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Abstract: Many remote sensing studies do not distinguish between natural and planted forests. We
combine C-Band Synthetic Aperture Radar (Sentinel-1, S-1) and optical satellite imagery (Sentinel-
2, S-2) and examine Random Forest (RF) classification of acacia plantations and natural forest in
North-Central Vietnam. We demonstrate an ability to distinguish plantation from natural forest,
with overall classification accuracies of 87% for S-1, and 92.5% and 92.3% for S-2 and for S-1 and S-2
combined respectively. We found that the ratio of the Short-Wave Infrared Band to the Red Band
proved most effective in distinguishing acacia from natural forest. We used RF on S-2 imagery to
classify acacia plantations into 6 age classes with an overall accuracy of 70%, with young plantation
consistently separated from older. However, accuracy was lower at distinguishing between the older
age classes. For both distinguishing plantation and natural forest, and determining plantation age, a
combination of radar and optical imagery did nothing to improve classification accuracy.

Keywords: natural forest; acacia plantation; Random Forest; Synthetic Aperture Radar (SAR);
Sentinel-1; Sentinel-2; satellite

1. Introduction

The global area of forest plantations increased from 167 Mha in 1990 to 278 Mha in
2015 [1]. Forest plantations can reduce logging pressure on natural forests through provid-
ing an alternative source of timber. However, conversion of natural forest to plantation is a
major driver of forest loss [2]. Assessments [3] of forest cover often make no distinction
between natural forest and planted forest, so that countries can report increased forest area
despite the ongoing loss of natural forest and conversion of natural forest to plantation.
Natural forests and plantation forests differ in their ability to store and sequester carbon [4],
and to support biodiversity [5–7], and local livelihoods [8]. An ability to distinguish plan-
tation and natural forests using remote sensing would be of great value by allowing the
accurate monitoring of natural forest loss and plantation expansion.

In Vietnam, while forest cover has increased since 1993, most of the increased area
consists of plantation forests, with natural forests suffering further conversion, degradation
and fragmentation [9]. In particular, acacia plantations, consisting principally of Acacia
mangium and clonal A. mangium x A. auriculiformis hybrid, have expanded in recent decades,
from 66,000 ha in 1992 to > 1,000,000 ha by 2013 [10].

Remote sensing of forest changes using visual, near-infrared (NIR) and short wave
infrared (SWIR) parts of the spectrum has a long-established history. Sentinel-2 images
with 13 visible, near infrared and short wave infrared bands, and a revisit time of 5 days,
have become a popular choice for forest monitoring [11]. However, cloud cover is a major
drawback of optical sensors, with both cloud and cloud shadows leading to gaps in time
series data, and affecting monitoring activity. This is especially problematic in humid
tropical and sub-tropical regions.

Sentinel-1 was launched in 2014, and now consists of 2 polar-orbiting satellites with
a C-Band Synthetic Aperture Radar (SAR) imaging system. In Vietnam ascending and
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descending orbits have a repeat time of 12 days, giving an overall 6 day repeat time that,
unlike optical sensors, is largely unaffected by weather conditions. The SAR backscatter
varies with the wavelength, polarization and incidence angle of the SAR signal. In addition,
SAR imagery from forest areas is dependent on the electrical properties and internal and
external moisture content of the vegetation. The forest’s 3-dimensional structure, such
as the roughness, size and orientation of the leaves and branches also affects the SAR
backscatter. In the dense humid tropical canopies of Vietnam, the 5.5 cm wavelength signal
of Sentinel-1 will have limited penetration of the canopy [12,13].

The dependence of S-1 backscatter on vegetation’s physical properties contrasts with
a greater dependence on biochemical traits from optical sensors like S-2. Therefore, these
two sensors can usefully complement each other. A number of studies have used satellite
imagery both optical [14,15] and radar [16–18] and combined optical and radar [19–23] to
identify plantation areas, chiefly in Malaysia, Indonesia, and China and largely focused
on palm oil, acacia and rubber plantations. Classifying acacia plantations has proved
problematic in another study due to their short life-cycle [18].

In the tropics, acacia plantations are often managed on very short (less than 5 year)
rotations. However, there has been a recent push by the Vietnamese government [24,25]
and certification bodies to switch to longer-term rotations, in an attempt to convert acacia
plantation from woodchip to sawlog markets. Plantation age has important impacts on
carbon storage [26] and species richness [27]. For example, 2 studies in Malaysia [28,29]
found the number of bird species significantly increasing with age for 2, 5 and 7 years
old acacia plantations. The 2 years old plantations were dominated by open-habitat and
scrubland species, but mature acacia contained about 50% of the primary forest species,
albeit lacking the more specialized and uncommon taxa. Determination of plantation
age could therefore be useful to conservationists, landowners and for land-use planning
purposes by allowing for an effective accounting of resource availability.

Here we explore the use of radar and optical imagery to distinguish between natural
and plantation forests throughout the plantation lifecycle. Our overall method of approach
was to initially produce S-1 and S-2 time-series for natural forest and plantation for the
period mid-2015 to mid-2020. These time-series would then be used to make a more
informed judgement about what features to include in our classification model. Our study
focuses on North-Central Vietnam, where there has been a large increase in plantation
forests. We address the following questions:

• What is the classification accuracy of Sentinel-1 (SAR), Sentinel-2 (optical) and S-1 and
S-2 combined for distinguishing natural forest and acacia plantation?

• Can acacia plantation age be accurately classified?

2. Materials and Methods
2.1. Study Site

The study area (E106◦17′ to 106◦56′–N16◦43′ to 17◦32′) covers about 2100 km2 in
the southern part of the province of Quang Binh and the northern section of Quang Tri
province in North-Central Vietnam (see Figure 1). This site lies in the WWF ecological zone
and the Reduced Emissions from Deforestation and Degradation (REDD) sub-region “West
mountain Range of Binh Tri Thien” [30]. The altitude varies from 20 m in the east to 1000 m
along the border with Laos in the west, with a maximum of 1770 m. There is a tropical
monsoon climate, with a rainy season for the last six months of the year, and a short dry
season from March to June [31].
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Figure 1. Map of study area. Khe and Bac indicate boundaries of the Khe Nuoc Trong and Bac Huong Hoa Nature Reserves
respectively, both within the study area. Elevation (sourced from Shuttle Radar Topography Mission data) is indicated as
shading from dark green (just above sea level) to white (1500 m).

