	the	forest	stands	he	was	managing,	leading	him	to	support	the	development	of	a	475 

“genetic	quality	index”	to	better	enable	managers	and	scientists	to	work	together.	Despite	strong	476 

learning	outcomes,	stakeholders	in	this	process	remained	skeptical	about	their	ability	to	influence	477 

policy	formation	at	higher	levels.	Smajgl	and	Bohensky	(2013)	took	a	more	targeted	approach	to	478 

influencing	policy	in	their	spatial	modeling	of	poverty	in	East	Kalimantan,	Indonesia.	They	worked	479 

directly	with	government	decision-makers	to	determine	the	optimal	level	for	petrol	prices	that	480 

would	enable	more	citizens	to	engage	in	high-income,	petrol-dependent	livelihoods	like	fishing	and	481 

honey	collection.	While	both	of	these	participatory	examples	had	high	outcomes	of	both	decision	482 

support	and	learning/communication,	they	differed	in	the	degree	to	which	they	targeted	specific	483 

policy	decisions	-	indicating	that	policy	outcomes	are	not	necessary	for	SES	models	to	function	as	484 

boundary	objects.			485 
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Models	used	in	conditions	of	high	stakeholder	diversity	tended	to	yield	higher	decision	support	486 

outcomes	compared	to	models	where	stakeholder	diversity	was	not	present	or	not	addressed.		487 

While	it	might	be	expected	that	situations	bringing	together	people	from	diverse	backgrounds	and	488 

perspectives	would	be	a	source	of	conflict,	examining	these	results	through	the	lens	of	boundary	489 

objects	highlights	how	SES	models	can	work	across	scientific	and	social	worlds	to	promote	490 

collaboration	without	requiring	consensus.	For	example,	Barnaud	et	al.	(2013)	examined	an	agent-491 

based	model	in	the	context	of	conflicting	ecological,	economic,	and	social	interests	among	492 

stakeholders	involved	in	land	management	in	Northern	Thailand.	The	collaborative	modeling	493 

process	encouraged	stakeholders	to	reframe	their	approach	to	the	conflict	and	“move	from	a	494 

distributive	to	an	integrative	model	of	negotiation”	(pg.	156)	by	setting	aside	the	question	of	park	495 

boundaries	for	a	time	and	instead	focusing	on	a	more	integrated	understanding	of	the	system	as	496 

represented	through	the	model.	This	enabled	them	to	find	potential	synergies	rather	than	focusing	497 

on	the	conflicting	interests	of	the	different	groups,	suggesting	the	process	of	creating	and	using	498 

models	as	boundary	objects	can	encourage	diverse	stakeholders	to	move	past	underlying	499 

disagreements	and	develop	workable	solutions.			500 

Overall,	participatory	models	were	strongly	represented	in	our	review,	indicating	that	these	501 

approaches	are	no	longer	on	the	periphery	of	SES	modeling	practice	in	mountains.	We	find	similar	502 

patterns	throughout	the	literature	(Voinov	and	Bousquet	2010;	Gray	et	al.	2017;	Jordan	et	al.	2019),	503 

indicating	that	the	field	of	participatory	modeling	is	maturing	rapidly	in	non-mountain	systems	as	504 

well.	Whether	by	design	or	not,	some	SES	models	have	functioned	as	boundary	objects	by	enabling	505 

the	integration	of	diverse	perspectives	without	sublimating	them.	Diverse	perspectives	are	at	the	506 

core	of	transdisciplinary	work,	as	multiple	viewpoints,	epistemologies,	and	values	are	needed	to	507 

holistically	understand	complex	SES	problems	and	devise	solutions	with	high	relevance	(Bernstein	508 

