

This is a repository copy of *Controlling PbI2* stoichiometry during synthesis to improve the performance of perovskite photovoltaics.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/170243/

Version: Supplemental Material

Article:

Tsevas, K., Smith, J.A. orcid.org/0000-0001-6889-4408, Kumar, V. et al. (7 more authors) (2021) Controlling PbI2 stoichiometry during synthesis to improve the performance of perovskite photovoltaics. Chemistry of Materials, 33 (2). pp. 554-566. ISSN 0897-4756

https://doi.org/10.1021/acs.chemmater.0c03517

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi-org.sheffield.idm.oclc.org/10.1021/acs.chemmater.0c03517

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information

Controlling Pbl₂ stoichiometry during synthesis to improve the performance of perovskite photovoltaics

Konstantinos Tsevas^a, Joel A. Smith^b, Vikas Kumar^c, Cornelia Rodenburg^c, Mihalis Fakis^d, Abd. Rashid bin Mohd Yusoff,^e, Maria Vasilopoulou,^f, David G. Lidzey^b, Mohammad K. Nazeeruddin^g and Alan D. F. Dunbar^{a,*}

^a Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.

^bDepartment of Physics & Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, U.K.

^c Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.

^d Department of Physics, University of Patras, 26504, Rio Patras, Greece

^eDepartment of Physics, Swansea University, Vivian Tower, Singleton Park, SA2 8PP Swansea, U.K.

^fInstitute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, 15341 Agia Paraskevi, Attica, Greece

⁹Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland.

Corresponding author: a.dunbar@sheffield.ac.uk

Section 1: Theory of polytypism

One of the most prevalent theories presented by Frank, ascribes the formation of polytypes to crystallographic mismatches during the spiral growth of screw dislocations.¹ In this theory, Pbl₂ platelet shaped structures are initially formed by surface nucleation and then grow layer-by-layer under saturated in iodide. These platelets might contain crystallographic defects such as twins, stacking faults or result in syntactic coalescence of more than one polytype, due to thermodynamic fluctuations during the growth process, resulting in sub- or over-stoichiometric Pbl₂. Consequently, Pandey and Krishna proposed a complicated faulted basic matrix model to provide a theoretical description of polytypism, governed by three major parameters: i) the energy of the fault near the surface of the matrix, during the formation of the screw dislocation, ii) the energy of the screw dislocation and iii) the stacking fault energy of the formatted polytype.²⁻⁴ The letter "H", in the polytype description indicates the hexagonal cells, as opposed to rhombohedral ("R") and cubic ("C") cells, based on Ramsdell notation.⁵

Table S1. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) data indicating atomic percentage composition of lead iodide, synthesised by hydrothermal or mechanochemical methods.

		Hydro	Mechano	ochemical			
Points	1	2	3	4	All image		
Carbon	12.37%	15.68%	11.15%	12.61%	15.80%	12.26%	
Oxygen	8.93%	7.42%	14.52%	None detected	None	None detected	
				uotootou	uotootou	40100104	
lodide	38.68%	41.32%	36.00%	56.87%	56.26%	58.26%	
Lead	40.02%	35.58%	38.07%	30.52%	27.94%	29.48%	

Figure S1. Images of (a) hydrothermal and (b) mechanochemical synthesised lead iodide powders, scale bars represent 2 cm.

Table S2. XRD diffracted angle (2-theta), Miller indices and polytypic phases present in respect to diffraction angle of 2H - 4H - 14H - 20H polytypic phases of lead iodide. (Source: International Centre for Diffraction Database).