The natural forest consists of tropical lowland evergreen broadleaved rain forest below
1000 m, and tropical evergreen mid-montane rain forest above. There is no virgin forest
left within the study area, with all the natural forest affected to a varying degree by war,
resource extraction and logging for high value timber. In many areas the natural forest is
secondary forest, developing after cessation of agriculture. A Birdlife Report [32] gives a
detailed overview of the remaining natural forest.

The area includes the Bac Huong Hoa and Khe Nuoc Trong Nature Reserves. The Key
Biodiversity Area of Truong Son covers most of the study area.

2.2. Data Sources
2.2.1. Sentinel-1 Data

The Sentinel-1 data used was the Level-1 Ground Range Detected (GRD) Interfero-
metric Wide Swath (IW) product downloaded from https://scihub.copernicus.eu/. These

https://scihub.copernicus.eu/
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GRD images consist of VV (vertical send and vertical receive) and VH (vertical send and
horizontal receive) polarisations, both with a resolution of 10 m (see Figure 2).Remote Sens. 2021, 13, x 4 of 19 
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Figure 2. Flowchart of pre-processing carried out on Sentinel images. Abbreviations: GLCM: Grey–Level Co-Occurrence
Matrix, SRTM: Shuttle Radar Topography Mission, NDI: Normalised Difference Index, RVI: Radar Vegetation Index, RSI:
Radar Squared Index, CR: Cross-Ratio, NBR: Normalised Burn Ratio, SRR: Short-wave Infrared-Red Ratio.
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For the Random Forest classification we used one descending image from 11 February
2018 in the study. This date was chosen to correspond closely as possible with a clear
Sentinel-2 image. Orbital correction, calibration, speckle filtering (Lee-Sigma filter), terrain
flattening and terrain correction were applied to all S-1 images (see Figure 2). Both terrain
flattening and correction was carried out using 1 arcsecond Shuttle Radar Topography
Mission (SRTM) data. This results in 2 features: the VV and VH polarized backscatter
values (in decibels, dB). Over the study area incidence angle for a descending orbit ranged
from 39.8 to 44.2◦. Relative orbit number was 18.

2.2.2. Sentinel-2 Data

All the forest, both natural and plantation, in the study region is evergreen, and
variation in the vegetation over the year should be minimal. Nonetheless, we decided to
test if the use of multiple images could improve classification accuracy. Accordingly in our
S-2 classification we tested accuracy in the winter period, shortly after the end of the wet
season, and accuracy in the summer period, towards the end of the study area’s dry period.

Our study area was covered by two S-2 granules (QXD and QXE). Therefore for
the Random Forest classification we downloaded a total of 6 images as Level-1C Top-of-
Atmosphere reflectance products: the ‘winter’ QXD and QXE S-2 image from 15 February
2018 (https://scihub.copernicus.eu/): (“S2A_MSIL1C_20180215TO31821_NO206_R118_T4
48QXD_20180215TO83955.SAFE” and S2A_MSIL1C_20180215T031821_N0206_R118_T48Q
XE_20200228T115658.SAFE”), a QXD and QXE ‘summer’ image from 16th May, and a QXD
and QXE ‘summer’ image from 30 June 2018. Persistent cloud cover over the study area
in summer 2018 meant that we needed images from 2 different dates to create a single
cloud-free image. The 16th May images were largely cloud-free and therefore classed as the
‘master’ images, with the June images used only to fill in any areas that were cloud-covered
in the May image.

The ten bands with 10 m (Bands 2, 3, 4 and 8) and 20 m (Bands 5, 6, 7, 8A, 11 and 12)
resolution were used in the study. First we applied atmospheric and terrain correction
using ESA’s Sen2Cor software [33]. Secondly we resampled all bands to 10 m resolution
using bicubic interpolation (see Figure 2).

2.2.3. Ancillary Data

Other studies [34–36] have successfully used ancillary data to boost classification
accuracies. Ancillary data used in this study was: elevation (from 1 arc-second SRTM),
slope (derived from 1 arc-second SRTM) and distance to population. A 10 m resolution
raster map was produced using Quantum GIS (QGIS) [37] from shapefiles of village location
provided by the Ministry of Agriculture and Rural Development (MARD), with distance to
population for each shapefile defined as the linear distance from the centre of the village to
the centre of the forest shapefile.

Across the study area plantation covered 44,000 ha across 11809 shapefiles. Natural
forest covered 170,000 ha across 9365 shapefiles. Natural forest is typically found on higher,
steeper, more remote terrain (mean elevation, mean slope and distance to nearest village
were 310 m, 18◦ and 2930 m respectively) compared to plantation forest (80 m, 8◦ and
1620 m).

2.3. Methodology
2.3.1. Time-Series

It was important to get a better idea of what vegetation indices would be most helpful
in distinguishing plantation and natural forest. We were also interested in how the age
of the plantation affects radar backscatter, spectral bands and classification accuracy. We
therefore produced a time series of the S-1 and S-2 imagery of the study area, ranging in
date from 27 February 2015 to 24 June 2020 for S-1 and from 10 August 2015 to 24 June 2020
for S-2. For the S-1 time-series we used 34 descending images, and for the S-2 time-series
we used 22 S-2 images.

https://scihub.copernicus.eu/


Remote Sens. 2021, 13, 185 6 of 19

We used S-2 RGB (Red-Green-Blue, comprising S-2 bands B4, B3 and B2) imagery to
select 10 plantation areas that were harvested between 6 April 2016 and 6 May 2016 and for
these areas computed mean band values for all the S-1 and S-2 images. Acacia harvesting is
obvious and unmistakable in the visible wavelengths. To act as a control, we also computed
mean band values for 10 nearby natural forest areas. To act as a further control we selected
5 areas of natural forest and 5 areas of nearby acacia plantation that were not harvested
in our study period of March 2015–June 2020: these acacia areas were rare examples of
long-rotation (10 year) acacia plantation, having been last harvested in 2010.

In total, therefore, we have 4 time-series: an S-1 time-series and its control, and an S-2
time-series and its control. From these S-1 and S-2 time-series we can see how band values
change in the years following harvesting, and which bands vary most between plantation
and natural forest.