2015;	Hoffman	et	al.	2017;	Norström	et	al.	2020).	Diversity	has	also	been	shown	to	increase	the	509 

likelihood	of	innovation	in	collaborative	processes	(Paulus	and	Nijstad	2003).	As	SES	modeling	510 
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continues	to	gain	traction	as	a	tool	for	promoting	transdisciplinary	co-production	processes,	we	511 

urge	modelers	not	to	lose	sight	of	the	need	for	diverse	perspectives	in	the	design,	evaluation,	and	512 

application	of	the	model	so	that	they	can	act	as	boundary	objects,	and	thereby	enable	broader	513 

participation	and	understanding.		514 

4.2	Balance	power	dynamics	by	incorporating	diverse	knowledge	and	data	types	515 

While	models	with	diverse	participants	were	more	likely	to	facilitate	learning	and	cooperation,	this	516 

did	not	necessarily	translate	to	more	diverse	types	of	knowledge	populating	the	models	themselves.	517 

The	knowledge	infrastructure	that	supports	SES	modeling	currently	favors	quantitative	data	and	518 

modeling	approaches	over	qualitative	forms	(Elsawah	et	al.	2019).	In	fact,	there	are	pervasive	519 

epistemological	gaps	regarding	what	is	even	considered	“data”	across	the	natural	and	social	520 

sciences,	much	less	how	to	analyze	or	validate	them	(Verburg	et	al.	2016;	Chakraborty	et	al.	2019).	521 

Our	results	confirm	this	gap	by	showing	that	scientists	frequently	try	to	understand	SES	through	522 

the	use	of	pre-existing	datasets,	the	majority	of	which	are	biophysical	rather	than	social.	By	not	523 

integrating	social	data,	these	models	are	less	likely	to	reach	across	multiple	social	worlds	and	thus	524 

less	likely	to	function	as	boundary	objects.	One	reason	for	this	might	be	the	perception	that	525 

qualitative	data	are	exorbitantly	expensive	in	terms	of	the	time	and	cost	of	data	collection	and	526 

processing	(Alexander	et	al.	2019;	Elsawah	et	al.	2019).	This	may	reflect	a	broader	SES	modeling	527 

epistemology	that	seeks	to	predict	and	generalize	to	other	systems	rather	than	engage	in	expensive	528 

and	time-consuming	processes	at	local	scales	that	lack	transferability	to	other	sites	or	systems	529 

(O’Sullivan	et	al.	2016).	Another	reason	may	be	that	quantitative	data	are	easier	to	incorporate	into	530 

computer-based	models.	Indeed,	we	find	that	quantitative	demographic	and	economic	data	are	the	531 

most	commonly	used	social	datasets	in	SES	models,	while	ethnographic,	descriptively	rich	data	are	532 

incorporated	into	very	few	studies.	However,	it	is	possible	that	modelers	may	be	using	qualitative	533 
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data	without	reporting	it	in	their	papers	-	for	example,	to	conceptualize	(rather	than	parameterize)	534 

the	model.		535 

There	is	clear	evidence	that	qualitative	data	can	help	place	modeling	results	in	a	broader	context,	536 

thus	enhancing	a	models’	ability	to	function	as	a	scalar	device.	For	example,	Altaweel	et	al.	(2009)	537 

demonstrated	that	Arctic	peoples’	decisions	about	where	to	source	their	water	impacted	their	538 

perceptions	of	system-wide	ecological	change,	which	could	in	turn	support	or	restrict	their	ability	539 

to	adapt	to	climate	change	in	a	timely	manner.	Including	qualitative	data	can	also	help	overcome	540 

widely	acknowledged	shortcomings	of	SES	models,	such	as	the	lack	of	adequate	complexity	in	541 

representing	individual	decision-making	and	behavior	(Müller	et	al.	2013;	Brown	et	al.	2013;	542 

Preston	et	al.	2015;	Schlüter	et	al.	2017;	Groeneveld	et	al.	2017)	and	the	ways	in	which	subjective	543 

processes	associated	with	human	agency	and	intentionality	(i.e.,	culture	and	politics)	drive	the	544 

evolution	of	social	rules	and	positions	(Manuel-Navarrete	2015).	There	is	some	evidence	from	our	545 

analysis	to	support	this.	For	example,	Rogers	et	al.	(2012)	used	ethnographic	understanding	of	546 

