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Abstract The capability to forecast conditions in the mesosphere and lower thermosphere is

investigated based on 30-day hindcast experiments that were initialized bimonthly during 2009 and 2010.

The hindcasts were performed using the Whole Atmosphere Community Climate Model with

thermosphere-ionosphere eXtension (WACCMX) with data assimilation provided by the Data Assimilation

Research Testbed (DART) ensemble Kalman filter. Analysis of the WACCMX+DART hindcasts reveals

several important features that are relevant to forecasting the middle atmosphere. The results show a clear

dependence on spatial scale, with the slowest error growth occurring in the zonal mean and the fastest

error growth occurring for small-scale waves. The error growth rate is also found to be significantly greater

in the upper mesosphere and lower thermosphere compared to in the upper stratosphere to lower

mesosphere, suggesting that the forecast skill decreases with increasing altitude. The results demonstrate

that the errors in the lower thermosphere reach saturation, on average, in less than 5 days, at least with the

current version of WACCMX+DART. A seasonal dependency to the error growth is found at high latitudes

in the Northern and Southern Hemispheres but not in the tropics or global average. We additionally

investigate the error growth rates for migrating and nonmigrating atmospheric tides and find that the

errors saturate after ∼5 days for tides in the lower thermosphere. The results provide an initial assessment

of the error growth rates in the mesosphere and lower thermosphere and are relevant for understanding

how whole atmosphere models can potentially improve space weather forecasting.

Plain Language Summary The ionosphere and thermosphere are known to vary

significantly from day to day, and this day-to-day weather is driven by processes originating in the lower

atmosphere (below 50 km), especially during periods of quiet solar activity. Accurate forecasting of the

ionosphere-thermosphere variability thus partially depends on the ability to forecast the component that

originates in the lower atmosphere. This study makes use of recent developments in whole atmosphere

models to provide the first comprehensive investigation of current capabilities to forecast the lower

atmospheric drivers of ionosphere-thermosphere day-to-day variability. We evaluate the error growth of a

whole atmosphere-ionosphere model with data assimilation (WACCMX+DART) at altitudes (60–120 km)

that are relevant for generating the day-to-day variability in the ionosphere and thermosphere. We

demonstrate that the error growth rate is larger at higher altitudes, and for smaller spatial scales.

Furthermore, it is found that, on average, the error growth in the primary drivers of spatial and temporal

variability in the ionosphere saturates after approximately 5 days. The forecast skill of the ionosphere is

typically thought to be less than 24 hr; however, the present study illustrates that the forecast skill of the

ionosphere can potentially be increased by incorporating forecasts of the lower atmospheric drivers.

1. Introduction

The ability to forecast conditions in the ionosphere and thermosphere is of increasing relevance due

to a growing dependence upon space-based assets, as well as satellite communications and navigation.

The ionosphere and thermosphere represent a primarily externally driven system, meaning that accurate
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predictions of ionosphere and thermosphere variability require predictions of the external drivers (e.g.,

Siscoe & Solomon, 2006). Considerable efforts have focused on forecasting solar wind conditions, and the

magnetosphere-ionosphere coupling that can drive large disturbances in the ionosphere and thermosphere

(Cash et al., 2015; Glocer et al., 2016; Liemohn et al., 2018; Merkin et al., 2007; Morley et al., 2018; Owens

et al., 2014). The ionosphere and thermosphere are also driven by the ubiquitous waves that propagate

upwards from the lower atmosphere (troposphere and stratosphere), as well as those that are generated

in situ due to wave dissipation and wave-wave interactions. These waves drive ionosphere and thermo-

sphere variability across a range of spatial and temporal scales, ranging from minutes to days and 10 to

1,000 s of kilometers (Liu, 2016). They may also influence how the ionosphere and thermosphere respond

to geomagnetic storms (Hagan et al., 2015; Pedatella & Liu, 2018).

Relatively little is known about the current capabilities to forecast conditions in the mesosphere and lower

thermosphere (MLT). This is despite the fact that the variability in the MLT is an important driver of

ionosphere and thermosphere variability. The predictability and error growth characteristics of the MLT

were investigated by Liu et al. (2009) and Smith et al. (2017) using the Whole Atmosphere Community

Climate Model (WACCM). Both studies found that inability to constrain small-scale waves is an impor-

tant source of the error growth. Liu et al. (2009) also found that the predictability depends on season and

altitude, with largest error growth occurring in the high latitude, wintertime, MLT. It is important to note

that both Liu et al. (2009) and Smith et al. (2017) investigated the predictability of the MLT using what are

often referred to as perfect model experiments, which neglect aspects such as errors in initial conditions

and model errors that would be present in true forecasts. They thus provide what may be considered as an

upper limit on the potential forecast skill at MLT altitudes. Nezlin et al. (2009) investigated the MLT pre-

dictability based on assimilating observations in the lower atmosphere and found that the assimilation of

troposphere and stratosphere observations leads to MLT predictability on large scales. It should, however,

be noted that this conclusion is based on reproducing a simulated truth and that the control of the MLT by

the troposphere-stratosphere was partly disputed by Smith et al. (2017), who found that there is less control

of the MLT by the troposphere-stratosphere in a model with more complex gravity wave drag parameter-

ization. More realistic hindcasts of the middle and upper atmosphere variability during the 2009 sudden

stratospheric warming (SSW) time period were performed by Wang et al. (2014) and Pedatella et al. (2018).