2-theta (degrees)	2H polytypi c phase	Intensit y	4H polytypi c phase	Intensit y	14H polytypi c phase	Intensit y	20H polytypi c phase	Intensit y	Polytypic phases present in respect to diffraction angle
	Miller indices		Miller indices		Miller indices		Miller indices		
12.74	(0 0 1)	314	(0 0 2)	777	(0 0 7)	519	(0 0 10)	577	2H – 4H – 14H – 20H
22.60			(1 0 0)	73	(1 0 0)	32*10^6	(0 1 2)	16	14H
25.56	(0 1 1)	1000	(0 0 4)	21	(0 0 14)	22	(0 0 20)	26	2H
25.98			(1 0 2)	798	(1 0 7)	1000	(0 1 10)	1000	4H – 14H – 20H
34.32			(0 1 4)	176	(1 0 14)	459	(0 1 20)	420	4H – 14H – 20H
38.70	(0 0 3)	36	(1 1 0)	10^9	(0 1 17)	42*10^6	(0 0 30)	36	2H – 4H – 14H – 20H
39.58			(1 1 1)	13	(1 1 0)	471	(1 1 0)	524*10^6	14H – 20H
41.70			(1 1 2)	228	(1 0 19)	19	(1 1 10)	169*10^6	20H
45.27			(2 0 0)	10	(2 0 0)	6*10^6	(2 0 0)	7*10^6	14H – 20H
47.92					(207)	161	(0 2 11)	21	14H – 20H

Section 2: XPS analysis of Pbl₂

Inhomogeneity can affect the relative intensity of the emission peaks in XPS, as a consequence of the signal attenuation from the scattered electrons that varies as a function of the kinetic energy of the emitted electrons. Also, X-rays promote the photolysis of the PbI₂ during the XPS analytical conditions, as presented by Watson *et al.*⁶ The XPS spectra acquisition sequence used (survey scan followed by high-resolution scan or single high-resolution scan) can introduce variations between the lead to iodide ratio, due to the interaction of photons with iodide and result in an enhanced signal corresponding to metallic lead. This effect was confirmed by comparing a survey followed by high-resolution scan and a single high-resolution scan

without any survey collected from two identical TCI samples, as shown in Figures S2a and S2b, respectively. The lead to iodide ratio in the TCI sample was 1:2.3 (\pm 0.1), when a survey followed by a high-resolution scan as acquisition mode of signal was applied, while a ratio of 1:2.4 (\pm 0.1), when a single high-resolution scan as an acquisition mode of signal was applied.

Figure S2. XPS single high-resolution spectra of Pb 4f 7/2 core level and metallic lead for the TCI lead iodide from different scanning modes. (a) survey followed by high-resolution scans and (b) single high-resolution scan.

Figure S3. RBS spectra of commercial and synthesised lead iodide samples, with stoichiometric ratios between the lead and iodide. (a) SA, (b) TCI, (c) HT, (d) MC 1, (e) MC 2 and (f) MC 3 PbI₂ powders. All spectra correspond to a single point of analysis using RBS.

Table S3. Stoichiometric ratios between lead and iodide of different lead iodide samples, as determined by RBS characterisation. The samples include commercial (SA and TCI), hydrothermal (HT) and mechanochemically synthesized under different conditions (MC 1 to 3) Pbl₂ powders. All values correspond to a single point of analysis as determined by RBS.

Lead iodide	Synthesis conditions/	Ratio of Pb:I		
sample	sample information			
MC3	Mechanochemical (400 rpm 4 hours)	1:2.05 (± 0.007)		
MC2	Mechanochemical (400 rpm 1 hour)	1:2.002 (± 0.008)		
MC1	Mechanochemical (200 rpm 2 hours)	1:2.029 (± 0.007)		
HT	Hydrothermal (in water)	1:2.0 (± 0.007)		
TCI	Tokyo Chemical Industries 99.99%	1:2.009 (± 0.007)		
SA	Sigma Aldrich 99.999%	1:1.9 (± 0.008)		

Table S4. Percentage of the unreacted PbI_2 in $CH_3NH_3PbI_3$ micro-crystals, as a function of the system's temperature and source of PbI_2 . All percentages calculated in respect to the XRD peaks that correspond to planes with Miller indices (001) for the PbI_2 and (002) / (110) for the $CH_3NH_3PbI_3$ of tetragonal crystal structure.

	Percentage (%) of unreacted Pbl ₂						
Temperature (ºC)	MC 2 / CH ₃ NH ₃ I equimolar	SA / CH₃NH₃I equimolar					
20	14.5	52.5					
50	3.1	10.9					
70	4.5	11.4					
90	3.9	15.7					

Figure S4: Unreacted Pbl₂ powder (yellow in colour) in the synthesised powder of the CH₃NH₃Pbl₃ micro-crystals synthesised using equimolar amounts of the sub-stoichiometric SA Pbl₂ and CH₃NH₃I under a constant temperature of 20 °C for 24 hours, scale bar represents 10 mm.