Mongolian	pastoral	kinship	affinities	to	demonstrate	that	weather	impacts	(both	snowstorms	and	547 

drought)	nearly	double	in	severity	due	to	strained	social	relationships	under	conditions	of	548 

restricted	movement.	Without	this	detailed	understanding	of	social	networks	and	pressures,	their	549 

model	likely	would	have	underestimated	the	impact	of	extreme	weather	events	on	the	well-being	of	550 

pastoral	communities.	Ethnographic	and	narrative	studies	of	life	trajectories	can	thus	help	clarify	551 

how	humans	construct	their	identities	and	social	positions	over	time,	encouraging	SES	models	to	552 

move	away	from	purely	structural	or	static	rule-based	interactions	among	model	agents	(Manuel-553 

Navarrete	2015).	Qualitative	descriptions	can	also	aid	in	the	communication	of	SES	model	results,	554 

as	narratives	have	been	shown	to	foster	greater	appreciation	of	simulation	models	by	non-555 

modelers	when	compared	to	aggregated,	statistical	summaries	(Millington	et	al.	2012).			556 
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We	also	found	that	models	using	higher	numbers	of	biophysical	datasets	were	associated	with	557 

higher	system	understanding	outcomes	but	lower	learning/communication	outcomes.	For	example,	558 

Briner	et	al.	(2013)	found	that	biological	interdependencies	were	the	most	influential	factor	causing	559 

trade-offs	between	ecosystem	services	in	the	Swiss	Alps,	acknowledging	that	economic	and	560 

technological	interdependencies	were	under-represented	in	their	analysis	and	would	benefit	from	561 

further	exploration.	They	articulated	how	this	improved	system	understanding	could	theoretically	562 

benefit	management	and	policy,	but	fell	short	of	describing	any	clear	learning	outcomes	563 

experienced	by	practitioners	on	the	ground.		564 

Still,	our	analysis	shows	that	biophysical	datasets	are	a	common	and	useful	tool	for	understanding	565 

cross-scale	processes	in	SES	models.	Yet,	as	Callon	and	Latour	(1981)	note,	scale	is	not	just	about	566 

moving	across	space	and	time	-	it	is	also	about	translation	and	power.	Our	review	of	SES	models	567 

then	raises	the	question	-	whose	system	understanding	is	being	(re)produced	by	SES	models	with	568 

high	biophysical	focus?	And	who	is	benefitting?	An	example	from	Alaska	(not	included	in	our	model	569 

review)	illustrates	that	while	participants	in	a	modeling	workshop	collaborated	through	570 

engagement	with	a	largely	biophysical	model,	there	was	a	lack	of	formal	avenues	for	incorporating	571 

different	observations	or	data	types	deemed	valuable	by	local	and	Indigenous	residents	into	the	572 

model	(Inman	et	al.	in	review).	While	public	participation	in	the	modeling	process	may	have	573 

encouraged	learning	about	scientific	concepts	and	collaboration	through	the	model	as	a	boundary	574 

object,	this	would	be	a	unidirectional	form	of	learning	as	scientists	were	less	likely	to	incorporate	575 

other	types	of	data	or	knowledge	into	the	model.	This	unidirectional	learning	is	problematic	given	576 

the	historical	tendency	for	scientists	to	attempt	to	validate	other	forms	of	knowledge	without	577 

respecting	their	unique	epistemologies	(Agrawal	1995;	Nadasdy	1999;	Latulippe	2015;	578 

Chakraborty	et	al.	2019).	Therefore,	SES	models	that	bring	diverse	people	together	while	still	579 

representing	only	a	narrow	fraction	of	the	knowledge	types	involved	are	not	functioning	as	580 

appropriate	technology.		581 
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Local	ecological	knowledge	can	provide	highly	detailed	understanding	to	overcome	barriers	in	582 

understanding	and	representing	social	processes	in	SES	models.	Local	knowledge	may	be	583 

particularly	useful	in	data-poor	regions	around	the	world,	including	mountains	(Ritzema	et	al.	584 