Both studies found that the SSW, and resulting effects in theMLTand ionosphere, could be forecast 5–10 days

in advance of the SSW central date, defined as the reversal of the zonal mean zonal winds at 10 hPa and

60◦ N. Though illustrating the potential of extremely good forecast skill in the MLT, these studies may not

be wholly representative since SSWs can be forecast 5-15 days in advance (e.g., Karpechko, 2018; Tripathi

et al., 2015), and they produce large disturbances in the middle and upper atmosphere.

The development of models with data assimilation capabilities that extend into the lower thermosphere

enables initialization of forecasts that extend into the MLT. Examples of such models include the Cana-

dian Middle Atmosphere Model (CMAM; Nezlin et al., 2009; Polavarapu et al., 2005; Ren et al., 2011),

the Navy Operational Global Atmosphere Prediction System—Advanced Level Physics High Altitude

(NOGAPS-ALPHA) and Navy Global Environment Model (NAVGEM; Eckermann et al., 2009, 2018),

WACCM (Pedatella et al., 2014), and theWhole AtmosphereModel (WAM;Wang et al., 2012). Though these

models all extend into the MLT, they use different data assimilation techniques. It should also be noted that

not all assimilate MLT observations, potentially limiting the fidelity of analyses and forecasts of the MLT.

To date, these systems have primarily been used for research studies based on their high-quality analysis

fields (e.g., France et al., 2018; Gu et al., 2016; Lieberman et al., 2015; Siskind et al., 2011). The extent that

they have been used to investigate forecast skill in the MLT is limited to the previously mentioned SSW case

studies (Pedatella et al., 2018; Wang et al., 2014), or short-term (6 hr) observation minus forecast statistics

(Hoppel et al., 2013; Nezlin et al., 2009).

The present study provides the first thorough evaluation of the error growth in the MLT using a

set of initialized hindcast experiments. Using the Whole Atmosphere Community Climate Model with

thermosphere-ionosphere eXtension (WACCMX) with data assimilation provided by the Data Assimilation

Research Testbed (DART) ensemble Kalman filter, we present the analysis of 30-day ensemble hindcasts

that were initialized on the 1st and 15th of each month during 2009 and 2010. The hindcast experiments

are used to investigate various aspects of the error growth in the middle atmosphere, including the altitude,

season, and scale-size dependence. The error growth of atmospheric tides is also investigated. The results
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Figure 1.WACCM-X vertical resolution in log(p) coordinates as a function
of height.

provide insight into the current capabilities of WACCMX+DART to

potentially forecast conditions in the middle atmosphere.

The remainder of the paper is organized as follows. In section 2 WAC-

CMX+DART is described along with the configuration for the hindcast

experiments. Results are presented in section 3 and are discussed in

section 4. Conclusions of the study are given in section 5.

2. WACCMX+DART Analysis and Hindcast
Experiments

An identical setup as Pedatella et al. (2018) is used to generate the WAC-

CMX+DART analysis fields and to perform the hindcast experiments.

The main aspects of WACCMX+DART are summarized in the following,

and the reader is referred to Pedatella et al. (2018) for additional details.

The forecast model is WACCMX version 2.0 (Liu et al., 2018), which is

a whole atmosphere general circulation model extending from Earth's

surface to the upper thermosphere (4.1 ×10−10 hPa,∼500–700 km).WAC-

CMXversion 2.0 is based onWACCMversion 4 (Marsh et al., 2013),which

extends the Community Atmosphere Model (CAM) version 4 (Neale

et al., 2013) into the lower thermosphere. The model horizontal resolu-

tion is 1.9◦ in latitude and 2.5◦ in longitude. In the vertical direction,

WACCMX uses a hybrid 𝜎-p coordinate system and is purely pressure

based above 100 hPa. The vertical resolution in log(p) coordinates varies

from ∼0.16 in the troposphere and lower stratosphere to 0.25 in the

mesosphere and thermosphere (Figure 1).

The data assimilation is performed using the DART ensemble adjustment Kalman filter (Anderson, 2001;

Anderson et al., 2009). Similar to previous studies (Pedatella et al., 2014; Pedatella et al., 2018), the WAC-

CMX+DART experiments in the present study are performed using 40 ensemble members. Spatially and

temporally varying adaptive inflation (Anderson, 2009) is applied, with the inflation damping set to 0.7 and

lower bound of 0.6 for the inflation standard deviation. The assimilation frequency is 6 hr. The observa-

tions assimilated include conventional meteorological observations (i.e., aircraft temperatures, radiosonde

temperatures, and winds), Global Positioning System (GPS) radio occultation refractivity, and temperature

observations from the Aura Microwave Limb Sounder (MLS) and Thermosphere Ionosphere Mesosphere

Energetics Dynamics (TIMED) satellite Sounding of the Atmosphere using Broadband Emission Radiome-

try (SABER) instrument. Due to the bias between SABER and MLS temperatures (e.g., Hoppel et al., 2008),

we adjust the SABER temperatures based on the altitude-dependent mean difference between SABER and

MLS temperature observations.