2.3.2. Sentinel-1 Processing

SAR imagery differs not only in intensity but also in texture (spatial variation). Texture
is a quantative measurement of the relationships of pixels with neighbouring pixels, often
used to improve the accuracy of land-use classification studies. We might expect the
texture of a planted forest of regularly spaced trees of the same age to differ from that of
natural forest. Accordingly, we chose the most frequently used of the texture measures: the
Grey-Level Co-Occurance Matrix (GLCM) [38], which describes the frequency with which
different pixel intensity values occur in an image. The following GLCM textural features
were computed: Contrast, Dissimilarity, Homogeneity, Angular Second Moment, Energy,
Maximum Probability, Entropy, GLCM Mean, GLCM Variance and GLCM Correlation.
These textural features are useful in improving classification accuracies by extracting
intensity variations using the values of neighbouring pixels. These features were calculated
for all images and both polarisations (VV and VH) for all angles, with a window size
of 9 × 9, 32 quantization levels and a pixel displacement of 1. Choice of window size
can be important in producing the most useful texture measure. Two forest classification
studies [39,40] found larger window sizes gave the best classification performance. Further,
it has been suggested [41] that while small window sizes are better-suited to heterogeneous
environments with high local variance, larger window sizes are appropriate for more
homogenous areas. Given our study area consists largely of thick and uniform canopy
cover we therefore decided a large (9 × 9) window size was the most appropriate choice.
All Sentinel pre-processing was carried out using the European Space Agency (ESA) SNAP
software [42].

Four radar indices were also computed: the normalised difference of the bands (NDI)

NDI =
VV−VH
VV + VH

(1)

And the Cross ratio (CR) of co- and cross-polarised backscatter

CR =
VH
VV

(2)

These indices have been proved to be effective in earlier work classifying plantation
and natural forest [23,43,44]. Further, we used a form of the radar vegetation index
(RVI) [45] modified for use with vertically polarised Sentinel-1 data

RVI =
4×VH

VV + VH
(3)

Here higher values indicate higher vegetation presence.
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Based on the results of the S-1 time-series produced (see Section 2.3.1 above), we also
formulated a Radar Squared Index (RSI) to maximise the difference between plantation
and natural forest:

RSI =
VV2

VH
(4)

2.3.3. S-2 Processing

We used the results from the time-series (see Section 2.3.1 above) to select 2 vegetation
indices: first, the Normalised Burn Ratio (NBR) vegetation index:

NBR =
B8− B12
B8 + B12

(5)

and second, we formulated an index which should maximise the difference between
plantation and natural forest throughout the lifecycle: the simple ratio of the Short-Wave
Infra-Red (SWIR) band to the red band (SWIR-Red ratio or SRR) [46]:

SRR =
SWIR (B12)

Red(B4)
(6)

We also computed the ratio of the 10 bands of the summer and winter image. This
gave us 10 ratios that we refer to as seasonal ratios: so that, for example, the seasonal ratio
for Band 2 (Blue) is:

swb2 =
B2(summer)
B2(winter)

(7)

2.3.4. Random Forest

Random forest (RF) [47] is a popular and powerful machine learning technique that
has been widely used for forest classification studies [48–51]. Advantages include its
insensitivity to noise, and the ability to handle large numbers of input features, and to
estimate the importance of these features. These qualities make it a good choice for multi-
source input data, and its accuracy at land-use classification has generally been found to be
roughly comparable [52–55] to competitors such as Support Vector Machine (SVM) [56] and
Convolutional Neural Networks (CNN) [57]. Additionally, RF is relatively insensitive to
the values of its free parameters, as opposed to CNN and SVM which require considerable
fine-tuning, therefore making RF quick and easy-to-use.

We used an object-based approach (as opposed to a pixel-based classification), with the
mean and standard deviation of the bands and their associated indices and textural mea-
sures within a forest polygon used for the analysis. We used RF to analyse the separability
of two different land cover types, so that shapefiles were classified as either plantation, or
natural forest. RF classification was carried out using scikit-learn package in Python [58].

The training set was composed of 15868 shapefiles, or 70% of total shapefile number,
with the testing carried out on the remaining 30% (5306 shapefiles), as recommended
by [59]. The number of trees built was set at 500 and the maximum number of features used
in an individual tree was the square root of the total feature number. Feature importance
was calculated by mean decrease impurity. The analysis was run in three separate cases:
for S-1 on its own, for S-2 on its own and for S-1 and S-2 combined.

We report User’s Accuracy (how reliable is the map i.e. how often forest identified
as, for example, plantation in our model is actually present on the ground), Producer’s
Accuracy (how well is the situation on the ground mapped i.e. how often is say, plantation,
on the ground correctly identified as such by our model) and Overall Accuracy (how often
all our forests were identified correctly). We use a 2-proportion Z-test [60] to compare the
proportions of correctly classified shapefiles between the pairs of interest: for example,
comparing classification results using S-1 imagery and classification results using S-2
imagery. This tests the null hypothesis of no difference between the proportion of correctly
classified shapefiles of each pair. Furthermore, we use McNemar’s test [61] for marginal
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homogeneity of the contingency table—in other words if the disagreements in classification
between the 2 cases match. For both tests we report the χ2 value and associated p value,
with a statistically significant difference defined at the 5% level.

2.3.5. Plantation Age

Landsat data was used to calculate the age of plantation stands in the study area. We
downloaded all the Landsat 5, 7 and 8 images with cloud cover less than 70% for Path/Row
125/48 and 126/48 from January 2009 to February 2018: 72 Landsat-8, 136 Landsat 7 and 34
Landsat 5 images. For this portion of the paper, we selected the plantations in the mid-east
of our study area, to the North and east of the KNT reserve, as they lie underneath the
overlap of the Landsat image swaths, effectively doubling the coverage, as we get an image
of the area from Path/Row 125/48, and then the following day an image from Path/Row
126/48. The inset map of Figure 1 shows the Landsat overlap where the plantation subset
used for this section of the paper was located.