2010).	For	example,	Lippe	et	al.	(2011)	used	qualitative	expert	knowledge	to	parameterize	a	land	585 

use	model	in	Northwest	Vietnam,	enabling	a	more	accurate	portrayal	of	farmers’	cropping	choices.	586 

Moreover,	local	knowledge	itself	can	act	as	a	scalar	device,	as	knowledge	that	is	transmitted	across	587 

generations	can	enhance	system	understanding	across	temporal	scales	(Moller	et	al.	2004;	Gagnon	588 

and	Berteaux	2009).	Though	not	a	modeling	study,	Klein	et	al.	(2014)	found	that	Tibetan	589 

pastoralists	who	travel	further	from	their	home	base	to	higher	elevations	while	herding	showed	590 

more	consensus	around	climate	change	and	added	valuable	spatial	data	beyond	what	was	available	591 

from	the	scant	meteorological	stations	in	the	region.		592 

It	is	not	yet	clear	whether	more	balanced	inclusion	of	social	data	and	local	knowledge	could	resolve	593 

the	apparent	trade-off	between	system	understanding	and	learning/communication,	or	whether	594 

learning	is	more	dependent	on	the	modeling	process	regardless	of	the	datasets	and	knowledge	595 

types	used.	It	is	also	not	yet	clear	how	to	integrate	different	knowledge	types	into	models	without	596 

privileging	certain	ways	of	knowing.	We	encourage	future	research	into	these	questions,	and	urge	597 

modelers	to	remain	cognizant	of	biases	towards	disciplinary	datasets	and	of	power	imbalances	in	598 

the	types	of	knowledge	used	and	how	these	might	impact	participant	learning.	Studies	that	examine	599 

the	kinds	of	learning	experienced	by	participants	are	needed	to	ensure	that	learning	occurs	as	a	600 

mutual	and	reflexive	process	among	the	diverse	groups	of	people	involved	(Keen	et	al.	2005;	Reed	601 

et	al.	2010;	Fernández-Giménez	et	al.	2019).	Qualitative	social	science	approaches	play	a	powerful	602 

role	in	understanding	not	just	what	people	want	or	what	they	value,	but	who	they	are	(Callon	and	603 

Latour	1981),	and	should	therefore	be	granted	a	more	central	role	in	transdisciplinary	SES	604 

modeling	design	and	application.	605 
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4.3	Promote	flexibility	in	model	design	606 

Modelers	make	a	distinction	between	“complicatedness”	and	“complexity”	in	SES	models	(Sun	et	al.	607 

2016).	When	model	structures	have	large	numbers	of	variables	or	when	processes	are	represented	608 

by	highly	detailed	rules	and/or	equations,	these	models	are	said	to	have	high	complicatedness	(Sun	609 

et	al.	2016).	Meanwhile,	model	complexity	refers	to	the	simulated	behaviors	that	emerge	at	the	610 

system	level	through	application	of	the	model,	which	can	occur	even	from	quite	simple	models	611 

(Conway	1970;	Schelling	1971).	The	aim	is	for	all	SES	models	to	mimic	some	degree	of	real-world	612 

complexity	(Balbi	and	Guipponi	2010).	However,	modelers	still	debate	how	complicated	a	model	613 

needs	to	be	in	order	to	facilitate	this	emergent	complexity	and	support	decision-making	outcomes.		614 

Typically,	modelers	seek	the	benefits	of	highly	stylized	models	for	testing	theories	and	yielding	615 

generalizable	results,	while	highly	detailed	models	are	praised	for	their	utility	in	supporting	616 

decision	making	in	complex,	real-world	situations	(Smajgl	et	al.	2011).	Parker	et	al.	(2003)	617 

distinguishes	between	highly	stylized	simple	“Picasso”	models	and	highly	detailed	empirical	618 

“photograph”	models,	while	others	describe	them	as	the	“KISS:	Keep	it	Simple,	Stupid”	(Axelrod	619 