The present study focuses on the 2009–2010 time period, a deep solar minimum period when the upper

atmosphere is expected to be significantly influenced by coupling with the lower atmosphere. WAC-

CMX+DART analysis fields were generated from 1 December 2008 to 31 December 2010. The initial

ensemble was produced by adding small perturbations to the temperature and wind fields from a sin-

gle instance, free-running, transient WACCMX simulation on 1 October 2008. The analysis fields were

used as initial conditions to perform 30-day hindcasts initialized on the 1st and 15th of each month from

January 2009 to December 2010, with the exception that we do not perform a hindcast initialized on 15

December 2010. We thus include a total of 47 hindcast experiments in the present analysis. The hindcasts

were performed as initialized, free-running, WACCMX simulations, and no additional perturbations or

inflation were applied during the 30-day hindcast period. Note that each hindcast consisted of 40 ensem-

ble members, though we primarily limit our analysis to the ensemble means in the present study. The

hindcast experiments use analyzed sea surface temperatures (SSTs) (Hurrell et al., 2008) that are unper-

turbed, and identical to those used in the WACCMX+DART analysis experiments. This may lead to a slight

improvement in the hindcasts compared to true forecasts. However, for the time range investigated in the

present study (<30 days), the forecast skill of SSTs is high (Sooraj et al., 2012), and we thus anticipate any

impact of using analyzed SSTs instead of forecast SSTs to be small. The sea ice is also prescribed in the hind-

cast experiments, and the landmodel is coupled to the atmosphere. As in Pedatella et al. (2018), the hindcast
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Figure 2. Root mean square error (top) and bias (model observation; bottom) of WACCMX+DART hindcast
experiments verified against Aura MLS temperature observations at different altitudes. Results are based on the median
of all hindcast experiments.

experiments use 27-day lagged solar and geomagnetic activity, which are parameterized by the F10.7-cm

solar radio flux and geomagnetic Kp index, respectively. Note that this is equivalent to a persistence fore-

cast of solar and geomagnetic activity based on the average solar rotation period. Differences between the

true and forecast solar and geomagnetic activity should haveminimal influence on the results of the present

study, though they would be relevant at higher altitudes.

The identical model configuration is used for both the analysis and hindcast experiments. That is, we

use the same WACCMX dynamics, chemistry, and physics. To reduce the impact of small-scale waves

introduced by the data assimilation adjustments, Pedatella et al. (2018) added additional second-order diver-

gence damping (Lauritzen et al., 2012) to the existing fourth-order divergence damping in WACCMX. The

second-order divergence damping coefficient (𝜏) used inWACCMX+DART is given by 𝜏 =
1

128
max{1, 4[1+

tanh(log( 10
−4

pk
)]}, where pk is the pressure in hPa at the center of the model level. The additional damping

is included for model stability, and to reduce the additional mixing due to small-scale waves that leads to

a decrease in thermosphere O/N2 and ionosphere electron density. The second-order divergence damping

is also applied in the hindcast experiments. This may lead to greater damping in the hindcast experiments

than necessary and has potential implications on the hindcasts, especially since the small-scale waves

introduced by the data assimilation decay after a few days. Global-scale waves may also be overly damped in
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Figure 3. Global root mean square error and total spread for radiosonde
temperature at 500 hPa (top) and Aura MLS temperature at 0.01 hPa
(bottom). Results are based on the median of all hindcast experiments.

the hindcast experiments since the extra damping is no longer compen-

sated by the assimilation of satellite observations in the MLT.

3. Results

The root mean square error (RMSE) and bias (model observation) of the

WACCMX+DART hindcasts relative to Aura MLS temperature observa-

tions in the stratosphere and mesosphere are shown in Figure 2. The

RMSE here, and throughout the remainder of the paper, is calculated

without removal of the mean. The results are separated by region, and

the results in Figure 2 are the median of all of the hindcast experiments.

The regions are defined as global (90◦ S-90◦ N), tropics (20◦ S-20◦ N),

Northern Hemisphere (60–90◦ N), and Southern Hemisphere (60–90◦ S)

high latitudes. Note that the results in Figure 2 are based on all avail-

able Aura MLS temperature profiles, and the vertical averaging kernel of

the Aura MLS observations is not considered in this comparison (or in

the assimilation of the MLS temperature observations). Aura MLS obser-

vations are Sun-synchronous at ∼1:30 and 13:30 local time. The results

in Figure 2 thus only provide verification of the hindcasts at these local

times. Similar results are obtained for comparison of the hindcast exper-

iments with SABER temperatures (not shown). The most notable feature

in Figure 2 is that the RMSE and bias tend to increase with increasing

altitude (note the different vertical scales for each panel). The error grows

faster and tends to reach saturation sooner, at higher altitudes. For exam-

ple, at 10.0 hPa, the global RMSE grows nearly linearly for ∼20 days at a

rate of∼0.1K/day,while at 0.1 hPa the error grows at a rate of∼0.17K/day

and nearly saturates after 15 days. This behavior is consistent with pre-

vious investigations of predictability in perfect model experiments (Liu

et al., 2009). There is also a clear difference in the behavior in the tropical

region, with lower RMSE values and slower error growth below 0.1 hPa.

The reason for this is unknown, though it may be partly related to the sparsity of observations in the tropics

due to the polar orbit of theAura satellite. Itmay also be related to less short-termdynamical variability in the

tropical stratosphere compared to the higher latitudes. There are also clear sub-daily oscillations in both the

RMSE and bias, which increase in amplitude at higher altitudes. These oscillations are believed to be due to

deficiencies in the atmospheric tides, in particular the nonmigrating tides, which would lead to a UT depen-

dence of the RMSE and bias. In all regions, the temperature bias remains relatively stable (within∼1K) over

the 30-day hindcast period in the stratosphere but drifts by several Kelvin during the initial ∼10–20 days

of the hindcasts in the mesosphere. The growth of the temperature bias in the mesosphere illustrates that

assimilation of mesospheric temperature observations is useful in correcting temperature biases in the fore-

cast model that are related to deficiencies in key physical and subgrid scale dynamical parameterizations,

such as the gravity wave drag parameterizations (Hoppel et al., 2013; Pedatella et al., 2014).

