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Abstract
The Q1 lattice equation, a member in the Adler–Bobenko–Suris list of 3D con-
sistent lattices, is investigated. By using the multidimensional consistency, a
novel Lax pair for Q1 equation is given, which can be nonlinearized to produce
integrable symplectic maps. Consequently, a Riemann theta function expres-
sion for the discrete potential is derived with the help of the Baker–Akhiezer
functions. This expression leads to the algebro-geometric integration of the Q1
lattice equation, based on the commutativity of discrete phase flows generated
from the iteration of integrable symplectic maps.

Keywords: Baker–Akhiezer functions, algebro-geometric solutions, integrable
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1. Introduction

Discrete integrable systems form an increasingly important part of the theory of soliton
equations, and it has become a main subject of study within the wider area of integrable systems
in recent decades. In particular the study of partial difference equations on a space-time lattice
has undergone a dramatic development in parallel to the more familiar theory of integrable par-
tial differential equations, (cf e.g. [1] for an elementary introduction). What has emerged from
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these developments, is on the one hand a remarkable level of analogy between the theory of
discrete systems and that of continuous integrable systems (cf e.g. [2]), but at the same time a
deepening of understanding of the phenomenon of integrability by exploiting the richness of the
discrete world and how it has spawned new mathematical concepts and ideas, cf also [3]. One
remarkable breakthrough was the classification of integrable quadrilateral lattice equations, i.e.
partial difference equations on a lattice of elementary quadrilaterals on each face of which the
equation is defined, and that exhibit as their key integrability feature the aspect of multidimen-
sional consistency (the latter forming a discrete analogue of the existence of infinite hierarchies
of partial differential equations of soliton type), cf [1] for details. The result in [4] demonstrated
that under certain assumptions, and up to Möbius equivalence, the scalar quadrilateral lattice
equations can be classified as comprising only nine equations, denoted as H1, H2, H3, A1,
A2, and Q1, Q2, Q3, Q4. These are nowadays referred to as the ABS (Adler–Bobenko–Suris)
list of quadrilateral lattice equations, and they have been widely studied ever since. Some of
these equations, such as the lattice Korteweg–de Vries (KdV) family of equations [5], were
already known in the older literature since the early 1980s. They appear as the special value
δ = 0 case of a parameter that appears in several members of the ABS list, but the list also con-
tains some novel equations, as well as the δ �= 0 variants, which were new. It is especially for
those latter cases that the question of finding explicit solutions has become quite prominent, as
they exhibit new complicating features in comparison to the δ = 0 cases for which solutions,
including rational and soliton solutions as well as algebro-geometric solutions, were already
known. While soliton and elliptic type solutions were constructed for all ABS equations in
a series of studies [6–8], in this paper we address for the first time the issue of constructing
(higher genus) algebro-geometric solutions of one of these novel equations in the ABS list,
namely the (Q1)δ for δ �= 0.

Thus, in this paper we construct algebro-geometric solutions of the Q1 quadrilateral lattice
equation,

Ξ(0,2) ≡ β2
1(˜̄u − ũ)(ū − u) − β2

2(¯̃u − ū)(ũ − u) + δ2β2
1β

2
2(β2

1 − β2
2) = 0, (1.1)

denoted by the symbol Ξ( j,k) where j, k corresponds to the number of continuous and dis-
crete variables respectively. In (1.1) we have adopted our preferred short-hand notation for
lattice systems, i.e., partial difference equations for functions u = um,n depending on two dis-
crete independent variables m, n ∈ Z, forming a regular lattice with coordinates (m, n) ∈ Z2,
and where elementary lattice shifts are denoted by ũ = um+1,n, ū = um,n+1. Equation (1.1) is
a member in the well-known ABS list of 3D consistent lattices [4], where β1, β2 are (lattice)
parameters associated with the two lattice directions respectively, while δ is a fixed parameter.
For δ �= 0 this equation first appeared in the classification of [4], but the case δ = 0 (which we
will denote by (Q1)0) first appeared in [5] where, due to the appearance of the canonical cross
ratio of four variables, namely written in the form

(¯̃u − ū)(ũ − u)
(˜̄u − ũ)(ū − u)

=
β2

1

β2
2

, (1.2)

it was identified as a lattice version of the Schwarzian KdV equation [9, 10],

uy

ux
+

1
4

[
uxxx

ux
− 3

2

(
uxx

ux

)2
]
= 0. (1.3)

Equation (1.3) is a relative of the famous KdV equation which is invariant under Möbius trans-
formation. Its lattice version, i.e., the (Q1)0 lattice, which first appeared in [5], can be used to
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define a discrete conformal map, by which the Riemann theta function solutions to (Q1)0 are
calculated [11, 12]. In the previous papers [13, 14], we constructed algebro-geometric solutions
of the (Q1)0 equation, using the method of symplectic maps arising from a nonlinearisation
approach [15, 16].

The present paper considers the δ-parameter extension of (Q1)0, which amounts to a signif-
icant departure from the δ = 0 case, since in a sense it ‘lifts’ the equation away from the KdV
related lattice equations, cf e.g. [1], and towards what one could call the Krichever–Novikov
(KN) class, on which we say a bit more below (see section 2). Furthermore, in the soliton
solutions, cf [6], the presence of the parameter δ effectively induces a deformation of the
curve on which the lattice parameters (in (1.1) the parameters β1, β2) take their values, and
hence in that sense the switching on of the δ represents an unfolding of the correspond-
ing ‘parameter curve’. As a consequence of the presence of this parameter also the corre-
sponding Lax pair is significantly more complicated than the KdV type lattice equations [13,
14, 17, 18], and various other simplifying features disappear. Hence, also the nonlineariza-
tion approach to the algebro-geometric solutions is significantly different from the one for
the KdV class systems. With regard to explicit solutions of (1.1) relatively little is known
so far: soliton solutions were constructed in [6], while elliptic type solutions were pre-
sented in [7], along with those of all members of the ABS list apart from the top equation
Q4. Elliptic N-soliton type solutions of the latter equation (where the equation itself is
defined over an elliptic curve) were constructed in [8]. Moreover, in [19], it indicates that
the Q1 lattice admits rational solutions. So far, to our knowledge, no explicit results exist
about the algebro-geometric solutions expressed in terms of θ-functions corresponding to
a hyperelliptic Riemann surface of any of the δ-parameter equations in the ABS list for
higher genus g > 1. The present paper forms the first step towards filling this lacuna in the
theory.

The algebro-geometricapproach to soliton equations was initiated by early work on the peri-
odic initial value problem for the KdV and similar equations [20], (and references therein).
It basically reduces the problem to that of mapping the initial data to points on the Rie-
mann surface of a higher genus algebraic curve in the space of spectral variables, and using
the properties of Abelian functions on that Riemann surface to formulate a (Jacobi type)
inverse problem on that Riemann surface and the associated Jacobian of the curve. The
results of the inverse problem can usually be expressed in terms of Riemann theta func-
tions associated with the curve. The method we employ in the present paper to solve the
Q1 lattice equation (1.1) uses a variant of the standard theory of finite-gap integration based
on the construction of integrable symplectic maps in combination with the discrete version
of the Liouville–Arnold theory [21–25]. In contrast to the approach presented in [17, 18,
26], which employs associated completely integrable Hamiltonian systems (in terms of an
auxiliary continuous time-variable) for the integration of the lattice systems, in the present
approach we circumvent the need for an associated continuous variable and use the discrete
equation itself as the starting point. This, through the property of multidimensional consis-
tency, cf [1], provides the Lax pair, the commuting matrix operators, as well as the spectral
curve associated with a hyperelliptic Riemann surface, in the details of the construction of
solutions.