1997)	versus	the	“KIDS:	Keep	it	Descriptive,	Stupid”	approaches	(Edmonds	and	Moss	2004).	Some	620 

modelers	and	decision-makers	prefer	ensemble	modeling,	integrating	multiple	diverse	models,	621 

algorithms,	and	datasets	to	produce	a	single	set	of	recommendations	(Elder	2018).	In	short,	there	622 

are	modelers	who	believe	the	more	complicated	a	model	is,	the	better	it	can	be	used	for	decision	623 

support	and	stakeholder	learning	(Barthel	et	al.	2008).	624 

Yet,	our	results	do	not	support	these	distinctions	in	disparate	benefits	from	different	levels	of	625 

model	complicatedness,	and	challenge	the	idea	that	a	model	needs	to	be	highly	complicated	in	626 

order	to	advance	societal	objectives.	Fine-scale	SES	models	in	our	review	were	not	more	likely	than	627 

coarse-scale	models	to	report	greater	model	purpose	outcomes.	Furthermore,	we	found	that	628 

models	that	represent	processes	occurring	across	multiple	scales	were	not	more	likely	to	support	629 
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higher	outcomes	than	those	focusing	on	processes	operating	at	a	single	scale.	We	found	no	evidence	630 

of	improved	or	diminished	decision	support	when	higher	numbers	of	modeling	approaches	were	631 

used	concurrently	in	the	same	study	(as	in	ensemble	modeling),	or	when	more	datasets	were	used.			632 

These	results	further	support	our	assertion	that	in	order	to	function	as	appropriate	technology	in	633 

transdisciplinary	applications,	SES	models	ought	to	be	designed	as	boundary	objects	to	address	a	634 

specific	information	need	presented	by	a	societal	problem.	We	recommend	that	modelers	635 

repeatedly	reflect	on	the	needs	of	their	system	and	diverse	end	users	when	considering	the	scale	636 

and	choice	of	modeling	approach,	rather	than	assuming	finer-scale	or	highly	complicated	models	637 

will	necessarily	yield	superior	results.	Viewing	these	results	through	the	lens	of	scalar	devices,	we	638 

encourage	SES	modelers	to	remain	flexible	in	the	ways	they	represent	cross-scalar	processes	in	639 

their	models,	and	to	consider	in	advance	how	their	choice	of	scale	might	enable	or	constrain	640 

collaboration	among	participants	-	that	is,	how	scale	itself	functions	as	a	boundary	object.		641 

Researchers	are	still	in	the	early	stages	of	empirically	measuring	how	the	design	and	application	of	642 

modelling	and	data	visualization	tools	relate	to	non-technical	stakeholders’	capacity	to	contribute	643 

meaningfully	to	collaborative	planning	processes	(Zellner	et	al.	2012;	Radinsky	et	al.	2017).	There	644 

is	some	indication	that	models	and	tools	that	encourage	active,	energetic	dialogue	without	645 

overwhelming	participants	with	information	(Pelzer	et	al.	2015)	are	best	suited	for	these	646 

applications.	Recent	research	has	shown	that	participatory	modelers	often	use	the	modeling	647 

approaches	they	are	most	familiar	with,	rather	than	objectively	selecting	“the	best	tools	for	the	job”	648 

(Voinov	et	al.	2018).	Our	results	seem	to	confirm	this,	as	we	do	not	see	any	evidence	of	a	particular	649 

modeling	type	or	scale	yielding	higher	model	purpose	outcomes.		For	example,	our	analysis	650 

demonstrates	systems	dynamics	models	usually	have	high	societal	orientation,	but	not	necessarily	651 

the	high	learning	and	decision	support	outcomes	proposed	by	other	reviews	(Schlüter	et	al.	2019).	652 

Our	finding	that	decision	support	outcomes	are	higher	when	cellular	automata	models	are	not	used	653 
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aligns	with	previous	insights	into	the	limited	utility	of	these	approaches	for	certain	contexts	(NRC	654 