Though the present analysis focuses primarily on the ensemble means, it is useful to briefly discuss the

ensemble spread. Figure 3 shows the global RMSE and total spread (square root of combined model and

observation variance) for radiosonde temperature at 500 hPa and Aura MLS temperature at 0.01 hPa. In

the troposphere, the spread is significantly below the RMSE, indicating that the hindcast ensembles are

spread deficient. The lack of spread at short lead times is attributed to the use of a reduced adaptive inflation

damping coefficient (0.7, instead of themore typical 0.9 used in otherDARTapplications) in the assimilation.

At longer lead times, the lack of growth in the spread may indicate the need to also include additional

perturbations to the ensemble so that the spread grows at a faster rate. It should be noted that the sub-daily

oscillations seen in the radiosonde temperature RMSE and total spread exhibit a clear UT dependence and

arise due to the comparison being performed against a different observational network at 0000 and 1200 UT

compared to 0600 and 1800 UT. At higher altitudes (Figure 3b), the RMSE and total spread relative to Aura

MLS temperature observations are roughly equivalent. This indicates that despite the lack of spread in the

troposphere, WACCMX+DART generates sufficient spread at higher altitudes.
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Figure 4. Normalized root mean square error in zonal wind at 0.1 hPa in different regions: (a) global, (b) tropics
(20◦ S-20◦ N), (c) Northern Hemisphere (60-90◦ N), and (d) Southern Hemisphere (60-90◦ S). The results are based on
verifying the WACCMX+DART hindcast experiments against the WACCMX+DART analysis fields. Solid lines indicate
the median of all hindcast experiments, and thick dashed line is the best fit error growth curve.

The limited observations in the MLT prevent an in-depth verification of the hindcasts using only observa-

tions. In the remainder of the paper we thus use the analysis fields from WACCMX+DART to verify the

hindcasts. The verification is performed every 6 hr (0000, 0600, 1200, and 1800 UT), which corresponds

to the assimilation frequency. Figures 4 and 5 show the median normalized RMSE (NRMSE) at 0.1 and

0.01 hPa, respectively, for the zonal wind in different regions. The NRMSEs are based on normalizing the

RMSE for each individual hindcast with the RMSE based on a 38-year (1980–2017) climatology from spec-

ified dynamics WACCMX (SD-WACCMX). Note that we correct for biases between the SD-WACCMX and

WACCMX+DART analysis by removing the mean difference at each latitude and altitude. The RMSE for

each 30-day hindcast is calculated based on the ensemble means of the hindcast and analysis fields (i.e., we

do not make use of individual ensemble members). By normalizing the hindcasts with the climatological

RMSE, a NRMSE value less than one indicates that the hindcast is better than climatology, at least in com-

parison to the analysis fields. Note that throughout the following we use the NRMSE in order to more easily

compare the error growth characteristics across different altitudes, scale-sizes, and seasons. The solid lines

in Figures 4 and 5 indicate the median NRMSE of all the hindcast experiments. To investigate any depen-

dence on spatial scale, the NRMSE is calculated separately for the zonal mean (black), wavenumbers 0–6

(green), and wavenumbers greater than 6 (violet). In the remainder of the paper, we consider large-scale

waves to be the wavenumbers 0–6 and small-scale waves to be wavenumbers greater than 6. The use of the

WACCMX+DART analysis fields to verify the hindcasts may influence the results, especially for small-scale

waves whichmay not be well constrained by observations at MLT altitudes. Verification by analysis fields is,

however, a standard approach in numerical weather prediction, and we believe appropriate for the present

study given the lack of comprehensive observations at MLT altitudes that can be used for verification. Since
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Figure 5. Same as Figure 4, except at 0.01 hPa.

the analysis fields cannot be fully verified on all scales, this approach limits what can be said about the true

forecast skill of WACCMX+DART. The results thus primarily provide insight into the error growth rate, and

any inferencesmade about theMLT forecast skill should be considered in light of the fact that the verification

is performed against the analysis fields.

The error growth in the hindcasts exhibits the expected behavior with an initial phase of error growth fol-

lowed by error saturation. The error can be parameterized by a logistic growth curve, with the following

Table 1
Error Growth Rate (𝛼, day−1) for Zonal Wind in the WACCMX+DART Hindcast Experiments Averaged over
All Seasons at 0.1 and 0.01 hPa for Different Regions and Spatial Scales

Pressure (hPa) Wavenumber Global (𝛼) Tropics (𝛼) NH (𝛼) SH (𝛼)