The ‘pixel-qa’ layer was used to remove cloud and cloud-shadow pixels. Since this
layer frequently misses cloud, especially small isolated clouds, broken clouds and the
edges of cloud banks, we also manually inspected the RGB bands of all these images and
removed any clouds that were still present. The weak spot in our time-series was from
mid-2011 to mid-2013, the period when Landsat-5 had finished and Landsat-8 was still not
operational, leaving only imagery from the partially functional Landsat-7. The Normalised
burn ratio (NBR) is the difference between NIR and SWIR reflectance divided by their sum
(Equation (5)). A threshold value of NBR of below 0.25 was used to indicate plantation
harvesting [62,63]. Landsat processing was carried out using Python.

Adjacent Landsat pixels that were classed as being harvested in the same year were
grouped together into patches, and the patch boundaries converted into shapefiles, with
the time since the most recent harvest used as the age of each shapefile. The shapefiles were
classified into 6 groups: <6 Months, 6 Months-1 Year, 1–2 Years, 2–3 Years, 3–5 Years and
5–9 Years. The median band and derived indices were calculated using the 15th February
2018 Sentinel-2 image and the 11th February 2018 Sentinel-1 image for all shapefiles over
250 m2 in area. The Random Forest classification was then carried out for S-1, S-2 and S-1
and S-2 combined.

3. Results
3.1. Time-Series
3.1.1. Time-Series–Sentinel-1

Harvest causes a significant reduction in backscatter, with mean ± standard deviation
values for the VH band falling from −12.1 ± 0.6 dB pre-harvest to −14.5 ± 1.2 dB immedi-
ately after harvest (see Figure 3). Similarly, for the VV band, values fell from −6.9 ± 0.7 dB
to −8.6 ± 1.2 dB. For both bands the value immediately post-harvest is about a third of the
value in the natural forest areas. In distinguishing plantation from natural forest the VV
band should be more important than the VH throughout the lifecycle, with the exception
of immediately following harvest, when both VH and VV backscatter is significantly lower
than for natural forest.

3.1.2. Time-Series—Sentinel-2

Harvest causes an increase in visual and SWIR bands, which slowly declines as the
plantation darkens as it gets older (Figure 3). The larger difference in the visual band ratio
between the summer months (0.65 to 0.75) compared to the winter months (0.85 to 0.95)
(Figure 3d), suggest that plantations are more distinct from natural forest in the summer
months. This suggests a higher classification accuracy will be achieved from summer
images compared to winter images in the Random Forest analysis. The shift in the ratio
between summer and winter is driven by a greater increase in the reflectance of the natural
forest band values than plantation forest in the summer.
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Figure 3. A time series from 2015 to 2020 showing the ratio of the mean plantation band values to the mean natural forest
band values for a group of plantations harvested in April 2016 (a,c) and a control group that was not harvested in the study
period (b,d), for both Sentinel-1 (a,b) and Sentinel-2 (c,d). Shaded red vertical column shows period in which the selected
plantations were harvested. For clarity we do not show all the S-2 bands: only the visual bands (blue (B2), green (B3) and
red (B4)), two Near Infra-red (NIR) bands (B5 and B7) and a short-wave infrared (SWIR) band (B12) are shown. The other
NIR bands (B6, B8, B8A) behave similarly to B7. The other SWIR band (B11) behaves similarly to B12.

3.2. Natural Forest and Plantation Classification Accuracy

The confusion matrices for selected pre-processing and classification steps can be seen
in Table 1. Figure 4 shows the top 10 features for selected images and pre-processing steps.
Figure 5 gives a map of the RF classified shapefiles.

Table 1. Confusion matrices for (a) Sentinel-1 only (b) Sentinel 2 only and (c) Sentinel 1 and 2
combined Random Forest classifications of natural and plantation forest. The bold text denotes
correct classifications and the overall accuracy.

(a) S-1 Confusion Matrix

PR
ED

IC
TE

D

ACTUAL
Classification Natural Plantation Total User’s (%)

Natural 2061 391 2452 84.1
Plantation 287 2567 2854 89.9

Total 2348 2958 5306
Producer’s (%) 87.8 86.8

Overall accuracy (%) 87.2

(b) S-2 Confusion Matrix

PR
ED

IC
TE

D

ACTUAL
Classification Natural Plantation Total User’s (%)

Natural 2134 183 2317 92.1
Plantation 214 2775 2989 92.8

Total 2348 2958 5306
Producer’s (%) 90.9 93.8

Overall accuracy (%) 92.5

(c) S-1+S-2 Confusion Matrix

PR
ED

IC
TE

D

ACTUAL
Classification Natural Plantation Total User’s (%)

Natural 2130 190 2320 91.8
Plantation 218 2768 2986 92.7

Total 2348 2958 5306
Producer’s (%) 90.7 93.6

Overall accuracy (%) 92.3
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Figure 4. Bands contribution for Random Forest classification (top 10 features shown) for (a) Sentinel-1 only, (b) Sentinel-2
only (c) Sentinel-1 and 2 combined. Abbreviations as follows: Elev—Elevation, Dis—Dissimilarity, Con—Contrast, Homo—
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is ratio of winter and summer bands. Underscore indicates GLCM feature for S-1 or winter image for S-2. For both S-1 and
S-2 asterix * indicates standard deviation of given feature.

3.2.1. Natural Forest and Plantation Classification Accuracy: Sentinel-1

Backscatter intensity of both VH and VV bands (mean ± standard deviation) was
lower for acacia plantation (−12.6 ± 1.1 dB and −7.22 ± 1.1 dB) than for natural forest
(−12.2 ± 0.8 dB and −6.22 ± 0.93 dB). Random forest classification was largely successful
in distinguishing plantation from natural forest, with user’s and producer’s accuracies
of greater than 84% (Table 1(a)). Use of GLCM features, ancillary data and derived radar
band indices was essential, as using just the VV and VH bands on their own gave an
overall accuracy of just 77%. For comparison, the use of ancillary data (elevation, slope and
distance to village) on its own gave an overall accuracy of 84.4%. This heavy reliance on
ancillary data, with elevation and slope the most important features (Figure 4), meant that
removal of ancillary data from the full S-1 RF model resulted in a significant fall in overall
accuracy to about 80% (2-proportion z-test and McNemar’s test with χ2 = 82 and χ2 = 166
respectively; both p < 1 × 10−19). The worst performing features were overwhelmingly the
GLCM textures of the VH band, with 14 of the 15 worst performing features belonging to
this category.