This paper is organised as follows. In section 2, we present the relevant Lax pair as well
as the underlying continuous systems associated with the quadrilateral lattice through con-
tinuum limits. In section 3, based on two commuting operators, we obtain the relevant sym-
plectic map, whose integrability is proved by using the r-matrix and (quasi-) Abel–Jacobi
variables. As a consequence, the discrete flows are constructed via the iteration of integrable
symplectic maps in section 4. Moreover, the evolution of the potential along the discrete
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flows is inverted with the help of the Baker–Akhiezer functions. As a result, the algebro-
geometric integration of the Q1 lattice equation is deduced by the commutativity of two discrete
phase flows sharing the same invariants. We finish the paper with some conclusive remarks in
section 5.

2. Lax pairs and associated continuous equations

By the method of multidimensional consistency, cf [1], a basic discrete spectral problem is
derived directly from equation (1.1)

χ̃ = D(β)(λ; b)χ, D(β)(λ; b) =
1
B

(
λb λ2δ2β + βB2

β λb

)
, (2.1)

where B = (b2 − δ2β2)1/2, βb = ũ − u. The factor B is there to avoid that non-trivial relations
arise from the determinantal condition of the zero-curvature relation, and one way of guar-
anteeing that happens is by requiring that det D(β)(λ; b) = λ2 − β2 is a constant. The general
form (2.1) of the Lax pair for quadrilateral lattice equations was given in [27], in the context
of the one for the generic case of the lattice KN system, i.e., Q4 lattice equation. The latter
contains as a special case the Q1 model, cf also [28]. In the special case of the Q1 lattice
equation (1.1) the zero-curvature representation adopts the form

χ̃ = D(β1)χ ≡ D(β1)(λ; b1)χ, with b1 = (ũ − u)/β1,

χ̄ = D(β2)χ ≡ D(β2)(λ; b2)χ, with b2 = (ū − u)/β2.
(2.2)

In fact, computing the difference ¯̃χ− ˜̄χ yields the following identity:

D̄(β1)D(β2) − D̃(β2)D(β1) =
Ξ(0,2)

B̄1B̃2B1B2

(
λ2S1 + β1β2B̄1B̃2S0 λ2δ2S2 + λS3

λS2 λ2S1 − β1β2B1B2S0

)
, (2.3)

in which Bk = (b2
k − δ2β2

k )1/2, and where the quantities S j are given by

S0 = − b̃2b2 + b̄1b1 − δ2(β2
1 + β2

2)

(B̃2B2 + B̄1B1)β2
1β

2
2

,

S1 = −δ2(¯̃u − ũ − ū + u)(I1J2 + I2J1)

(B̃2B1I2 + B̄1B2I1)β2
1β

2
2

,

S2 = − (¯̃u − ũ − ū + u)(I1J2 + I2J1)

(B̃2B1J2 + B̄1B2J1)β2
1β

2
2

,

S3 =
δ2(¯̃u − ũ − ū + u)

(B̃2B1K2 + B̄1B2K1)β2
1β

2
2

[(I1K2 + I2K1)(β2
1 + β2

2) − (J1K2 + J2K1)(¯̃u − u)],

with

I1 = b̃2b1 + δ2β1β2, J1 = β1b̃2 + β2b1, K1 = β1b̃2B2
1 + β2b1B̃2

2,

I2 = b̄1b2 + δ2β1β2, J2 = β2b̄1 + β1b2, K2 = β2b̄1B2
2 + β1b2B̄2

1.

From equation (2.3) we conclude that the zero-curvature condition (implying ¯̃χ = ˜̄χ) is satis-
fied iff Ξ(0,2) = 0, i.e. if the Q1 lattice equation (1.1) holds for the function u, since generically
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at least one of the entries in the matrix on the right-hand side of (2.3) is nonzero. Thus, the
relation (2.3) forms a bridge between the discrete zero-curvature equation and the Q1 model.

Let us now consider continuum limits of the Q1 equation. A special sequel of continuum
limits yield the following form for a semi-continuum and full continuum limit respectively,

Ξ(1,1) ≡ β2
1 ũxux − (ũ − u)2 + δ2β4

1 = 0, (2.4)

Ξ(2,0) ≡ uy +
1
4

(
uxxx −

3
2

u2
xx − 4δ2

ux

)
= 0. (2.5)

In fact, setting β2 = c2ε, and ū(x, y) = u(x + β2, y − β3
2/3), then as remains β1 constant while

β2 → 0, i.e. ε→ 0, we have the Taylor expansion

Ξ(0,2) ≡ c2
2ε

2Ξ(1,1) + O(ε3).

Furthermore, setting βk = ckε, and ũ(x, y) = u(x + β1, y − β3
1/3), and ū(x, y) = u(x + β2, y −

β3
2/3). As ε→ 0, we obtain

Ξ(0,2) ≡ 2
3

ux

(
c2

1 − c2
2

)
ε2Ξ(2,0) + O(ε3).

We note that equation (2.5) with δ = 0 is exactly the Schwarzian KdV equation (1.3) which
is the continuum limit of (Q1)0. Moreover, equation (2.5) is a special case of the KN equation
[9], which in its most general form is given by

uy = uxxx −
3

2ux

(
u2

xx − r(u)
)
+ cux, r(5) = 0, (2.6)

with r(u) an arbitrary quadratic polynomial with constant coefficients. Adler [29], discovered
the following Bäcklund transformation for (2.6):

uxvx = h(u, v), (2.7)

where h(u, v) is an arbitrary symmetric biquadratic polynomial, i.e., a polynomial of degree less
than 3 in each variable. Furthermore, the nonlinear superposition principle for (2.7), i.e., the
permutability condition of the Bäcklund transform, in the most general, elliptic, form gives rise
to the Q4 lattice equation [28, 29]. In the more special case of the Q1 equation (2.7) coincides
with the semicontinuous equation (2.4) written as

uxũx = β−2
1 (ũ − u)2 − δ2β2

1 , (2.8)

by identifying v = ũ. The observation that the Bäcklund transformed quantity ũ can be iden-
tified with a lattice shift goes back to [30, 31]. On the level of the Lax pair, the semi-discrete
zero curvature equation Λ = D(β)

x − ŨD(β) +D(β)U = 0, with U given by

∂xχ = U(λ; u)χ =
1

λux

(
0 λ2δ2 + u2

x

1 0

)
χ, (2.9)

gives rise to the semi-discrete equation (2.4) as commutability condition. Indeed, by direct
calculations we have

Λ =
−Ξ(1,1)

β1B1ũxux

[
b1,x

B2
1

(
λδ2β1 λ2δ2b1

b1 λδ2β1

)
+

1
λ

(
ũx 0
0 −ux

)]
.
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We mention in passing that the KN equation (2.6) arose in [9] from the problem of find-
ing special finite-gap solutions of the Kadomtsev–Petviashvili equation associated with rank
2 holomorphic vector bundles. We mention also that already early on it was observed that
the semi-discrete system is perfectly adapted for performing numerical calculations, and for
producing the plots of solutions, which reveals that the algebro-geometric solutions have a
practical value as standard special functions as well [32–34].