0.1 0 0.25 ± 0.01 0.23 ± 0.01 0.21± 0.01 0.23 ± 0.01

0.1 0–6 0.29 ± 0.01 0.33 ± 0.01 0.26 ± 0.01 0.25 ± 0.01

0.1 >6 0.86 ± 0.08 0.73 ± 0.07 1.67 ± 0.20 2.44 ± 0.41

0.01 0 0.50 ± 0.03 0.33 ± 0.02 0.63 ± 0.03 0.97 ± 0.09

0.01 0–6 0.74 ± 0.02 0.54 ± 0.02 0.86 ± 0.02 0.98 ± 0.04

0.01 >6 1.57 ± 0.08 1.16 ± 0.07 2.12 ± 0.20 1.74 ± 0.14

Note. Results are given for the best fit values as well as their standard error. Regions are defined as
global (90◦ S-90◦ N), tropics (20◦ S-20◦ N), Northern Hemisphere (60–90◦ N), and Southern Hemisphere
(60–90◦ S).
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Figure 6. Error growth rate (𝛼) for the (a) zonal mean, (b) wavenumbers 0–6, and (c) wavenumbers greater than 6 in
the WACCMX+DART hindcast experiments averaged over all seasons at 0.1 and 0.01 hPa for different regions. Error
bars represent the standard error.

Figure 7. Global normalized root mean square error in zonal wind for wavenumbers 0–6 in different seasons at (a) 1.0,
(b) 0.1, (c) 0.01, and (d) 0.001 hPa in WACCMX+DART hindcast experiments verified against WACCMX+DART
analysis fields. Solid lines indicate the median of all hindcast experiments, and thick dashed line is the best fit error
growth curve.
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Figure 8. Same as Figure 7, except for in the tropics (20◦ S-20◦ N).

equation:

e(t) = es −
es

1 −
e0exp[𝛼t]

e0−es

, (1)

where e is the NRMSE, t is time, 𝛼 is the error growth rate, and e0 and es are the initial and saturation

RMSE, respectively (Dalcher & Kalnay, 1987; Savijarvi, 1995). The NRMSE curves are fitted to equation (1)

to determine 𝛼, e0, and es. The coefficients 𝛼 are given in Table 1 and Figure 6. The resulting error growth

curves are shown by the thick dashed lines in Figures 4 and 5.

Figures 4 and 5, along with Table 1 and Figure 6, reveal several notable features of the hindcast error growth

when averaged over all seasons. At both 0.1 and 0.01 hPa, there is a clear dependence on spatial scale. The

error growth is fastest for the small-scale waves, and slowest for the zonal mean. The time for the NRMSE to

reach 1.0, which corresponds to the RMSE of a climatological forecast, exhibits the corresponding relation-

ship with scale-size, and it is shortest for small-scale waves and longest for the large-scale waves and zonal

mean.When averaged over all seasons, there are slightly slower error growth rates in the tropics compared to

high latitudes, which is generally consistent with the climatological variability being larger at high latitudes

(e.g., Liu et al., 2009; Nezlin et al., 2009). There is additionally a clear hemispheric difference, with slower

error growth in the Northern Hemisphere compared to the Southern Hemisphere. This may be due to the

sparsity of data in the Southern Hemisphere assimilated in WACCMX+DART, especially given the lack of

radiance assimilation. Comparison of Figures 4 and 5 reveals a clear altitude dependence, with faster error

growth, and shorter time to reach a NRMSE of 1.0 at 0.01 hPa compared to 0.1 hPa. This suggests that there

is a decrease in the forecast skill at higher altitudes. It is important to note that the results for small-scale

waves (wavenumbers greater than 6) have high uncertainty due to the large uncertainty in accurately cap-

turing the small-scale waves in the data assimilation system analysis fields, especially at higher altitudes
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Figure 9. Same as Figure 7, except for in the Northern Hemisphere (60–90◦ N).

which are only loosely constrained owing to the sparse nature of observations in the MLT. Though we con-

sider it likely that the error growth is faster for small-scale waves, the true error growth rate for these waves

remains highly uncertain due to difficulty in completely verifying the smaller-scale structures in the MLT.

The seasonal dependence of the NRMSE for wavenumbers 0–6 in different regions and at different altitudes

is shown in Figures 7–10 Corresponding values of 𝛼 are provided in Table 2 and Figure 11. The results

are subdivided into four seasons, December-February (DJF), March-April (MA), June-August (JJA), and

September-October (SO). Note that we restrict the equinox periods to 2months to limit the results to periods

directly around the equinox. The altitude dependence of the error growth is clearly seen in Figures 7–10,

with slower error growth near the stratopause compared to higher altitudes. This behavior is considered

to be related to the different dynamical regimes in the stratosphere and mesosphere, with gravity waves

generating unbalanced flow that leads to faster error growth in the MLT (Shepherd et al., 2000; Smith et al.,

2017). Globally and in the tropics, there tends to be relatively little seasonal dependence to the error growth

rates at all altitudes. There is, however, a slight tendency towards slower error growth in the tropics during

MA between 1.0 and 0.01 hPa. Any seasonal dependence at higher altitudes in the mesosphere and lower

thermosphere is weak globally and in the tropics. It is again noted that there is a clear altitude dependence,

with faster error growth occurring at higher altitudes.

The hindcast NRMSEs exhibitmore notable seasonal variability at high latitudes in theNorthern and South-

ern Hemispheres (Figures 9 and 10). The corresponding error growth rates are provided in Figure 11 as well

as in Table 2, and more clearly indicate the seasonal and hemispheric differences in the error growth rates.