Figure S5. XRD patterns shown are from CH₃NH₃PbI₃micro-crystals synthesized from (a) commercial SA PbI₂ and 10 %, 15 %, 20 % and 25 % excess CH₃NH₃I by weight, (b) commercial SA PbI₂ and 20 % excess CH₃NH₃I by weight, at higher magnification, (c) almost stoichiometric MC 2 PbI₂ and 2 %, 4 % or 6 % excess CH₃NH₃I by weight, and (d) almost stoichiometric MC 2 PbI₂ and 4 % excess CH₃NH₃I by weight, higher magnification. Asterisk marks correspond to the XRD peak of the lead iodide for crystallographic planes with Miller indices (001). The XRD peaks with Miller indices (002) and (110) correspond to the tetragonal perovskite crystal structure.

Section 3: Micro-crystal formation to correct the stoichiometry

The system of 1 - pentanol / PbI_2 / CH_3NH_3I was used to synthesise $CH_3NH_3PbI_3$ micro - crystals, by reacting sub-stoichiometric SA PbI_2 with a controllable excess of CH_3NH_3I (10 %, 15 %, 20 % and 25 % by weight of CH_3NH_3I) for 24 hours at constant temperature of 90 °C or almost stoichiometric MC 2 PbI_2 with a controllable excess of CH_3NH_3I (2 %, 4 % or 6 % by weight of CH_3NH_3I) for 24 hours at constant temperature of 90 °C, as well.

Figures S6a and S6b show that when 20 % more CH₃NH₃I by weight was used in reaction with the sub-stoichiometric SA PbI₂ there was almost elimination of unreacted PbI₂ as indicated from the XRD spectra. Therefore, the stoichiometry of the PbI₂ was calculated as follows:

0.5 g of sub-stoichiometric SA was mixed with a nominally equimolar amount of CH₃NH₃I plus 20 % excess by weight (0.1724 g + 0.0345 g). 0.0345 g was the mass of excess CH₃NH₃I which corresponds to 0.0069 g of CH₃NH₃⁺, based on the summation of atomic mass units of carbon (12.0107 a.m.u.), hydrogen (1.0079 a.m.u.) and nitrogen (14.0067 a.m.u), while 0.0276 g was the mass of I⁻ with atomic mass unit of 126.9045 a.m.u.. Therefore, had the Pbl₂ been stoichiometric the mass that would have been needed to react with the (0.1724 g + 0.0345 g = 0.2069 g) CH_3NH_3I assuming all the SA Pbl₂ reacts would have been 0.5 g + 0.0276 g = 0.5276 g. i.e. (the mass of SA Pbl₂ used) + (the mass of I⁻ that was added). To calculate the actual stoichiometry of the SA Pbl₂ first the number of Pbl₂ molecules is determined by taking the new corrected weight of Pbl₂ divided by the molecular weight of Pbl₂ (461.01 g * mol⁻¹) and multiplying by the Avogadro number (6.022 * 10²³ molecules * mol⁻¹) which gives 6.8918 * 10²⁰ Pbl₂ molecules. However, in each of these molecules there are 3 atoms (1 atom of lead and 2 atoms of iodide), resulting in a total of 20.6754 * 10²⁰ atoms. 66.6 % (13.7836 * 10²⁰ atoms) of these are iodide atoms. The remaining 33.3% are Pb atoms (6.8918 * 10²⁰ atoms). However, 0.0276 g of the iodide came from the excess CH₃NH₃I required. So, by dividing the mass of excess I⁻ required (0.0276 g), by the molecular weight of I⁻ (126.9045 g * mol⁻¹) and multiplying with the Avogadro number (6.022 * 10^{23} atoms * mol⁻¹), results in 1.3097 * 10^{20} being the number of l⁻ ions the Pbl₂ was initially lacking. The number of iodide atoms actually present was 13.7836 * 10^{20} atoms less 1.3097 * 10^{20} = 12.4739 * 10^{20} . The final ratio between the Pb : I ratio of the sub-stoichiometric SA is 1: (12.4739 * 10²⁰ / 6.8918 * 10²⁰) or 1 : 1.81. However, since we detected a weak XRD peak that corresponds to Pbl₂, as shown in SI Figure SI6b. We estimate that the amount of excess CH₃NH₃I used, should be ~ 21 - 22 % more CH₃NH₃I by weight, leading to complete elimination of unreacted Pbl₂, during the synthesis of CH₃NH₃Pbl₃ micro-crystals when substoichiometric SA material used. If 22 % excess by weight of CH₃NH₃I, was used. The resulting ratio between the Pb : I atoms of the sub-stoichiometric SA is 1 : 1.79. The same methodology applied, when 4 % more CH₃NH₃I by weight was used in reaction with the almost stoichiometric MC 2, during the synthesis of $CH_3NH_3PbI_3$ microcrystals. Resulting in a ratio between the Pb : I atoms of the almost stoichiometric MC 2 being 1 : 1.96.