Motivated by these known facts, this paper is dedicated to the problem of constructing the
algebro-geometric integration for the Q1 equation (1.1). To set up the finite-gap scheme for Q1
it is most convenient to perform the calculations from a Lax representation perspective. In the
development of this method, a fundamental role is played by the Burchnall–Chaundy theory of
commuting differential operators [35, 36], whose discrete analogue concerning commutative
rings of periodic difference operators was developed [37, 38]. Their common eigenfunctions
are vector bundles over a Riemann surface defined by the corresponding eigenvalues, and this
forms the underlying geometry for the reconstruction of the potentials from a special class
of spectral functions which themselves can be obtained from solving a classical Jacobi inver-
sion problem for Abelian integrals on hyperelliptic Riemann surfaces [39–41]. Furthermore,
the algebro-geometric solutions of the associated discrete systems can be expressed in terms
of the Riemann theta functions associated with the Riemann surface, and a suitable choice
of a homology basis of curves (see [17, 42–50] and the reference therein). The approach in
this paper for the solution of the discrete equation is based on the construction of commut-
ing integrable symplectic (dynamical) maps, which in turn can be resolved in terms of the
algebro-geometric data.

3. Construction of the nonlinear integrable symplectic map

In this section we discuss how a linear map can be nonlinearized to produce a nonlinear inte-
grable symplectic map on the symplectic manifold N = (R2N , dp∧ dq) with associated coor-
dinates (p, q) = (p1, . . . , pN , q1, . . . , qN)T , where N is a positive integer. A map S : (p, q) �→
( p̃, q̃) is a symplectic transformation [51–53], if S∗(dp∧ dq) = dp∧ dq. A well-defined notion
of integrability for symplectic maps was first given by Veselov [22, 23]. It is entirely analo-
gous to that of the Liouville–Arnold in the continuous-time case, i.e., there exists N smooth
functions I1, . . . , IN : R2N → R with the following properties:

(a) The functions are invariants of the map, i.e., S∗I j = I j.
(b) The invariant functions are in involution with respect to the Poisson bracket, i.e.,

{Ii, I j} = 0.
(c) The invariant functions are functionally independent throughout the phase space.

To construct an integrable nonlinear symplectic map suitable for the integration of the Q1
equation, we use the nonlinearisation method of [17, 18, 26] and apply it to the linear map
associated with the spectral problem (2.1) of Q1, which is given by:

(
p̃j

q̃ j

)
= (α2

j − β2)−1/2D(β)(α j; b)

(
pj

q j

)
, 1 � j � N, (3.1)

where {α j}N
j=1 are the corresponding eigenvalues. We assume, moreover, that these eigenvalues

α2
1, . . . ,α2

N are mutually distinct and non-zero. It turns out that the linear map (3.1) can be
extended to a nonlinear integrable symplectic map by imposing a restriction on the discrete
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potential3 which is the quantity b. This fact has led in several cases to the construction of
integrable symplectic maps in the process of constructing the finite gap solutions for several
discrete soliton equations [17, 18, 26]. In the present case, the operator associated with the Lax
pair (2.2) is the Darboux matrix D(β)(λ; b) given by (2.1). Through direct computation, we find
that there is a matrix operator, i.e., the Lax matrix

L(λ; p, q) =

(
0 δ2(λ2 − 〈Aq, q〉)
1 0

)
+

(
λQλ(p, q) −Qλ(Ap, p)
Qλ(Aq, q) −λQλ(p, q)

)
, (3.2)

that commutes with D(β)(λ; b):

L(λ; p̃, q̃)D(β)(λ; b) −D(β)(λ; b)L(λ; p, q) = 0, (3.3)

where A = diag(α1, . . . ,αN), 〈ξ, η〉 = ΣN
j=1ξ jη j and Qλ(ξ, η) = 〈(λ2 − A2)−1ξ, η〉. This com-

mutative relation (3.3) in cases considered implies a quadratic equation providing the con-
straints on discrete potentials [17, 18, 26].

Proposition 3.1. The constraint for the discrete potential b in the spectral problem (2.1)
satisfies

P(β)(b; p, q) ≡ b2L21(β; p, q) + 2bL11(β; p, q) − L12(β; p, q) = 0. (3.4)

Proof. First, note that the Lax matrix (3.2) can be rewritten as

L(λ; p, q) =

(
0 δ2(λ2 − 〈Aq, q〉)
1 0

)
+

1
2

N∑
j=1

(
ε j

λ− α j
+

σ3ε jσ3

λ+ α j

)
,

ε j =

(
pjq j −p2

j

q2
j −pjq j

)
.

Then we calculate L(λ; p̃, q̃)D(β)(λ; b) −D(β)(λ; b)L(λ; p, q) = I + II,

I =

⎛
⎜⎝
−β

B
(δ2〈Aq̃, q̃〉+ B2) −λδ2(〈Aq̃, q̃〉 − 〈Aq, q〉)

0
β

B
(δ2〈Aq, q〉+ B2)

⎞
⎟⎠ ,

II =
1
2

N∑
j=1

ε̃ jD(β)(λ; b) −D(β)(λ; b)ε j

λ− α j
+

σ3ε̃ jσ3D(β)(λ; b) −D(β)(λ; b)σ3ε jσ3

λ+ α j

=
b
B

(〈p̃, q̃〉 − 〈p, q〉)σ3 +
βδ2

B

(
−〈Aq, q〉 λ(〈p̃, q̃〉+ 〈p, q〉)

0 〈Aq̃, q̃〉

)
,

where we use ε̃ jD(β)(α j; b) = D(β)(α j; b)ε j, σ3D(β)(α j; b)σ3 = −D(β)(−α j; b). From equat-
ions (2.1) and (3.1), we have

p̃ = (A2 − β2)−1/2 1
B

(bAp+ βδ2A2q + βB2q),

3 This assertion is based on the observation, going back to [9], that there exists an operator commuting with a member
in the Lax representation for nonlinear equations of KdV type, when discussing the associated finite gap classes of
exact solutions.
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q̃ = (A2 − β2)−1/2 1
B

(βp+ bAq).