In the Northern Hemisphere at 1.0 and 0.1 hPa, the slowest error growth occurs in JJA. This is largely to

be expected due to the generally quiescent nature of the high latitude summertime upper stratosphere and

lower mesosphere. The fastest error growth occurs during DJF, MA, and SO, which may be due to model
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Figure 10. Same as Figure 7, except for in the Southern Hemisphere (60–90◦ S).

deficiencies in capturing the equinoctial transition as well as the large planetary wave variability during

wintertime and equinox time periods (Kleinknecht et al., 2014; Liu et al., 2004; McDonald et al., 2011). In

particular, this may be related to the known problem WACCMX has capturing the winter to spring transi-

tion, especially in the Southern Hemisphere (e.g., Marsh et al., 2013). At higher altitudes, there is again not

a notable seasonal difference in error growth, though there is a tendency towards slower error growth in the

Northern Hemisphere during SO. In the Southern Hemisphere, themost notable seasonal dependencies are

slower error growth at 0.01 and 0.001 hPa during SO and JJA, respectively. We note that due to the limited

nature of the hindcast experiments the results in Figures 7–10 are sensitive to individual hindcasts. This can

lead to unusual behavior of the NRMSE, such as the oscillations in the NRMSE that occur during SO in the

Southern Hemisphere at 1.0 hPa. The results in Figures 7–10 should thus be considered preliminary since

they are based on a limited number of hindcast experiments.

Data assimilation in theMLT is especially critical for controlling the temperature bias that is present inmany

models that extend into the thermosphere (Hoppel et al., 2013; Pedatella et al., 2014). The evolution of the

zonal mean temperature biases (forecast-analysis) at high latitudes in the Northern and Southern Hemi-

sphere in the hindcast experiments during different seasons are shown in Figures 12 and 13, respectively. In

the Northern Hemisphere, the zonal mean temperature tends to be relatively stable duringMA and JJA and

drifts by less than 5–10K. During other seasons the bias is less stable, and individual hindcasts can exhibit

large biases (not shown). The large bias that occurs at 0.1 hPa during DJF may be related to an inability

to accurately capture the altitude and magnitude of mesospheric coolings that are associated with SSWs or

weakening of the stratospheric polar vortex (e.g., Hoffmann et al., 2007; Zülicke et al., 2018). The hindcast

zonalmean temperature biases exhibit more distinct features in the SouthernHemisphere, which shows the

development of especially large biases (±10–20K) during JJA and SO between 1.0 and 0.01 hPa. These can

developwithin 10 days andmay be related to the persistent problem of cold polar stratospheric temperatures
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Table 2
Error Growth Rate (𝛼, day−1) for Zonal Wind in the WACCMX+DART Hindcast Eat Different
Altitudes, Seasons, and Regions

Pressure (hPa) Season Global (𝛼) Tropics (𝛼) NH (𝛼) SH (𝛼)

1.0 DJF 0.31 ± 0.01 0.35 ± 0.01 0.38 ± 0.02 0.17 ± 0.01

1.0 MA 0.30 ± 0.01 0.22 ± 0.01 0.30 ± 0.02 0.31 ± 0.02

1.0 JJA 0.26 ± 0.01 0.31 ± 0.01 0.12 ± 0.01 0.13 ± 0.01

1.0 SO 0.35 ± 0.02 0.27 ± 0.02 0.33 ± 0.01 0.45 ± 0.09

0.1 DJF 0.41 ± 0.02 0.47 ± 0.03 0.39 ± 0.03 0.21 ± 0.01

0.1 MA 0.49 ± 0.02 0.30 ± 0.01 0.74 ± 0.10 0.36 ± 0.03

0.1 JJA 0.37 ± 0.02 0.48 ± 0.02 0.23 ± 0.02 0.28 ± 0.02

0.1 SO 0.42 ± 0.02 0.36 ± 0.02 0.47 ± 0.03 0.43 ± 0.05

0.01 DJF 0.77 ± 0.04 0.60 ± 0.04 0.75 ± 0.07 0.98 ± 0.10

0.01 MA 0.58 ± 0.03 0.21 ± 0.02 1.02 ± 0.09 0.90 ± 0.12

0.01 JJA 0.89 ± 0.04 0.72 ± 0.04 1.05 ± 0.08 1.10 ± 0.11

0.01 SO 0.54 ± 0.03 0.39 ± 0.03 0.69 ± 0.05 0.69 ± 0.08

0.001 DJF 0.77 ± 0.05 0.51 ± 0.03 1.11 ± 0.13 1.14 ± 0.15

0.001 MA 0.78 ± 0.04 0.61 ± 0.04 1.04 ± 0.13 0.90 ± 0.12

0.001 JJA 0.69 ± 0.04 0.55 ± 0.03 0.97 ± 0.10 0.46 ± 0.05

0.001 SO 0.68 ± 0.04 0.47 ± 0.03 0.52 ± 0.05 1.08 ± 0.12

Note.Results are for wavenumbers 0–6. Results are given for the best fit values as well as their stan-
dard error. Regions are defined as global (90◦ S-90◦ N), tropics (20◦ S-20◦ N),NorthernHemisphere
(60–90◦ N), and Southern Hemisphere (60–90◦ S).

during Southern Hemisphere winter and spring (i.e., the so-called “cold-pole” problem), which are thought

to arise due to deficiencies in the gravity wave drag parameterization (Garcia et al., 2017; Marsh et al., 2013).