3.2.2. Random Forest: Sentinel-2

Sentinel-2 had greater accuracy than S-1, with both user’s and producer’s accuracies
greater than 90% (Table 1(b)). A 2-proportion z-test and McNemar’s test found the dif-
ference in accuracy between S-1 and S-2 classifications to be highly significant (χ2 = 87
and χ2 = 136 respectively; both p < 1×10−20). Accuracy for the winter image and ancillary
data was 91%, while accuracy for the summer image and ancillary data was 91.2% (no
significant difference for 2-proportion z-test and McNemar’s test). The combined accuracy
for winter, summer and ancillary data was 92.5%. This is significantly higher than for the
summer image on its own (2 proportion z-test χ2 = 7.8, p = 0.005; McNemar’s test χ2 = 18.9,
p = 1 × 10−5).

The SWIR-red ratio (SRR) was the most highly rated feature, followed by elevation and
slope (Figure 4). Accuracy for the combined winter and summer images without ancillary
data was 91.7%. This reduction was not significant in the 2 proportion z-test (χ2 = 2.7,
p = 0.1) but was significant with the McNemar’s test (χ2 = 18, p = 1 × 10−5). The significant
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result for McNemar’s test results from the number of cases of natural forest wrongly
classified as plantation rising more than the number of cases with plantation wrongly
classified as natural forest. Overall, Sentinel-2’s reliance on ancillary data is considerably
lower than for S-1. Of the bands, the red band (B4) performed best: presumably because
the very fast turnover of acacia plantation means that a large fraction of acacia plantation
area was just harvested, a time when the red band could be up to 6 times brighter than
natural forest.
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RF classification of both S-1 and S-2 imagery slightly reduced accuracies by 0.2%
compared to the S-2 images on their own (Table 1). However, there was no significant
difference between the accuracies (2-proportion z-test and McNemar’s test). There was a
long ‘tail’ of very poorly performing S-1 features, with the worst 24 performing features
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all being S-1, almost all derived GLCM textures of the VH band. Removal of the 40 worst
performing features gave a small increase in classification accuracy, though this accuracy
of 92.6% was only minutely above that achieved for S-2 imagery alone, and we have to
conclude that the joint use of S-1 and S-2 data does at best little to improve accuracies. This
accords with a previous study [64].

Wrongly classified shapefiles overwhelmingly occurred on the interface between natu-
ral forest and plantation, with large blocks of plantation or natural forest being classified
correctly (Figure 5). S-2 imagery and ancillary data classified 41247.7 ha and 9231.1 ha as
natural forest and plantation respectively, with the reference MARD data giving 41084.8 ha
and 9394 ha as natural forest and plantation respectively.

3.3. Plantation Age

The plantation area of 13,000 ha was being principally managed on short rotation
lengths (Figure 6). Consequently, a third of the area was less than a year old. A quarter
was 4–9 years old and the remaining 40% was between 1–4 years old. A small area (3.5%)
was 8 years old and 4.8% was 9 years old—these areas in fact began to be harvested just
after the end of our study period (June 2020). The mean and median plantation stand ages
were 2.9 and 2.5 years respectively.
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We found an overall accuracy of 69.9% in distinguishing between the 6 age classes
of acacia plantation using the S-2 imagery (Table 2). S-1 imagery on its own was largely
ineffective, with an overall accuracy of 48.8%, and was only able to distinguish recently
harvested plantation (<1 year old) from older plantation, and was unable to distinguish
between the different categories of older plantation. The combined use of S-1 and S-2
imagery together resulted in an overall accuracy of 66.8% (the 2 proportion z-test and
McNemar’s test found no significant difference in accuracy with the S-2 classification).

Table 2. Confusion matrix for Sentinel-2 classification of various ages of acacia plantation. Abbrevia-
tions: Mon. indicates Months and Yr indicates Year. The bold text denotes correct classifications and
the overall accuracy.

S-2 Confusion Matrix

PR
ED

IC
T

ED

ACTUAL
Classification <6 Mon. 6 Mon.–1 Yr 1–2 Yr 2–3 Yr 3–5 Yr 5–9 Yr Total User’s (%)

<6 Mon. 109 6 115 94.8
6 Mon.–1 Yr. 15 85 9 109 78.0

1–2 Yr. 5 50 10 2 67 74.6
2–3 Yr. 8 43 20 12 83 51.8
3–5 Yr. 5 40 141 56 242 58.3
5–9 Yr. 6 25 81 112 72.3
Total 124 96 72 99 188 149 728

Producer’s (%) 87.9 88.5 69.4 43.4 75.0 54.4
Overall accuracy (%) 69.9

The RF classification performed best on the younger age classes, and struggled with
distinguishing the 3 oldest age classes (2–3 years, 3–5 years and 5–9 years) from each
other: In particular 2–3 Year plantation and 5–9 Year was misattributed as 3–5 Year. In the
combined S-1 and S-2 classification, S-2 bands and derived indices performed much better
than S-1, comprising all 12 top performing features, with NBR, green band (B3) and red
band (B4) in descending order of importance.

4. Discussion
4.1. Plantation and Natural Forest Classification

After harvest the cross-polarised signal (VH) increased within a year to rough parity
with natural forest. The co-polarised signal (VV) also rapidly increases after harvest but
to a backscatter intensity lower than natural forest. Given the thick canopy and minimal
forest clearings in both adult acacia and natural forest, we expect the backscatter to be
dominated by canopy return, with minimal surface scattering. Natural forest may possess a
higher degree of structural variation at S-1 resolution scale, which would result in a higher
backscatter than the smoother acacia plantation canopy. Alternatively, the large, oblong
leaves (about 4 cm × 20 cm) [65] of acacia may result in greater attenuation of the signal
compared with the more diverse leaf sizes of the natural forest (such as tree species from
the families Litsea, Machilus, Lauraceae and Euphorbiaceae) [32].

We found an overall accuracy of 87% in distinguishing natural and plantation forest
using Sentinel-1 imagery. This compares with a Malaysian study [17] that found an overall
accuracy of 90% in distinguishing oil palm, acacia and rubber plantation from natural
forest using S-1. Similarly a study in Indonesia [18] found accuracies of 86% using C-
band SAR in distinguishing oil palm and acacia plantation from natural forest. Similarly,
for S-2 our overall accuracy of 92.5% is similar to previous studies, with 90% accuracy
achieved in mapping acacia plantations in Indonesia [66] using optical SPOT satellite
(10–20 m resolution) imagery, and 86–88% in Vietnam [23] distinguishing natural forest
and plantation (acacia, rubber and eucalyptus combined) using optical and radar data.