Hence

L(λ; p̃, q̃)D(β)(λ; b) −D(β)(λ; b)L(λ; p, q)

=
1
B

[b(〈p̃, q̃〉 − 〈p, q〉) − βδ2(〈Aq̃, q̃〉+ 〈Aq, q〉) − βB2]σ3

= −β

B
P(β)(b; p, q)σ3,

where σ3 is the usual Pauli matrix. This concludes the proof by using equation (3.3). �

Following the spirit of [9], we use the Burchnall–Chaundy theory [35–38] to study the com-
muting operators L(λ; p, q) and D(β)(λ; b). We shall investigate their common eigenfunctions
and the corresponding eigenvalues which lie on a Riemann surface. In our case, the operator
L(λ; p, q) has two eigenvalues,

±Hλ = ±
√
−Fλ, (3.5)

where

Fλ = Fλ(p, q)
�
= detL(λ; p, q)

= (−δ2λ2 + δ2〈Aq, q〉+ Qλ(Ap, p))(1 + Qλ(Aq, q)) − λ2Q2
λ(p, q)

= −δ2λ2 + Qλ(Ap, p) − δ2Qλ(A3q, q) + δ2〈Aq, q〉Qλ(Aq, q)

+ Qλ(Ap, p)Qλ(Aq, q) − λ2Q2
λ(p, q), (3.6)

with Qλ(A3q, q) = λ2Qλ(Aq, q) − 〈Aq, q〉. Moreover, Fλ is a rational function of ζ = λ2, and
has simple pole at each point α2

j . Inspired by the relation between the eigenvalues Hλ and λ,
given by (3.5), we consider the factorization of Fλ

Fλ = −δ2

∏N+1
j=1 (ζ − λ2

j)

α(ζ)
= −δ2 R(ζ)

ζα2(ζ)
, α(ζ) = ΠN

k=1(ζ − α2
k ), (3.7)

and then construct a hyperelliptic spectral curve associated with a two-sheeted Riemann surface
of genus g = N, cf [54–56],

R : ξ2 = R(ζ). (3.8)

Since deg R = 2N + 2, the above curve (3.8) has two infinities ∞+, ∞−. For any ζ ∈ C, in
the non-branch case (not equal to λ2

j ,α
2
j or 0) we call the collection of points on R of the form

p(ζ) =
(
ζ, ξ =

√
R(ζ)

)
, (τp) (ζ) =

(
ζ, ξ = −

√
R(ζ)

)
,

the upper and lower sheets, respectively, where τ : R→R is the map of changing sheets. The
branch point, given by ζ = 0 and ξ = 0, is denoted by o.

To proceed with the actual integration of the map, we first list some basic objects on R
[54–56]. Let a1, . . . , ag, b1, . . . , bg be the canonical basis of the homology group H1(R) and
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ω′
1, . . . ,ω′

g be the basis of holomorphic differentials:

ω′
l =

g∑
s=1

ζg−sdζ
2
√

R(ζ)
, 1 � l � g, (3.9)

whose integral along ak is denoted by alk. Then (3.9) in the vector form �ω′ = (ω′
1, . . . ,ω′

g)T can
be normalized into �ω = (ω1, . . . ,ωg)T = C�ω′ with C = (alk)−1

g×g.

Periodic vectors �δk, �Bk are defined as integrals of �ω along ak, bk, respectively. They span a
lattice T , which defines the Jacobian variety J(R) = Cg/T . The matrix B = (�B1, . . . ,�Bg) is
used to construct the Riemann theta functions which will be used in section 4,

θ(z, B) =
∑
z′∈Zg

exp π
√
−1(〈Bz′, z′〉+ 2〈z, z′〉), z ∈ C

g. (3.10)

The Abel map A : Div(R) → J(R) defined as

A (p) =
∫ p

p0

�ω, A (Σnkpk) = ΣnkA (pk), (3.11)

is the key ingredient in the Jacobi inversion problem.
As a consequence we obtain a nonlinear map arising from the linear map (3.1),

Sβ :

(
p̃
q̃

)
= (A2 − β2)−1/2 1

B

(
bAp+ βδ2A2q + βB2q

βp+ bAq

) ∣∣∣∣∣
b= f β (p,q)

, (3.12)

where b = fβ(p, q) is given by the roots of quadratic equation (3.4),

b = f β(p, q) =
1

1 + Qβ(Aq, q)

(
−βQβ(p, q) ±Hβ

)
, (3.13)

which is single-valued as a function of p(β2) ∈ R. Actually, βb are the values of the following
meromorphic function on the curve R:

b(p) =
1

1 + Qβ(Aq, q)

(
−β2Qβ(p, q) +

δξ

α(β2)

)
,

at the points p(β2) and (τp)(β2), respectively. Hence, the nonlinear map Sβ is well-defined.
The next step is to show that Sβ given by (3.12) is an integrable symplectic map on

N = (R2N , dp∧ dq). In order to get the symplecticity of Sβ , we calculate

(
d p̃j

dq̃ j

)
= (α2

j − β2)−1/2

(
D(β)(α j; b)

(
dpj

dq j

)
+ C(β)(α j; b)

(
dpj

dq j

)
db

)
,

1 � j � N,

(3.14)

where

C(β)(α j; b) =
d

db
D(β)(α j; b) = − b

B2
D(β)(α j; b) +

1
B

(
α j 2βb
0 α j

)
,
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by using equation (3.12). Then,

N∑
j=1

(dp̃j ∧ dq̃ j − dpj ∧ dq j) =
β

2B2
dP(β)(b; p, q) ∧ db, (3.15)

which implies S∗
β(dp∧ dq) = d p̃∧ dq̃ = dp∧ dq, since b = fβ(p, q) given by equation (3.13)

satisfies the quadratic equation (3.4). Hence, Sβ is a symplectic map on N = (R2N , dp∧ dq).
Having asserted the symplecticity of the map, we now turn to the construction of its

invariant. In fact, by taking the determinant on equation (3.3), we have det L(λ; p̃, q̃) =
det L(λ; p, q), i.e.,

F̃λ = Fλ. (3.16)

Thus, invariants of the map Sβ can be generated by the partial fraction expansion,

Fλ = −δ2λ2 +

N∑
k=1

Ek

λ2 − α2
k

, (3.17)

where

Ek = αk p2
k − δ2α3

kq2
k + δ2〈Aq, q〉αkq

2
k − p2

kq2
k

+
αk

2

∑
1� j�N; j�=k

(pkq j − pjqk)2

α2
k − α2

j

− (pkq j + pjqk)2

α2
k + α2

j

.
(3.18)

In fact, substituting (3.17) into the both sides of equation (3.16) and comparing the residues at
α2

k , we obtain

Ẽk = Ek, 1 � k � N. (3.19)

The next step is to show that N invariant functions E1, . . . , EN on the phase spaceR2N for the
symplectic map Sβ are in involution with respect to the symplectic structure, and are function-
ally independent. These conditions are essential conditions to assert the Liouville integrability
of symplectic maps. We employ a different approach here from previous papers [17, 18, 26],
by employing an r-matrix structure to exhibit the validity of these conditions. The relevant
r-matrix structure is similar to the well known cases [2, 57, 58], and through direct calculation
we find that the Lax matrix obeys the fundamental Poisson bracket