During the synthesis of CH₃NH₃PbI₃ micro – crystals, by reacting PbI₂ with a controllable excess of CH₃NH₃I, any excess of CH₃NH₃⁺ and I⁻ ions end up dissolved in the 1-pentanol. At equilibrium conditions any deficiency in the iodine ions present in the PbI₂ is corrected by the iodine ions extracted from the excess of CH₃NH₃I added. Similarly, any CH₃NH₃⁺ ions originating from the excess of CH₃NH₃I used will dissolve in the 1 – pentanol, affecting the chemical potential of the system.⁷ Additionally, any further excess of CH₃NH₃I added will dissolve in the 1 – pentanol. A further step that prevents the recrystallization of excess CH₃NH₃I from the 1 – pentanol during the vacuum filtration process is the use of a large volume of 1-pentanol, which reduces the probability of the ions (CH₃NH₃⁺ and I⁻) interacting. After completion of the chemical reaction the 1 - pentanol / PbI₂ / CH₃NH₃I solution must be kept warm and filtered as fast as possible. Unreacted CH₃NH₃⁺ and I⁻ ions remain dissolved in the warm 1pentanol and are therefore removed upon filtration.

Section 4: How iodide deficiency affects perovskite formation

To understand the presence and formation of unreacted Pbl₂ in the CH₃NH₃Pbl₃ when sub-stoichiometric Pbl₂ is used, the following theory was developed based on the general chemical formula of perovskite, ABX₃, which requires the presence of 3 halogen atoms. Specifically, in CH₃NH₃Pbl₃ formation two iodide atoms originate from the Pbl₂ while one iodide atom originates from CH₃NH₃I. That requires both reactants (Pbl₂ and CH₃NH₃I) being stoichiometrically perfect. However, when substoichiometric Pbl₂ is used, its correct chemical formula must be written as Pbl_x with 1< x <2. The percentage of unreacted Pbl₂ within the CH₃NH₃Pbl₃ when substoichiometric Pbl_x is used could be calculated from the mathematical equation 1:

$$((1 - (x \div 2)) * 2) * 100 \%$$
 (equation

1)

where x is the number of iodide ions in the initially sub-stoichiometric PbI_x used. (1 - (x ÷ 2)) is the fraction of iodide missing from the initially sub-stoichiometric PbI_x used and 2 is the number of iodide ions that are needed for the formation of unreacted Pbl₂. To examine this approach a few examples are provided in Table S5. Based on the previous analysis, if more iodide is missing from the initially sub-stoichiometric Pbl_x used in the synthesis of $CH_3NH_3Pbl_3$ this raises the amount of unreacted Pbl₂. Also, a similar trend is calculated for the remaining $CH_3NH_3^+$ ions that do not participate in the chemical reaction.

Table S5. Examples of chemical reactions between sub-stoichiometric PbI_x and CH_3NH_3I towards the formation of $CH_3NH_3PbI_3$ and resulting in unreacted PbI_2 and $CH_3NH_3^+$ ions.