2014).	Yet,	nearly	half	the	models	in	our	review	were	a	combination	of	agent-based	models	and	655 

cellular	automata	models,	highlighting	the	popularity	and	flexibility	of	these	particular	model	types	656 

for	representing	complex	SES	-	something	anticipated	nearly	two	decades	ago	(Parker	et	al.	2003;	657 

Verburg	et	al.	2004).	Additional	empirical	studies	are	needed	in	the	context	of	SES	models	for	658 

transdisciplinary	applications	to	clarify	whether	particular	modeling	approaches	or	scales	can	best	659 

function	as	boundary	objects.	660 

These	findings	contribute	to	ongoing	debates	about	the	level	of	complicatedness	needed	for	SES	661 

models	to	support	learning	and	decision	making.	Multiple	modeling	paradigms	have	emphasized	662 

the	benefits	that	emerge	from	achieving	an	intermediate	level	of	model	complicatedness.	Grimm	et	663 

al.	(2005)	present	this	as	the	“Medawar	zone,”	describing	that	models	are	most	useful	when	design	664 

is	guided	by	multiple	patterns	observed	at	different	scales	and	hierarchical	levels.	Meanwhile,	665 

members	of	the	Companion	Modeling	network	have	articulated	a	“KILT:	Keep	It	a	Learning	Tool”	666 

approach	that	advocates	for	slightly	less	complicated	models	than	the	Medawar	zone	in	order	to	667 

allow	diverse	stakeholders	to	connect	with	the	system	on	their	own	terms	(Le	Page	and	Perrotton	668 

2018).	O’Sullivan	et	al.	(2016)	have	similarly	argued	that	mid-range	complicatedness	is	often	the	669 

optimal	or	appropriate	level.	Yet,	our	results	do	not	necessarily	support	these	hypotheses	in	all	670 

circumstances.	For	example,	we	find	that	highly	context-specific	models	lead	to	higher	learning	671 

outcomes,	but	this	does	not	necessarily	mean	finer-scale	data	or	model	resolution	are	required.	672 

Meanwhile,	decision	support	seems	to	be	best	supported	at	intermediate	(not	low	or	high)	levels	of	673 

generalizability.	We	encourage	more	explicit	attention	to	the	assessment	of	participant	learning	and	674 

decision	support	in	future	modeling	efforts	to	help	resolve	these	debates	and	advance	our	675 

understanding	of	the	role	of	scale	in	SES	models	functioning	as	appropriate	technology.		676 

4.4	Bridge	institutional	gaps	for	decision	support,	learning,	and	communication		677 
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For	SES	models	to	act	as	appropriate	technology	for	transdisciplinary	work,	they	must	support	678 

decision-making	processes	and	learning	for	real-world	applications.	This	can	be	accomplished	by	679 

ensuring	that	models	act	as	transdisciplinary	boundary	objects	and	facilitate	cross-scalar	learning	680 

as	scalar	devices.	Our	review	revealed	considerable	gaps	between	the	intentions	and	outcomes	of	681 

SES	models	for	these	purposes.	The	gap	in	decision	support	stemmed	from	failing	to	achieve	or	682 

report	outcomes	that	matched	the	intended	model	purpose,	while	learning/communication	683 

outcomes	were	rarely	even	intended	by	most	models	in	our	review.	While	interviews	with	684 

modelers	themselves	may	help	us	better	understand	these	gaps,	integrating	societal	goals	into	685 

model	design	and	application	could	be	one	approach	to	improving	transdisciplinary	applications	of	686 

SES	models.	Yet,	this	may	be	difficult	for	modelers	to	achieve	due	to	the	current	knowledge	687 

infrastructure	surrounding	the	modeling	process.	One	issue	is	the	stigma	sometimes	attributed	to	688 