{L(λ) ⊗
,
L(μ)} = [r(λ,μ),L1(λ)] + [r′(λ,μ),L2(μ)], (3.20)

where L(λ; p, q) is often written as L(λ) for short, L1(λ) = L(λ) ⊗ I, L2(μ) = I ⊗ L(μ), and
r′(λ, μ) = −r(μ,λ) satisfies

r(λ,μ) =
1

λ2 − μ2
(λ(σ1 ⊗ σ1 + σ2 ⊗ σ2) + μ(σ3 ⊗ σ3 + I)) + 2δ2λσ+ ⊗ σ+

=
2

λ2 − μ2

⎛
⎜⎜⎝
μ 0 0 0
0 0 λ 0
0 λ 0 0
0 0 0 μ

⎞
⎟⎟⎠+ 2δ2λ

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (3.21)

with σ1, σ2, σ3, σ+ the Pauli matrices and I the usual unit matrix.
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In addition to (3.20), there are two further matrix functions s, s′ such that

{L2(λ) ⊗
,
L2(μ)} = [s,L1(λ)] + [s′,L2(μ)]. (3.22)

This is derived from

{L2(λ) ⊗
,
L2(μ)} = L1(λ)L2(μ){L(λ) ⊗

,
L(μ)}+ L1(λ){L(λ) ⊗

,
L(μ)}L2(μ)

+ L2(μ){L(λ) ⊗
,
L(μ)}L1(λ) + {L(λ) ⊗

,
L(μ)}L2(μ)L1(λ).

(3.23)

Substituting (3.20) into (3.23) and by using the formula L1(λ)L2(μ) = L2(μ)L1(λ) = L(λ) ⊗
L(μ), we get

s = L1(λ)L2(μ)r(λ,μ) + L1(λ)r(λ,μ)L2(μ) + L2(μ)r(λ,μ)L1(λ) + r(λ,μ)L2(μ)L1(λ),

s′ = L1(λ)L2(μ)r′(λ,μ) + L1(λ)r′(λ,μ)L2(μ) + L2(μ)r′(λ,μ)L1(λ) + r′(λ,μ)L2(μ)L1(λ).

As a consequence of the r-matrix structure we have the following:

Proposition 3.2. The invariants E1, . . . , EN of the symplectic map Sβ are in pairwise
involution.

Proof. Since L2(λ) = −FλI,L2(μ) = −FμI, we calculate

{Fλ,Fμ} =
1
4

tr{L2(λ) ⊗
,
L2(μ)}. (3.24)

Hence by equation (3.22), we obtain

{Fλ,Fμ} = 0, ∀ λ,μ ∈ C. (3.25)

Substitute the partial fraction expansion (3.17) into (3.25), then calculate the residues, we have

{Ek, E j} = 0, 1 � j, k � N, (3.26)

which implies {Ek} given by equation (3.18) are in involution. �
Interestingly, by the r-matrix method, we can get the evolution of the Lax matrix along a

phase flow resulting in the independence for invariant functions [17, 59]. In order to do this we
calculate

d
dtλ

(
pj

q j

)
=

(
−∂Fλ/∂q j

∂Fλ/∂pj

)
= W(λ,α j)

(
pj

q j

)
, (3.27)

where tλ is the flow variable corresponding to the Hamiltonian function Fλ, then we obtain

W(λ,μ) =
2

λ2 − μ2

(
λL11(λ) μL12(λ)
μL21(λ) −λL11(λ)

)
− 2δ2μL21(λ)σ+. (3.28)

This statement can be cast in Lax form as follows:

Lemma 3.1. The Lax matrix L(μ) satisfies the evolution equation along the tλ-flow,

dL(μ)/dtλ = [W(λ,μ),L(μ)]. (3.29)
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Proof. Since L2(λ) = −FλI, we obtain

{L2(λ) ⊗
,
L(μ)} = {−FλI ⊗

,
L(μ)}

=

(
−{Fλ,L(μ)} 0

0 −{Fλ,L(μ)}

)

=

(
dL(μ)/dtλ 0

0 dL(μ)/dtλ

)
. (3.30)

By equation (3.20), we calculate the left-hand side of (3.30) again and get

{L2(λ) ⊗
,
L(μ)} = L1(λ){L(λ) ⊗

,
L(μ)}+ {L(λ) ⊗

,
L(μ)}L1(λ)

= L1(λ)r′(λ,μ)L2(μ) − L1(λ)L2(μ)r′(λ,μ)

+ r′(λ,μ)L2(μ)L1(λ) − L2(μ)r′(λ,μ)L1(λ)

= [L1(λ)r′(λ,μ) + r′(λ,μ)L1(λ),L2(μ)]

=

(
[W(λ,μ),L(μ)] 0

0 [W(λ,μ),L(μ)]

)
. (3.31)

Then comparing (3.30) and (3.31), equation (3.29) is verified. �
We next address the problem of parameterizing the solutions. In fact, by introducing an

elliptic (curvilinear) coordinate system {ν2
j } defined by the zeros of the following function

[51, 60]:

L21(λ) = 1 +

g∑
j=1

α jq2
j

λ2 − α2
j

=
n(ζ)
α(ζ)

, n(ζ) =
g∏

j=1

(ζ − ν2
j ), (3.32)

we consider one component of the equation (3.29),

dL21(μ)/dtλ = 2(W21(λ,μ)L11(μ) −W11(λ,μ)L21(μ)), (3.33)

at points μ = νk, 1 � k � g. Then the Dubrovin equations for our case [49, 61] is obtained4,

1

2
√

R(ν2
k )

dν2
k

dtλ
= − 2δ

α(ζ)
n(ζ)

(ζ − ν2
k )n′(ν2

k )
. (3.34)

Hence by using the Lagrange interpolation formula for polynomials, we get

g∑
k=1

(ν2
k )g−s

2
√

R(ν2
k )

dν2
k

dtλ
= − 2δ

α(ζ)
ζg−s, (1 � s � g), (3.35)

which can be rewritten in the simple form

dφ′
s

dtλ
= {φ′

s,Fλ} = − 2δ
α(ζ)

ζg−s, (1 � s � g) (3.36)

4 In [62] a discrete version of the Dubrovin equations was obtained associated with the finite-gap solutions of the lattice
KdV system.
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with the help of the quasi-Abel–Jacobi variables �φ′ = (φ′
1, . . . ,φ′

g)T ,

φ′
s =

g∑
k=1

∫ p(ν2
k )

p0

ζg−s

2
√

R(ζ)
dζ, (1 � s � g), (3.37)

determined by the basis of holomorphic differentials in equation (3.9). Thus, we arrive at the
following proposition:

Proposition 3.3. The invariants E1, . . . , EN of the symplectic map Sβ are functionally
independent throughout the phase space R2N.

Proof. SupposeΣN
j=1c jdE j = 0. ThenΣN

j=1c j{φ′
s, E j} = 0, ∀ s. We shall now prove that c j =

0, ∀ j. Substituting the expansion (3.17) into (3.36) we get

{φ′
s, E j} = − 2δ

α′(α2
j)

(α2
j)

g−s,

by calculating the residues at points ζ = α2
j (1 � j � N). Then the coefficient matrix

({φ′
s, E j})N×N is non-degenerate since its determinant is Vandermonde determinant. This

completes the proof. �
To summarise the results so far, the nonlinear map Sβ defined by (3.12) has been shown to be

symplectic and integrable, possessing N invariant functions E1, . . . , EN , pairwise in involution
and functionally independent on R2N .