Mature plantation is darker than natural forest in the SWIR band, and most similar in
the red band, a difference that led us to suggest as a vegetation index the simple ratio of
the SWIR band to the red band (SRR index, see Section 2.2.2 above), with plantation having
low values of this index compared to natural forest. Usefully, this difference between the
two bands occurs throughout the harvest cycle, with both the red and the SWIR bands
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increasing markedly in value after harvest, so that recently harvested acacia areas should
also appear as dark in a SRR image. SRR values should therefore be lower in plantation
forest than natural forest throughout the harvest lifecycle. Commonly used NIR-SWIR
vegetation indices such as NBR are less useful in this regard, showing up as dark in recently
harvested areas and bright in mature plantation, and having a crossover period when
plantation and natural forest are indistinguishable. However, NBR was the most important
feature for distinguishing plantation age. Therefore, the SRR and NBR vegetation indices
complement each other.

Our time series (Figure 3c,d) showed a greater difference in S-2 bands between planta-
tion and natural forest in the summer than the winter months, but we found no significant
difference between the S-2 classification accuracies for a summer image, taken towards
the end of the dry season, and a winter image, taken shortly after the end of the monsoon.
However, using both these images for classification did significantly raise accuracy. There-
fore even for evergreen forests such as is found in our study area the use of multiple images
can prove useful.

In the study area, on most of the flatter, lower-elevation sites close to villages, the
natural forest has been overwhelmingly replaced by acacia plantation, while natural forest
still dominates the steeper, higher elevation and more remote land. This meant that the
classification accuracy using only ancillary data was extremely high at 84.4%, though the
addition of S-1 or S-2 features did raise accuracy significantly by 3% and 8% respectively.
Further, we note that without the ancillary features S-2 classification accuracy was reduced
only slightly to 91.7%. Despite this, we note the possibility that slope and elevation may be
being indirectly measured in the image values, and the applicability of our results to other
areas where natural and plantation forest are more intermingled, and lie on similar terrain,
should be tested further.

4.2. Plantation Age Classification

Our overall accuracy of 70% using S-2 compares favourably to an accuracy of 82.7%
using Landsat on acacia plantations in Indonesia [67], as this study only classified into 2
categories of less than 5 years and greater than 5 years old. Similarly, a MODIS satellite
study of rubber plantation age [68] found an accuracy of over 97%, but this was again
classifying into only two categories (<4 years and ≥4 years old). A SAR and Landsat
study of rubber plantation age [22] used 3 groups (<5, 6–10, and >10 years old) and found
accuracies of between 80 and 90%.

A noted issue was the use of Landsat imagery to produce the plantation age shapefiles,
and the use of higher resolution S-1 and S-2 imagery to classify these shapefiles. The coarser
resolution of the Landsat imagery (30 m resolution) meant that the Sentinel pixels on the
fringes of the shapefiles could belong to a different age class, or to a non-plantation land-
use, a particularly serious problem for smaller plantation stands. To deal with this issue
we excluded any shapefiles under 25 S-2 pixels (0.25 ha) in area from the classification, and
we used the median value of the shapefile rather than the mean to reduce any distortion
caused by these edge effects. Nonetheless, it seems very likely that the accuracy could be
raised through the use of S-2 imagery to determine age, which will be increasingly possible
as the Sentinel image archive becomes longer.

There is a possibility of using acacia’s short life-cycle to map plantation areas by
using pixel time-series to track areas of harvesting, though this method would face two
drawbacks. Firstly, it would be difficult to identify the small fraction of our study area that
is managed on longer-length rotations. Secondly, while harvesting causes an obvious signal
in both the optical and SAR bands, it is short-lived. This means that a dense time-series
would be necessary, and for optical data it would be easy to miss an acacia harvest due to
the endemic cloudiness of the study area, particularly during the monsoon season.

The Vietnamese government is encouraging plantation managers to increase the rota-
tion length of plantations to increase the supply of higher quality timber for construction
and furniture industries [69]. An improved supply of large diameter timber from forest
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plantations may also reduce illegal logging and degradation of natural forests [8,70]. Per-
ceived risk from diseases, pests and storm damage are a barrier preventing land managers
increasing rotation length and previous attempts to increase rotation length have had
limited success [71]. Our analysis could be exploited to monitor and evaluate the success
of policies aimed at increasing rotation length.

5. Conclusions

The conversion of natural forest to plantation is widespread across much of the tropics.
Most remote sensed products of forest cover only report canopy cover, and can’t distinguish
between natural forest and plantation. We explored whether Sentinel images could be used
to distinguish plantation forests from natural forests in North-Central Vietnam.

For Sentinel-2, we found Random Forest classification accuracies of over 90%, with
the ratio of the Short Wave Infra-Red band to the Red Band the most important feature.
Similarly, for Sentinel-1, acacia plantations had a weak VV and a strong VH backscatter
compared to natural forest for all the plantation’s lifecycle excepting the first six months
following harvesting. At 87%, the classification accuracy using S-1 was significantly poorer
than for S-2, though it still satisfactorily distinguished plantation from natural forest, and
could be used in the absence of optical images. Elevation and slope were consistently
highly rated features, and on their own obtained classification accuracies of 84%, reflecting
the predominance of acacia plantation on the low-lying, flat terrain.

We found Random Forest classification of S-2 imagery was effective at distinguishing
acacia plantation under 2 years old from older plantation, but struggled to distinguish
between the older plantation stands. For both classifying plantation age, and distinguishing
between natural forest and plantation, integration of Sentinel-1 and 2 did nothing to
improve classification accuracy, with the result close to the S-2 classification.