“applied”	research,	or	the	false	dichotomy	between	“applied”	and	“basic”	research	that	seems	to	689 

resist	simultaneous	advances	in	theoretical	and	pragmatic	fronts	(Stokes	1997).	Indeed,	we	did	not	690 

find	any	models	in	our	review	that	supported	high	scientific	as	well	as	high	societal	orientation	-	691 

although	Brunner	et	al.	(2016a)	and	Smajgl	and	Bohensky	(2013)	came	close	to	achieving	this.	Both	692 

modeling	efforts	incorporated	and	explored	specific	policy	interventions	while	advancing	theory	693 

and	methodologies	in	the	field	of	SES	modeling,	indicating	a	path	forward	for	joint	basic	and	applied	694 

research	in	SES	modeling.			695 

Another	infrastructural	barrier	is	that	some	modelers	do	not	appreciate	the	value	of	investing	time	696 

and	money	in	knowledge	co-production	processes,	particularly	if	their	funding	mechanisms	and	697 

career	advancement	do	not	reward	this	kind	of	engagement	with	stakeholders.	There	is	some	698 

evidence	that	this	is	changing,	as	large-scale	funding	initiatives	such	as	the	Global	Challenges	699 

Research	Fund,	the	Belmont	Forum,	and	Future	Earth	require	close	partnerships	between	700 

researchers	and	decision	or	policy-makers	(Mauser	et	al.	2013;	Suni	et	al.	2016).	Researchers	also	701 

typically	operate	on	slower	time	scales	than	societal	problems,	which	may	be	a	source	of	frustration	702 
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for	communities	experiencing	severe	economic	and	ecological	consequences	from	global	703 

environmental	change.	These	barriers	require	institutional	changes	to	facilitate	and	reward	704 

modelers’	engagement	with	societal	challenges,	and	we	encourage	modelers	to	begin	making	705 

incremental	changes	towards	this	goal	within	their	own	projects	and	institutions.		706 

5.	Conclusions	707 

This	study	improves	our	understanding	of	how	SES	models	can	be	more	appropriately	designed	708 

and	applied	to	fit	transdisciplinary	approaches,	both	in	mountains	and	other	SES.	First,	we	found	709 

that	diversity	among	the	participants	involved	in	modeling	can	lead	to	improved	collaboration	and	710 

cooperation	for	real-world	problem	solving.	As	global	environmental	change	increases	the	need	to	711 

collaborate	across	diverse	groups	for	sustainable	outcomes	in	SES,	we	encourage	modelers	to	take	712 

the	time	to	build	stronger	relationships	across	academic	disciplines	and	social	worlds.	Second,	we	713 

found	that	diverse	participation	does	not	necessarily	translate	into	diverse	knowledge	and	data	714 

being	incorporated	into	the	model.	This	suggests	that	modelers	must	pay	closer	attention	to	issues	715 

of	power	when	using	SES	models	as	boundary	objects,	and	specifically	how	diverse	perspectives	are	716 

translated	and	incorporated	into	the	final	model	product,	or	excluded	from	it.	Third,	we	find	that	717 

flexibility	in	model	design	is	a	key	element	for	employing	SES	models	as	scalar	devices	in	718 

transdisciplinary	applications,	as	the	context	of	the	modeling	effort	is	of	greater	consequence	than	719 

the	technical	complicatedness	of	the	model.	As	STS	scholars	continue	to	develop	the	scalar	devices	720 

concept	into	an	analytical	tool,	we	encourage	more	explicit	engagement	with	questions	of	721 

knowledge	translation	and	power.	Finally,	we	highlight	some	institutional	barriers	that	may	be	722 

inhibiting	SES	modelers	from	long-term,	place-based	engagement	in	societal	issues.	Creating	SES	723 

models	that	are	appropriate	technology	for	transdisciplinary	applications	will	require	advanced	724 

planning,	increased	funding	and	attention	to	the	role	of	diverse	data	and	knowledge,	and	stronger	725 

partnerships	across	disciplinary	divides.	Highly	contextualized	participatory	modeling	that	726 
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embraces	diversity	in	both	data	and	actors	appears	poised	to	make	strong	contributions	to	the	727 

world’s	most	pressing	environmental	challenges.				728 

	 	729 
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