4. Evolution of the solutions to Q1 equation

In the spirit of previous papers [17, 18, 26], we will now discuss the actual theta function
solutions of the Q1 equation (1.1) arising from the integration of the symplectic map. It is the
compatibility of discrete flows that is essential for constructing these solutions, and we will
implement that on the relevant Baker–Akhiezer functions [39, 63]. Thus, by considering the
iteration of the integrable symplectic map Sβ obtained in section 3, we obtain a discrete phase
flow (p(m), q(m)) = Sm

β (p0, q0), with (p0, q0) ∈ R2N any initial value point. Here the number of
iteration coincides with the lattice variable m. Then the commutative relation (3.3) along the
Sm
β -flow has the form,

Lm+1(λ)D(β)
m (λ) = D(β)

m (λ)Lm(λ), (4.1)

where Lm(λ) = L(λ; p(m), q(m)), and D(β)
m (λ) = D(β)(λ; bm) is the Darboux matrix given by

(2.1) with discrete potentials bm, um satisfying

βbm = um+1 − um, or

βb = ũ − u.
(4.2)

We note that both the eigenvalues ±Hλ given by the formula (3.5) and the spectral curve R
defined by equation (3.8) are invariant under the Sm

β -flow, since Fλ (p(m), q(m)) = Fλ(p0, q0)
by using equation (3.16). According to the Burchnall–Chaundy theory [35–38], we now inves-
tigate the common eigenvectors of the two matrix operators Lm(λ) and D(β)

m (λ). Considering
D(β)

m (λ) as a shift operator, we suppose

h(m + 1,λ) = D(β)
m (λ)h(m,λ), (4.3)
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where h(m,λ) is the eigenvector corresponding to the eigenvalue λ. This is a linear equation,
and then an alternative way of viewing h(m,λ) is as a solution to the equation (4.3). Thus we
discuss the fundamental solution matrix M(m,λ) and find

M(m + 1,λ) = D(β)
m (λ)M(m,λ), M(0,λ) = I. (4.4)

Then by induction, the solution can be written as a matrix product chain

M(m,λ) = D(β)
m−1(λ)D(β)

m−2(λ) . . .D(β)
0 (λ), (4.5)

which implies det M(m,λ) = (λ2 − β2)m. Fortunately, the solution space of equation (4.3) is
invariant under the action of the algebra operator Lm(λ). In fact, by using the commutative
relation (4.1) we have

(Lh)m+1 = Lm+1(D(β)
m hm) = D(β)

m (Lh)m.

Moreover, from equations (4.1) and (4.5) we obtain

Lm(λ)M(m,λ) = M(m,λ)L0(λ), (4.6)

which demonstrates that the evolution on the level of the Lax representation is nothing
more than a (matrix) similarity transformation. Hence we consider the common eigenvectors
h±(m,λ) associated with the eigenvalues λ and ±Hλ, which satisfy the following formulas
simultaneously:

Lm(λ)h±(m,λ) = ±Hλh±(m,λ), (4.7)

h±(m + 1,λ) = D(β)
m (λ)h±(m,λ). (4.8)

Since the rank of Lm(λ) ∓HλI is 1, the eigenvector in each case is unique (up to constant
factors). Thus, the simultaneous eigenvectors h±(m,λ) can be expressed as

h±(m,λ) =

(
h(1)
± (m,λ)

h(2)
± (m,λ)

)
= M(m,λ)

(
c±λ
1

)
. (4.9)

Substituting (4.9) into (4.7) and choosing m = 0, we deduce

c±λ =
L11

0 (λ) ±Hλ

L21
0 (λ)

=
−L12

0 (λ)
L11

0 (λ) ∓Hλ
. (4.10)

Referring to [9, 64, 65], when the rank of the commuting pair, i.e., the dimension of the
eigenspace of common eigenvectors, equals to 1, the associated equations of Lax type have
finite-gap solutions. Here we shall investigate the common eigenvectors h±(m,λ) by using
the Baker–Akhiezer functions, which can be expressed by theta functions on the hyperellip-
tic Riemann surface corresponding to the spectral curve R given by (3.8). Consequently, the
discrete potentials bm, um in equation (4.2) can be reconstructed in terms of coefficients of the
asymptotic expansions of these Baker–Akhiezer functions, which leads to the theta-function
solutions for the Q1 equation (1.1) [17, 18, 26].

Technically, separating out the two cases: m = 2k − 1, 2k, by using equation (4.5) and
induction, we find that the following functions are polynomials of the argument ζ = λ2:

M21(2k − 1,λ),λM22(2k − 1,λ),λM21(2k,λ),M22(2k,λ).
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Furthermore, it is easy to see that λc+λ and λc−λ are the values of a meromorphic function
on R,

C(p) =
ζ〈(ζ − A2)−1 p0, q0〉+ δξ/α(ζ)

1 + 〈(ζ − A2)−1Aq0, q0〉
,

at the points p(λ2) and (τp)(λ2), respectively. Thus, we can construct meromorphic functions
h(2)(m, p), (m = 2k − 1, 2k) on R, i.e., Baker–Akhiezer functions, with the values at p and
τp as

h(2)(2k − 1, p(λ2)) = λh(2)
+ (2k − 1,λ),

h(2)(2k − 1, τp(λ2)) = λh(2)
− (2k − 1,λ),

h(2)(2k, p(λ2)) = h(2)
+ (2k,λ), h(2)(2k, τp(λ2)) = h(2)

− (2k,λ),

(4.11)

where

λh(2)
± (2k − 1,λ) = M21(2k − 1,λ)λc±λ + λM22(2k − 1,λ),

h(2)
± (2k,λ) = λ−1M21(2k,λ)λc±λ +M22(2k,λ).

(4.12)

According to the theory of Riemann surface [54–56], we now find the zeros and poles for
meromorphic functions h(2)(m, p), (m = 2k − 1, 2k), which determine the expressions in terms
of theta functions.

From equations (4.9) and (4.10), we derive

h±(m,λ)hT
±(m,λ) =

1
L21

0 (λ)
M(m,λ)[L0(λ) +Hλ]iσ2MT(m,λ). (4.13)

Then by using equations (3.32), (4.5) and (4.6), we find one entry of the above matrix
equation (4.13) satisfies

h(2)
+ (m,λ) · h(2)

− (m,λ) = (ζ − β2)m
N∏

j=1

ζ − ν2
j (m)

ζ − ν2
j (0)

. (4.14)

Thus, by equation (4.11), we have

h(2)(2k − 1, p(ζ))h(2)(2k − 1, τp(ζ)) = ζ(ζ − β2)2k−1
N∏

j=1

ζ − ν2
j (2k − 1)

ζ − ν2
j (0)

,

h(2)(2k, p(ζ))h(2)(2k, τp(ζ)) = (ζ − β2)2k
N∏

j=1

ζ − ν2
j (2k)

ζ − ν2
j (0)

,

(4.15)

which implies zeros and some poles, while the asymptotic behaviors in the vicinity of the
infinity point on R will provide the remaining poles. Indeed, as λ ∼ ∞, we obtain

c±λ = ±δλ[1 + O(λ−2)], (4.16)

by using equation (4.10) and

L11(λ) = O(λ−1), L12(λ) = δ2λ2[1 + O(λ−4)],
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L21(λ) = 1 + O(λ−2), Hλ = δλ[1 + O(λ−4)].