Author Contributions: Conceptualization, B.S. and D.V.S.; Methodology, B.S.; Software, B.S.; Vali-
dation, B.S. and D.V.S.; Formal Analysis, B.S.; Investigation, B.S.; Resources, D.V.S.; Data Curation,
B.S.; Writing—Original Draft Preparation, B.S., Writing—Review & Editing D.V.S.; Visualization, B.S.;
Supervision, D.V.S.; Project Administration, D.V.S.; Funding Acquisition, D.V.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by an Institutional Links grant, ID 216372155, under the Newton-
Vietnam partnership. This grant is funded by the UK Department of Business, Energy and Industrial
Strategy (BEIS) and delivered by the British Council. DVS acknowledges support from the Natural
Environment Research Council (NERC) (Grant Numbers NE/M003574/1), a Philip Leverhulme Prize,
and from the United Bank of Carbon (UBoC). This work received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant
agreement No. 771492).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. Sentinel data
can be found here: https://scihub.copernicus.eu/ and Landsat data here: https://earthexplorer.usgs.
gov/.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the

FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [CrossRef]
2. Meyfroidt, P.; Lambin, E.F. Forest transition in vietnam and displacement of deforestation abroad. Proc. Natl. Acad. Sci. USA 2009,

106, 16139–16144. [CrossRef] [PubMed]
3. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.;

Loveland, T.R.; et al. High-Resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [PubMed]
4. Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.; Koch, A. Restoring Natural Forests is the Best Way to Remove Atmospheric Carbon.

Nature 2019, 568, 25–28. [CrossRef]

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://doi.org/10.1016/j.foreco.2015.06.014
http://doi.org/10.1073/pnas.0904942106
http://www.ncbi.nlm.nih.gov/pubmed/19805270
http://www.ncbi.nlm.nih.gov/pubmed/24233722
http://doi.org/10.1038/d41586-019-01026-8


Remote Sens. 2021, 13, 185 17 of 19

5. Horák, J.; Brestovanská, T.; Mladenović, S.; Kout, J.; Bogusch, P.; Halda, J.P.; Zasadil, P. Green Desert? Biodiversity patterns in
forest plantations. For. Ecol. Manag. 2019, 433, 343–348. [CrossRef]

6. Phillips, H.R.; Newbold, T.; Purvis, A. Land-Use effects on local biodiversity in tropical forests vary between continents. Biodivers.
Conserv. 2017, 26, 2251–2270. [CrossRef]

7. Barlow, J.; Gardner, T.A.; Araujo, I.S.; Ávila-Pires, T.C.; Bonaldo, A.B.; Costa, J.E.; Esposito, M.C.; Ferreira, L.V.; Hawes, J.;
Hernandez, M.I. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci.
USA 2007, 104, 18555–18560.

8. Ngo, D.T.; Van Le, A.; Le, H.T.; Stas, S.; Le, T.; Tran, H.; Pham, T.; Le, T.; Spracklen, B.; Langan, C. The potential for REDD+ to
reduce forest degradation in vietnam. Environ. Res. Lett. 2020, 15, 07402. [CrossRef]

9. Meyfroidt, P.; Lambin, E.F. Forest transition in vietnam and its environmental impacts. Glob. Chang. Biol. 2008, 14, 1319–1336.
[CrossRef]

10. Nambiar, E.S.; Harwood, C.E.; Kien, N.D. Acacia plantations in vietnam: Research and knowledge application to secure a
sustainable future. South. For. A J. For. Sci. 2015, 77, 1–10.

11. Spracklen, B.D.; Spracklen, D.V. Old-Growth forest disturbance in the ukrainian carpathians. Forests 2020, 11, 151. [CrossRef]
12. Omar, H.; Misman, M.A.; Kassim, A.R. Synergetic of PALSAR-2 and Sentinel-1A SAR polarimetry for retrieving aboveground

biomass in dipterocarp forest of Malaysia. Appl. Sci. 2017, 7, 675. [CrossRef]
13. Huang, X.; Ziniti, B.; Torbick, N.; Ducey, M.J. Assessment of Forest above Ground Biomass Estimation Using Multi-Temporal

C-Band Sentinel-1 and Polarimetric L-Band PALSAR-2 Data. Remote Sens. 2018, 10, 1424. [CrossRef]
14. Li, Z.; Fox, J.M. Rubber tree distribution mapping in Northeast Thailand. Int. J. Geosci. 2011, 2, 573. [CrossRef]
15. Zhai, D.; Dong, J.; Cadisch, G.; Wang, M.; Kou, W.; Xu, J.; Xiao, X.; Abbas, S. Comparison of Pixel-and Object-Based approaches in

phenology-based rubber plantation mapping in Fragmented Landscapes. Remote Sens. 2018, 10, 44. [CrossRef]
16. Lazecky, M.; Lhota, S.; Penaz, T.; Klushina, D. Application of sentinel-1 satellite to identify oil palm plantations in balikpapan bay.

In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 169, p. 012064.
17. Miettinen, J.; Liew, S.C.; Kwoh, L.K. Usability of Sentinel-1 Dual Polarization C-Band Data for Plantation Detection in Insular

Southeast Asia. In Proceedings of the 36th Asian Conference on Remote Sensing (ACRS2015), Quezon City, Philippines, 19–23
October 2015; Citeseer: Princeton, NJ, USA, 2015; pp. 19–23.

18. Dong, X.; Quegan, S.; Uryu, Y.; Zeng, T. Classifying Indonesian Plantation and Natural Forest Cover and Measuring Changes
with C-and L-Band SAR Data. In Proceedings of the ESA’s Living Planet Symposium, Edinburgh, UK, 9–13 September 2013.

19. Carolita, I.; Darmawan, S.; Permana, R.; Dirgahayu, D.; Wiratmoko, D.; Kartika, T.; Arifin, S. Comparison of Optic Landsat-8 and
SAR Sentinel-1 in Oil Palm Monitoring, Case Study: Asahan, North Sumatera, Indonesia. In IOP Conference Series: Earth and
Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 280, p. 012015.

20. Poortinga, A.; Tenneson, K.; Shapiro, A.; Nquyen, Q.; San Aung, K.; Chishtie, F.; Saah, D. Mapping Plantations in Myanmar by
Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error Quantification. Remote Sens. 2019, 11, 831.

21. Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping Deciduous Rubber Plantations through Integration
of PALSAR and Multi-Temporal Landsat Imagery. Remote Sens. Environ. 2013, 134, 392–402. [CrossRef]

22. Kou, W.; Xiao, X.; Dong, J.; Gan, S.; Zhai, D.; Zhang, G.; Qin, Y.; Li, L. Mapping deciduous rubber plantation areas and stand ages
with PALSAR and landsat images. Remote Sens. 2015, 7, 1048–1073.