Chemical reaction	Pbl _{1.65} + CH ₃ NH ₃ I	Pbl _{1.92} + CH ₃ NH ₃ I
Total number of ions	1 Pb ⁺	1 Pb⁺
	1 CH ₃ NH ₃ ⁺	1 CH ₃ NH ₃ ⁺
	2.65 l ⁻	2.92 l ⁻
Total number of ions	0.65 Pb+	0.92 Pb ⁺
forming the CH ₃ NH ₃ Pbl ₃	0.65 CH₃NH₃⁺	0.92 CH ₃ NH ₃ ⁺
	1.95 l ⁻	2.76 l ⁻
	or	or
	(0.65 CH ₃ NH ₃ PbI ₃)	(0.92 CH ₃ NH ₃ Pbl ₃)
Total number of ions for	0.35 Pb+	0.08 Pb+
unreacted Pbl ₂	0.7 I ⁻	0.16 l ⁻
	or	or
	(0.35 Pbl ₂)	(0.08 Pbl ₂)
Total number of CH ₃ NH ₃ ⁺	0.35 CH₃NH₃⁺	0.08 CH ₃ NH ₃ ⁺
ions		

Figure S6. Cross-section Scanning electron microscopy (SEM) images of tilted at 45 deg. perovskite thin films fabricated using, (a) equimolar amounts of SA / CH₃NH₃I, (b) equimolar amounts of MC 2 / CH₃NH₃I, (c) CH₃NH₃Pbl₃ micro-crystals using SA and (d) CH₃NH₃Pbl₃ micro-crystals using MC 2. Scale bars represent 1 μ m. The numerical length values on the SEM images are the thicknesses as observed with the sample tilted by 45°. The actual film thicknesses can be determined by dividing these as observed length values by cos (45°).

Figure S7. Scanning electron microscopy (SEM) images of CH₃NH₃PbI₃ micro-crystals synthesised at temperature 90 °C, using the two varieties of the PbI₂, (a) mechanochemical MC 2 and (b) SA, in reaction with 30 % more by weight of CH₃NH₃I, scale bars represent 10µm.

Figure S8. Images of glass / ITO / SnO_2 / perovskite after (a) extracting the DMSO under vacuum for 120 s before annealing and (b) annealing at 100 °C for 30 s, scale bars represent 10 mm.

Figure S9. Characteristic current density – voltage curves in forward ($0 \rightarrow V_{OC}$) and reverse ($V_{OC} \rightarrow 0$) scans of PSC devices with structure glass / ITO / SnO₂ / CH₃NH₃Pbl₃ / Spiro - OMeTAD / Au, as function of the photoactive layer fabricated using either CH₃NH₃Pbl₃ micro-crystals or equimolar amounts of different Pbl₂ with CH₃NH₃I. (a) CH₃NH₃Pbl₃ micro-crystals made using almost stoichiometric MC2 Pbl₂, (b) CH₃NH₃Pbl₃ micro-crystals made using sub-stoichiometric SA Pbl₂, (c) equimolar amounts of almost stoichiometric MC2 Pbl₂ / CH₃NH₃I and (d) equimolar amounts of sub-stoichiometric SA Pbl₂ / CH₃NH₃I. Black curves correspond to the average of all recorded current density – voltage curves and coloured stripes to their deviation from the average black curve. Red and blue coloured stripes, indicate current density – voltage data collected in forward ($0 \rightarrow V_{OC}$) and reverse ($V_{OC} \rightarrow 0$) scans, respectively.

Figure S10. (a) and (b) Tauc plots of perovskite thin films synthesised using, CH₃NH₃Pbl₃ micro-crystals (using MC 2) (black curves), CH₃NH₃Pbl₃ micro-crystals (using SA) (orange curves), equimolar amounts of MC 2 / CH₃NH₃I (red curves), equimolar amounts of SA / CH₃NH₃I (blue curves) (from five different measured points). Pbl₂/ (CH₃NH₃Pbl₃) optical band gap (~2.53 ±0.01 eV) is indicated with blue dashed arrows. CH₃NH₃Pbl₃ optical band gaps (~1.51 eV) are indicated with black / red / orange arrows. Whereas, CH₃NH₃Pbl₃/ (Pbl₂) optical band gap (~1.48 eV) is indicated with blue arrow.

lable	S6.	Fitting	parameters	and	estimated	lifetime	of	different	perovskite	samples	deposited	on
SnO ₂ /	ΊΤΟ/	glass su	ıbstrates.									