Besides,

M(m,λ) =

(
λmZ11

m [1 + O(λ−2)] λm+1Z12
m [1 + O(λ−2)]

λm−1Z21
m [1 + O(λ−2)] λmZ22

m [1 + O(λ−2)]

)
, (4.17)

where

Zm =

(
Z11

m Z12
m

Z21
m Z22

m

)
=

1
2δ

(
δ(zm + z−1

m ) δ2(zm − z−1
m )

zm − z−1
m δ(zm + z−1

m )

)
, (4.18)

zm =

(
(bm−1 + δβ) . . . (b0 + δβ)
(bm−1 − δβ) . . . (b0 − δβ)

)1/2

, (4.19)

by equation (4.5) and induction. Substituting (4.16) and (4.17) into (4.12), we obtain the
asymptotic behaviour for h(2)(m, p) near points ∞+, ∞−:{

h(2)(2k − 1, p) = z2k−1ζ
k[1 + O(ζ−1)], p ∼ ∞+,

h(2)(2k − 1, p) = z−1
2k−1ζ

k[1 + O(ζ−1)], p ∼ ∞−.
(4.20)

{
h(2)(2k, p) = z2kζ

k[1 + O(ζ−1)], p ∼ ∞+,

h(2)(2k, p) = z−1
2k ζ

k[1 + O(ζ−1)], p ∼ ∞−.
(4.21)

This leads to the following conclusion on the analytic behaviours of the Baker–Akhiezer
functions.

Proposition 4.1. The Baker–Akhiezer functions h(2)(2k − 1, p), h(2)(2k, p) on R have the
following divisors, respectively [54–56] :

Div(h(2)(2k − 1, p)) =
g∑

j=1

(
p(ν2

j (2k − 1)) − p(ν2
j (0))

)

+ {o}+ (2k − 1)p(β2) − k∞+ − k∞−,

Div(h(2)(2k, p)) =
g∑

j=1

(
p(ν2

j (2k)) − p(ν2
j (0))

)

+ 2kp(β2) − k∞+ − k∞−.

(4.22)

Let us now introduce the Abel–Jacobi variable �φ(m) = A (Σg
k=1p(ν2

k (m))) on J(R) = Cg/T ,
with the help of the Able map A given in (3.11). Resorting to the dipole technique developed
by [66], equation (4.22) implies

�φ(2k − 1) ≡ �φ(0) + k�Ω+
β + (k − 1)�Ω−

β + �Ω−
0 , (mod T ),

�φ(2k) ≡ �φ(0) + k�Ω+
β + k�Ω−

β , (mod T ),

which can be rewritten as

�φ(m) ≡ �φ(0) +
m +Δm

2
�Ω+
β +

m −Δm

2
�Ω−
β +Δm

�Ω−
0 , (mod T ), (4.23)
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where �Ω+
β =

∫∞+

p(β2)
�ω, �Ω−

β =
∫∞−
p(β2)�ω and �Ω−

0 =
∫∞−
0

�ω. Moreover, Δj is equal to 0 and 1 for
even and odd j respectively.

A usual argument leads to the expressions for the Baker–Akhiezer functions as [17, 54–56]

h(2)(2k − 1, p) = C2k−1 ·
θ[−A (p) + �φ(2k − 1) + �K]

θ[−A (p) + �φ(0) + �K]

× e
∫ p
p0

kω[p(β2),∞+]+(k−1)ω[p(β2),∞−]+ω[0,∞−], (4.24)

h(2)(2k, p) = C2k ·
θ[−A (p) + �φ(2k) + �K]

θ[−A (p) + �φ(0) + �K]
e
∫ p
p0

kω[p(β2),∞+]+kω[p(β2),∞−], (4.25)

with C2k−1, C2k the constants; �K the Riemann constant; ω[p, q] the dipole, a meromorphical
differential having only simple poles at p, q, with residues +1,−1, respectively.

From asymptotic behaviours (4.20) and (4.21), we obtain

z2k−1 = C2k−1 ·
θ[−A (∞+) + �φ(2k − 1) + �K]

θ[−A (∞+) + �φ(0) + �K]
× e

∫ ∞+
p0

(k−1)ω[p(β2),∞−]+ω[0,∞−] · (r+β )k,

(4.26)

z−1
2k−1 = C2k−1 ·

θ[−A (∞−) + �φ(2k − 1) + �K]

θ[−A (∞−) + �φ(0) + �K]
e
∫ ∞−
p0

kω[p(β2),∞+] · (r−β )k−1 · r−0 , (4.27)

z2k = C2k ·
θ[−A (∞+) + �φ(2k) + �K]

θ[−A (∞+) + �φ(0) + �K]
e
∫ ∞+
p0

kω[p(β2),∞−] · (r+β )k, (4.28)

z−1
2k = C2k ·

θ[−A (∞−) + �φ(2k) + �K]

θ[−A (∞−) + �φ(0) + �K]
e
∫ ∞−
p0

kω[p(β2),∞+] · (r−β )k, (4.29)

where

r+β = lim
p→∞+

1
ζ(p)

e
∫ p
p0

ω[p(β2),∞+], r−β = lim
p→∞−

1
ζ(p)

e
∫ p
p0

ω[p(β2),∞−],

r−0 = lim
p→∞−

1
ζ(p)

e
∫ p
p0

ω[0,∞− ]
.

Hence

z2
2k−1 =

θ[−A (∞+) + �φ(2k − 1) + �K]

θ[−A (∞−) + �φ(2k − 1) + �K]
· θ[−A (∞−) + �φ(0) + �K]

θ[−A (∞+) + �φ(0) + �K]

·
(

r+β
r−β

)k−1

·
r+β
r−0

· e
∫ ∞+
p0

(k−1)ω[p(β2),∞−]+ω[0,∞−]−
∫ ∞−
p0

kω[p(β2),∞+],

z2
2k =

θ[−A (∞+) + �φ(2k) + �K]

θ[−A (∞−) + �φ(2k) + �K]
· θ[−A (∞−) + �φ(0) + �K]

θ[−A (∞+) + �φ(0) + �K]

·
(

r+β
r−β

)k

· e
∫ ∞+
p0

kω[p(β2),∞−]−
∫ ∞−
p0

kω[p(β2),∞+]
. (4.30)

2913



Nonlinearity 34 (2021) 2897 X Xu et al

Then by using equation (4.19), we have

b2k−1 + δβ

b2k−1 − δβ
=

z2
2k

z2
2k−1

=
θ[−A (∞+) + �φ(2k) + �K]

θ[−A (∞−) + �φ(2k) + �K]
· θ[−A (∞−) + �φ(2k − 1) + �K]

θ[−A (∞+) + �φ(2k − 1) + �K]