23. Hoang, T.T.; Truong, V.T.; Hayashi, M.; Tadono, T.; Nasahara, K.N. New JAXA High-Resolution Land Use/Land cover map for
vietnam aiming for natural forest and plantation forest monitoring. Remote Sens. 2020, 12, 2707.

24. Huong, V.D.; Nambiar, E.K.; Hai, N.X.; Ha, K.M.; Dang, N.V. Sustainable management of acacia auriculiformis plantations for
wood production over four successive rotations in South Vietnam. Forests 2020, 11, 550. [CrossRef]

25. Ministry of Agriculture and Rural development (MARD). Approval of a Wood Production Management Plan for the Period 2014–2020;
Ministry of Agriculture and Rural development (MARD): Hanoi, Vietnam, 2014.

26. Dewar, R.C.; Cannell, M.G. Carbon Sequestration in the Trees, Products and Soils of Forest Plantations: An Analysis Using UK
Examples. Tree Physiol. 1992, 11, 49–71. [CrossRef] [PubMed]

27. Lugo, A.E. Comparison of tropical tree plantations with secondary forests of similar age: Ecological archives M062-001. Ecol.
Monogr. 1992, 62, 1–41. [CrossRef]

28. Sheldon, F.H.; Styring, A.; Hosner, P.A. Bird species richness in a bornean exotic tree plantation: A long-term perspective. Biol.
Conserv. 2010, 143, 399–407. [CrossRef]

29. Styring, A.R.; Ragai, R.; Unggang, J.; Stuebing, R.; Hosner, P.A.; Sheldon, F.H. Bird community assembly in bornean industrial
tree plantations: Effects of forest age and structure. For. Ecol. Manag. 2011, 261, 531–544.

30. Lung, N.N.; Quat, N.X.; Lien, A.P.D.T.V.; Que, A.P.D.N.D.; Van Con, A.P.D.T.; Ky, A.P.D.N.D.; Cam, L.V. Final Report on Forest
Ecological Stratification in Vietnam; UN-REDD Program Vietnam: Hanoi, Vietnam, 2011.

31. Ngo-Duc, T. Climate change in the coastal regions of Vietnam. In Coastal Disasters and Climate Change in Vietnam; Elsevier:
Amsterdam, The Netherlands, 2014; pp. 175–198.

32. Mahood, S.; Van Trần, H. The Biodiversity of Bac Huong Hoa Nature Reserve, Quang Tri Province, Vietnam; BirdLife International
Vietnam Programme: Hanoi, Vietnam, 2008.

33. Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A
Processor for Users. In Living Planet Symposium 2016; Spacebooks Online: Prague, Czech Republic, 2016; pp. 1–8.

http://doi.org/10.1016/j.foreco.2018.11.019
http://doi.org/10.1007/s10531-017-1356-2
http://doi.org/10.1088/1748-9326/ab905a
http://doi.org/10.1111/j.1365-2486.2008.01575.x
http://doi.org/10.3390/f11020151
http://doi.org/10.3390/app7070675
http://doi.org/10.3390/rs10091424
http://doi.org/10.4236/ijg.2011.24060
http://doi.org/10.3390/rs10010044
http://doi.org/10.1016/j.rse.2013.03.014
http://doi.org/10.3390/f11050550
http://doi.org/10.1093/treephys/11.1.49
http://www.ncbi.nlm.nih.gov/pubmed/14969967
http://doi.org/10.2307/2937169
http://doi.org/10.1016/j.biocon.2009.11.004


Remote Sens. 2021, 13, 185 18 of 19

34. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a
Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]

35. Zimmermann, N.E.; Edwards, T.C.; Moisen, G.G.; Frescino, T.S.; Blackard, J.A. Remote sensing-based predictors improve
distribution models of rare, early successional and broadleaf tree species in Utah. J. Appl. Ecol. 2007, 44, 1057–1067.

36. Spracklen, B.D.; Spracklen, D.V. Identifying european old-growth forests using remote sensing: A study in the Ukrainian
Carpathians. Forests 2019, 10, 127.

37. QGIS. QGIS Geographic Information System; QGIS Association: Fribourg, Switzerland, 2021.
38. Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804.
39. Coburn, C.A.; Roberts, A.C. A multiscale texture analysis procedure for improved forest stand classification. Int. J. Remote Sens.

2004, 25, 4287–4308. [CrossRef]
40. Wang, H.; Zhao, Y.; Pu, R.; Zhang, Z. Mapping robinia pseudoacacia forest health conditions by using combined spectral, spatial,

and textural information extracted from ikonos imagery and random forest classifier. Remote Sens. 2015, 7, 9020–9044.
41. Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random forest classification of

mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107.
[CrossRef]

42. SNAP. ESA Sentinel Application Platform V6; European Space Agency (ESA): Paris, France, 2021.
43. De Alban, J.D.T.; Connette, G.M.; Oswald, P.; Webb, E.L. Combined landsat and l-band sar data improves land cover classification

and change detection in dynamic tropical landscapes. Remote Sens. 2018, 10, 306. [CrossRef]
44. Sarzynski, T.; Giam, X.; Carrasco, L.; Lee, J.S.H. Combining radar and optical imagery to map oil palm plantations in Sumatra,

Indonesia, using the google earth engine. Remote Sens. 2020, 12, 1220.
45. Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity analysis of multi-temporal

sentinel-1 sar parameters to crop height and canopy coverage. Appl. Sci. 2019, 9, 655.
46. Tonolli, S.; Dalponte, M.; Neteler, M.; Rodeghiero, M.; Vescovo, L.; Gianelle, D. Fusion of airborne LiDAR and satellite

Multispectral data for the estimation of Timber Volume in the Southern Alps. Remote Sens. Environ. 2011, 115, 2486–2498.
[CrossRef]

47. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
48. Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band

Worldview-2 Satellite data. Remote Sens. 2012, 4, 2661–2693.
49. Nelson, M. Evaluating Multitemporal Sentinel-2 Data for Forest Mapping Using Random Forest; Stockholm University: Stockholm,

Switzerland, 2017.
50. Puletti, N.; Chianucci, F.; Castaldi, C. Use of Sentinel-2 for forest classification in mediterranean environments. Ann. Silvic. Res.

2017.
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