.....

.

. ..

Sample	λ (nm)	A ₁	t ₁ (ns)	A ₂	t ₂ (ns)	A ₃	t₃(ns)	<t> (ns)</t>
Equimolar SA	770	0.40	7.66	0.60	21.5	-	-	15.9
/ CH₃NH₃I								
Equimolar	770	0.18	0.55	0.43	6.17	0.39	15.4	8.7
MC 2 /								
CH₃NH₃I								
Micro-	770	0.39	7.25	0.61	22.2	-	-	16.4
crystals								
using SA								
Micro-	780	0.35	6.31	0.65	17.9	-	-	13.8
crystals								
using MC 2								

Figure S11. AFM images of perovskite thin films fabricated using, (a) CH₃NH₃Pbl₃ micro-crystals using MC 2, (b) CH₃NH₃Pbl₃ micro-crystals using SA, (c) equimolar amounts of MC 2 / CH₃NH₃I, (d) equimolar amounts of SA / CH₃NH₃I. The average values of roughness, are listed below each image.

Figure S12. Low voltage scanning electron microscopy (LV-SEM) images of perovskite thin films fabricated using, (a) CH₃NH₃PbI₃ micro-crystals using MC 2, (b) CH₃NH₃PbI₃ micro-crystals using SA, (c) equimolar amounts of MC 2 / CH₃NH₃I, (d) equimolar amounts of SA / CH₃NH₃I. Layered perovskite grains, are indicated with blue arrows in all images. Scale bars represent 1 µm.

Figure S13. Grain size distribution of CH₃NH₃PbI₃ thin films (based on TLD - SEM images) fabricated using, (a) CH₃NH₃PbI₃ micro-crystals made using almost stoichiometric MC2 PbI₂, (b) CH₃NH₃PbI₃ micro-crystals made using sub-stoichiometric SA PbI₂, (c) equimolar amounts of almost stoichiometric MC2 PbI₂ / CH₃NH₃I and (d) equimolar amounts of sub-stoichiometric SA PbI₂ / CH₃NH₃I.

Figure S14. Image of the aluminium block used to warm the perovskite solutions whilst under constant stirring (\sim 300 rpm) at a temperature of 65 \sim 70 °C. Scale bar represents 20 mm.

Figure S15. The vacuum chamber consisting of a vacuum line connected to a rotary vane dual stage mechanical vacuum pump (Edwards), valve 1 regulates the pressure and valve 2 resets the pressure to one bar in the vacuum chamber, respectively (a), scale bar represents 10 cm. Inside view of the vacuum chamber (b), scale bar represents 2 cm.

References

- Frank F.C.. Crystal dislocations, elementary concepts and definitions. Dublin Philosophical Mag. J. Sci., **1951**, **42**, 809–819.
- (2) Pandey D., Krishna P.. THE ORIGIN OF POLYTYPE STRUCTURES. *Prog. Cryst. Growth and Charact.*, **1983**, **7**, 213–258.
- (3) Mitchell R.S.. Structural polytypism of lead iodide and its relationship to screw dislocations. *Zeitschrift für Krist.*, **1959**, 384, 372–384.
- (4) Sebastian M.T., Krishna P.. Single crystal diffraction studies of stacking faults in close-packed structures. *Prog. Cryst. Growth and Charact.*, **1987**, 14, 103–183.
- (5) Ramsdell L.. Studies on silicon carbide. *Am. Mineral.*, **1947**, 32, 64–82.
- Mcgettrick J.D., Hooper K., Pockett A., Baker J., Troughton J., Carnie M., Watson T..
 Sources of Pb (0) artefacts during XPS analysis of lead halide perovskites. *Mater. Lett.*, **2019**, 251, 98–101.
- (7) Yin W.J.,Shi T.,Yan Y..Unusual defect physics in CH₃NH₃PbI₃ perovskite solar cell absorber. *App. Physics Lett.*, **2014**, 104(6),063903.