· r−0
r−β

· e
∫ ∞+
p0

ω[p(β2),∞−]−ω[0,∞−],

b2k + δβ

b2k − δβ
=

z2
2k+1

z2
2k

=
θ[−A (∞+) + �φ(2k + 1) + �K]

θ[−A (∞−) + �φ(2k + 1) + �K]
· θ[−A (∞−) + �φ(2k) + �K]

θ[−A (∞+) + �φ(2k) + �K]

·
r+β
r−0

· e
∫ ∞+
p0

ω[0,∞−]−
∫ ∞−
p0

ω[p(β2),∞+], (4.31)

which can be put in a unified form by introducing the function

Υm =
bm + δβ

bm − δβ
=

θ[−A (∞+) + �φ(m + 1) + �K]

θ[−A (∞−) + �φ(m + 1) + �K]
· θ[−A (∞−) + �φ(m) + �K]

θ[−A (∞+) + �φ(m) + �K]

·
(r+β )Δm+1

(r−β )Δm
· (r−0 )(−1)Δm+1

· e
∫ ∞+
p0

Δmω[p(β2),∞−]+(−1)Δmω[0,∞−]−Δm+1
∫ ∞−
p0

ω[p(β2),∞+],

(4.32)

from which we have by inverting the definition

bm =
δβ(Υm + 1)
Υm − 1

. (4.33)

Substituting equation (4.2) into (4.33) we arrive at a recursive relation for the potential um, in
terms of theta functions,

um+1 − um =
δβ2(Υm + 1)

Υm − 1
. (4.34)

In order to get the algebro-geometric solutions to equation (1.1), we introduce two distinct
and non-zero lattice parameters β1, β2. According to the results in section 3, we obtain two
commuting integrable maps Sβ1 , Sβ2 since they share the same invariants E1, . . . , EN [22–26].
Their iteration give rise to commuting discrete flows Sm

β1
and Sn

β2
. Consequently the following

function is well-defined on the Z2 lattice:

(p(m, n), q(m, n)) = Sm
β1

Sn
β2

(p0, q0) = Sm
β1

(p(0, n), q(0, n))

= Sn
β2

Sm
β1

(p0, q0) = Sn
β2

(p(m, 0), q(m, 0)) . (4.35)

Furthermore, by equations (3.1) in the two special cases and (4.2), the jth component satisfies(
p̃j

q̃ j

)
= (α2

j − β2
1 )−1/2D(β1)(α j; b1)

(
pj

q j

)
, b1 =

ũ − u
β1

(4.36)

(
p̄j

q̄ j

)
= (α2

j − β2
2 )−1/2D(β2)(α j; b2)

(
pj

q j

)
, b2 =

ū − u
β2

, (4.37)
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which are compatible on account of the commutative relation between the maps Sβ1 and Sβ2 .
Thus D̄(β1)D(β2) = D̃(β2)D(β1). Then by using equation (2.3), the evolution of the recursive rela-
tion (4.34) along the flows Sm

β1
and Sn

β2
leads to the solutions for Q1 lattice equation (1.1) in the

form as expressed in the following.

Proposition 4.2. The Q1 equation (1.1) has special solutions u = um,n satisfying

um+1,n − um,n =
δβ2

1(Υm,n + 1)
Υm,n − 1

, (4.38)

where

Υm,n =
θ[−A (∞+) + �φ(m + 1, n) + �K]

θ[−A (∞−) + �φ(m + 1, n) + �K]
· θ[−A (∞−) + �φ(m, n) + �K]

θ[−A (∞+) + �φ(m, n) + �K]

·
(r+β1

)Δm+1

(r−β1
)Δm

· (r−0 )(−1)Δm+1

· e
∫ ∞+
p0

Δmω[p(β2
1 ),∞−]+(−1)Δmω[0,∞−]−Δm+1

∫ ∞−
p0

ω[p(β2
1 ),∞+],

�φ(m, n) ≡ �φ(0, 0) +
m +Δm

2
�Ω+
β1
+

m −Δm

2
�Ω−
β1

+
n +Δn

2
�Ω+
β2
+

n −Δn

2
�Ω−
β2
+ (Δm +Δn)�Ω−

0 , (mod T ),

(4.39)

and �Ω+
β j
=

∫∞+

p(β2
j )
�ω, �Ω−

β j
=

∫∞−
p(β2

j )
�ω, j = 1, 2.

Besides,

um,n+1 − um,n =
δβ2

2(Θm,n + 1)
Θm,n − 1

, (4.40)

where

Θm,n =
θ[−A (∞+) + �φ(m, n + 1) + �K]

θ[−A (∞−) + �φ(m, n + 1) + �K]
· θ[−A (∞−) + �φ(m, n) + �K]

θ[−A (∞+) + �φ(m, n) + �K]

·
(r+β2

)Δn+1

(r−β2
)Δn

· (r−0 )(−1)Δn+1

· e
∫ ∞+
p0

Δnω[p(β2
2 ),∞−]+(−1)Δnω[0,∞−]−Δn+1

∫ ∞−
p0

ω[p(β2
2 ),∞+]

.

(4.41)

This proposition forms the main and final result of the paper. We remark that based on (4.38)
and (4.40) the solutions to Q1 equation (1.1), in terms of theta functions, should be integrated
in order to find u = um,n in the form

u = u0,n +
m∑

j=1

(
u j,n − u j−1,n

)

= um,0 +

n∑
j=1

(
um, j − um, j−1

)
. (4.42)

However, it is not clear yet that the sum (4.42) can be explicitly computed in closed form.
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5. Conclusion

In this paper we constructed algebro-geometric solutions of the Q1 equation (1.1) in a novel
way different from earlier approaches applied in e.g. KdV type systems [17, 18, 26] where the
continuous spectral problems associated with the integrable Hamiltonian systems in the Liou-
ville sense are essential. Here only the lattice equation is the starting point which gives rise
to the purely discrete Lax pair by means of the multidimensional consistency. From the latter
we deduce the compatibility relations, as well as the relevant spectral curve and the associated
hyperelliptic Riemann surface. Moreover, the integrability for the symplectic maps are stud-
ied with the help of the r-matrix. An outstanding new feature in the present approach is the
revelation that the discrete systems themselves without the continuous integrability provides
enough information for calculating the exact analytic solutions by the finite-gap technique.
Thus, in a sense it is justified to consider the discrete integrability as the more fundamental
aspect, which can subsequently be used to investigate the associated continuous integrable
systems.

We note, however, that the solutions are obtained in a ‘derived’ form, which to obtain the
solution, should still be integrated (in the discrete sense), to get the algebro-geometric solutions
for Q1 lattice equation in explicit form. Whether or not those forms can be explicitly integrated
remains an open problem, but there are precedents in the case of soliton solutions where that
can be done (see [67]). However, the latter, which has never been achieved in the finite-gap
case, is a matter for future investigation beyond the scope of the present paper.

We finish by expressing our confidence that the techniques used in the present paper for
the Q1 equation can be readily extended to the remaining equations in the ABS list which
are beyond the KdV type class, and notably to the problem of constructing algebro-geometric
solutions of the Q4 equation which figures at the top of the list.
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