Atmospheric tides are an important driver of the day-to-day spatial and temporal variability in the iono-

sphere and thermosphere (e.g., Fang et al., 2013). The ability to forecast tides is thus an important aspect of

accurately forecasting the day-to-day space weather. The hindcast median NRMSE for the migrating diur-

nal (DW1) and semidiurnal (SW2) tides and the nonmigrating eastward propagating diurnal tide with zonal

wavenumber 3 (DE3) are shown in Figure 14. The results are for the temperature tides, and the top panel

is the RMSE calculated over the altitude range 10-1 hPa, and the bottom panel is for the RMSE calculated

over 10−3-10−5 hPa. The RMSEs are calculated by using a least-squares fit to determine the tidal amplitudes

and phases daily and then reconstructing the temperature field in latitude and longitude at 0000 universal

time (UT) for an individual tidal component (e.g., DW1). Hourly output is used for fitting the tides, and

the analysis fields thus represent a combination of the analysis and short-term (1–5 hr) forecasts. By recon-

structing the tidal field at a given UT, the RMSE accounts for both amplitude and phase errors. Note that

since the tides are determined daily, the error on, for example, day one represents errors in the 24- to 48-hr

forecast. The RMSE is calculated in the latitudes where the tide obtains large amplitudes (20◦ S-20◦ N for

DW1, 30◦ S-30◦ N for DE3, and 40◦ S-40◦ N for SW2). The RMSEs for individual hindcast experiments are

normalized by the RMSE of the average analysis tide over the hindcast period. An NRMSE value below 1.0

thus indicates that the hindcast performs better than assuming average tidal behavior. The tidal errors grow

rapidly, and the time for the NRMSE to reach 1.0 is less than 5 days. Consistent with the above results, the

tidal errors grow faster at MLT altitudes (10−3-10−5 hPa) compared to in the upper stratosphere to lower

mesosphere (10-1 hPa). In the 10-1 hPa layer, the tidal error growth is slowest for DW1, while at MLT alti-

tudes the slowest error growth occurs in DE3. At both altitudes, there is an especially fast error growth rate

of the SW2. The fast error growth for the tides in WACCMX+DART suggests that they may only be pre-

dictable out to 2–5 days on average. It should, however, be noted that there is a large spread in the tidal

NRMSE, and there are often hindcasts that display slower error growth. Understanding what conditions

may lead to slower error growth, and thus enhanced tidal forecast skill, is an important topic for investi-

gation in order to understand when there is better/worse forecast skill of the lower atmospheric drivers of

ionosphere-thermosphere variability.
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Figure 11. Error growth rate (𝛼) at (a) 1.0, (b) 0.1, (c) 0.01, and (d) 0.001 hPa in the WACCMX+DART hindcast
experiments in different seasons and regions. Results are for wavenumbers 0–6. Error bars represent the standard error.

4. Discussion

The results of the present study are generally consistent with previous investigations into the predictabil-

ity of the middle atmosphere that used perfect model experiments. Liu et al. (2009) similarly found faster

error growth at higher altitudes and for smaller scales. They also showed that there was a seasonal vari-

ability related to the planetary wave variability, consistent with the results at high latitudes in Figures 9

and 10. Both Liu et al. (2009) and Smith et al. (2017) demonstrated that the error growth due to perturbed

initial conditions saturates after 20–30 days. As this number is derived from perfect model experiments, it

is representative of the limit of predictability in the middle atmosphere in WACCM. The hindcast experi-

ments presented herein saturate after∼10 days in theMLT, illustrating that there remains considerable room

for improvement in terms of forecasting the middle atmosphere. Such improvement may come through

improvement in the initial conditions, either by improved data assimilation techniques and/or observations,

as well as improvements in the WACCMXmodel.

There are a number of important short-comings of the present WACCMX+DART hindcast experiments,

which should be discussed as they offer potential avenues for improving our initial investigations of the

MLT error growth. First, the origins of WACCMX are in climate, not weather, prediction. Many of the pro-

cesses, such as convective parameterizations and gravity wave drag, have thus been tuned with a focus

on longer-term climate instead of short-term weather as would be done for a model focused on numer-

ical weather prediction. Retuning the parameterizations in WACCMX for short-term weather prediction

could lead to improved MLT dynamical predictability in WACCMX+DART. It should, however, be noted

that there could be some advantages of a model developed based on climate for longer time scales, such as

sub-seasonal to seasonal predictions. The current assimilation scheme inWACCMX+DART is another area
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Figure 12. Northern Hemisphere (60–90◦ N) zonal mean temperature bias in WACCMX+DART hindcast experiments
verified against WACCMX+DART analysis fields in different seasons at (a) 1.0, (b) 0.1, (c) 0.01, and (d) 0.001 hPa. Solid
lines indicate the median of all hindcast experiments, and thick dashed line is the best fit error growth curve.

that could be improved in order to improve the error growth rates in the MLT. WACCMX+DART assimi-

lates considerably fewer observations compared to a modern numerical weather prediction model and, in

particular, does not assimilate satellite radiance observations, which significantly improved tropospheric

weather prediction (e.g., Rabier, 2005). Though previous studies have demonstrated that WACCMX+DART

analysis fields capture the large-scale dynamics (Gu et al., 2016; Gan et al., 2018; Pedatella et al., 2016),

deficiencies in the observations assimilated in WACCMX+DART may shorten the forecast skill of the tro-

posphere, subsequently influencing the forecast skill in the MLT. Additionally, the results may be impacted

by the introduction of waves due to the data assimilation adjustments, and the additional damping that

is included to mitigate the impact of these waves. Any spurious waves introduced by the data assimila-

tion dissipate in the first few days of the hindcast experiments. As the model damping was adjusted to

account for these waves, their absence in the hindcasts may influence the results. However, the extent to

which this impacts the results is not currently known and requires additional investigation. Despite these

short-comings, we believe that the WACCMX+DART hindcast experiments presented herein represent an

important first investigation into the error growth rates at MLT altitudes.

There are additionally a number of limitations to the present study, which should be considered when inter-

preting the results. We have primarily verified the hindcast experiments by using the WACCMX+DART

analysis fields. As the analysis fields are imperfect, especially at higher altitudes where there are only sparse

observations, there is some uncertainty to the results. This is especially true for the small-scale waves, which

are likely to be poorly constrained in the analysis fields. We have also not made use of the ensemble nature

of the hindcasts and only considered the ensemble means. The ensembles may provide additional infor-

mation that would be beneficial for forecasting the middle and upper atmosphere. Due to computational
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Figure 13. Same as Figure 12, except for the Southern Hemisphere (60–90◦ S).

constraints, the experiments were only performed for a 2-year time period and thus may not fully capture

the seasonal differences in the error growth rates of themiddle atmosphere. More extensive experiments are

thus necessary to fully explore the seasonal dependencies. Last, it is important to emphasize that the results

are based on only the current configuration of WACCMX+DART, and other models may perform differ-

ently. The results should therefore not be considered as definitive in terms of the error growth, predictability,

and/or forecast skill of the MLT.

As the waves propagating upwards from the lower atmosphere are a considerable source of the ionosphere

and thermosphere day-to-day variability, being able to forecast the middle atmosphere presents the oppor-

tunity to improve space weather forecasts, especially during geomagnetically quiet time periods. In extreme

cases, such as SSW events, it has been shown that the ionosphere variability can be forecast up to roughly

1week in advance (Pedatella et al., 2018; Wang et al., 2014). The results of the present study illustrate that at

MLT altitudes, which are relevant for driving space weather, the errors saturate in WACCMX+DART after

∼5 days, suggesting shorter average forecast skill compared to previous event studies that focused on SSWs.

Event studies focusing on SSWs thus may not be entirely reflective of the typical behavior in terms of being

able to forecast the MLT and ionosphere variability. On average, the errors in atmospheric tides in WAC-

CMX+DART that drive much of the ionosphere electrodynamics also saturate after 2–5 days. The ability to

leverage lower and middle atmosphere forecast skill to improve space weather forecasts may thus typically

only provide a few days of forecast capability, at least based on the WACCMX+DART hindcast experiments

considered in the present study. However, it is important to recognize that this is based on the average of

the WACCMX+DART hindcast experiments, and specific time periods, such as SSW events, can potentially

extend the forecast skill significantly. Identifying periods of enhanced MLT predictability is thus critical in

order to understand the uncertainty in space weather forecasts that make use of whole atmosphere models.
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Figure 14. Normalized root mean square error for DW1, SW2, and DE3 temperatures in WACCMX+DART hindcast
experiments verified against WACCMX+DART analysis fields. The root mean square error is calculated in the latitude
ranges 20◦ S-20◦ N for DW1, 30◦ S-30◦ N for DE3, and 40◦ S-40◦ N for SW2. Results are shown for 10-1 hPa (top) and
10−3-10−5 hPa (bottom). Solid lines indicate the median of all hindcast experiments, and thick dashed line is the best fit
error growth curve.

It is important to also consider this result in light of the limitations of WACCMX+DART discussed in the

previous paragraphs.

5. Conclusions

The present study investigates the error growth of the MLT based on an analysis of 47 initialized ensemble

hindcast experiments in WACCMX+DART during 2009–2010. The results represent the first comprehen-

sive investigation into the multiday error growth in the MLT and are useful for understanding how space

weather forecasting may benefit from the use of whole atmosphere models. Whole atmosphere models can

potentially benefit spaceweather forecasting by providing forecasts of the lower atmospheric drivers of iono-

sphere and thermosphere variability. The results demonstrate that in WACCMX+DART the error growth is

slowest for the zonal mean and large scale waves and is significantly faster for small-scale waves. The time

for the errors to reach saturation is also significantly shorter in the upper mesosphere and lower thermo-

sphere compared to in the upper stratosphere and lower mesosphere. In the lower thermosphere, which
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is an especially relevant altitude regime for driving ionosphere-thermosphere variability, the errors satu-

rate in less than 5 days in WACCMX+DART. Errors in the migrating and nonmigrating atmospheric tides

that drive much of the spatial and temporal day-to-day variability of the ionosphere also grow quickly in

WACCMX+DART and reach saturation after ∼2–5 days in WACCMX+DART.

We emphasize that the above conclusions are based on the current configuration of WACCMX+DART and

do not represent inherent limits on the predictability and/or forecast skill of the MLT, or the behavior of

other data assimilation systems. Rather, they represent the current capabilities of a single whole atmosphere

model with data assimilation capabilities. Other models may have better or worse forecast skill in the MLT.

Similar to tropospheric weather prediction (e.g., Bauer et al., 2015), we would also anticipate that future

developments in the forecasting model, data assimilation techniques, and observations are likely to lead to

enhanced forecasting capabilities in the MLT. How the ability to forecast the MLT influences ionospheric

forecasts remains a topic for future research.
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