
This is a repository copy of Exploiting multiple timescales in hierarchical echo state 
networks.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/170213/

Version: Published Version

Article:

Manneschi, L., Ellis, M.O.A., Gigante, G. et al. (3 more authors) (2021) Exploiting multiple 
timescales in hierarchical echo state networks. Frontiers in Applied Mathematics and 
Statistics, 6. 616658. ISSN 2297-4687 

https://doi.org/10.3389/fams.2020.616658

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Exploiting Multiple Timescales in
Hierarchical Echo State Networks
Luca Manneschi 1, Matthew O. A. Ellis 1, Guido Gigante 2, Andrew C. Lin 3,4,

Paolo Del Giudice 2† and Eleni Vasilaki 1*†

1Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom, 2National Center for Radiation

Protection and Computational Physics, Italian Institute of Health, Rome, Italy, 3Department of Biomedical Science, The University

of Sheffield, Sheffield, United Kingdom, 4Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom

Echo state networks (ESNs) are a powerful form of reservoir computing that only require

training of linear output weights while the internal reservoir is formed of fixed randomly

connected neurons. With a correctly scaled connectivity matrix, the neurons’ activity exhibits

the echo-state property and responds to the input dynamics with certain timescales. Tuning

the timescales of the network can be necessary for treating certain tasks, and some

environments require multiple timescales for an efficient representation. Here we explore the

timescales in hierarchical ESNs, where the reservoir is partitioned into two smaller linked

reservoirs with distinct properties. Over three different tasks (NARMA10, a reconstruction

task in a volatile environment, and psMNIST), we show that by selecting the hyper-

parameters of each partition such that they focus on different timescales, we achieve a

significant performance improvement over a single ESN. Through a linear analysis, and

under the assumption that the timescales of the first partition are much shorter than the

second’s (typically corresponding to optimal operating conditions), we interpret the

feedforward coupling of the partitions in terms of an effective representation of the input

signal, provided by the first partition to the second, whereby the instantaneous input signal is

expanded into a weighted combination of its time derivatives. Furthermore, we propose a

data-driven approach to optimise the hyper-parameters through a gradient descent

optimisation method that is an online approximation of backpropagation through time.

We demonstrate the application of the online learning rule across all the tasks considered.

Keywords: reservoir computing (RC), echo state network (ESN), timescales, hyperparameter adaptation,

backpropagation through time

1 INTRODUCTION

The high inter-connectivity and asynchronous loop structure of Recurrent Neural Networks (RNNs)

make them powerful techniques for processing temporal signals [1]. However, the complex inter-
connectivity of RNNs means that they cannot be trained using the conventional back-propagation
(BP) algorithm [2] used in feed-forward networks, since each neuron’s state depends on other
neuronal activities at previous times. A method known as Back-Propagation-Through-Time (BPTT)
[3], which relies on an unrolling of neurons’ connectivity through time to propagate the error signal
to earlier time states, can be prohibitively complex for large networks or time series. Moreover, BPTT
is not considered biologically plausible as neurons must retain memory of their activation over the
length of the input and the error signal must be propagated backwards with symmetric synaptic
weights [4].
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Many of these problems can be avoided using an alternative
approach: reservoir computing (RC). In the subset of RC
networks known as Echo State networks, a fixed “reservoir”
transforms a temporal input signal in such a way that only a

single layer output perceptron needs to be trained to solve a
learning task. The advantage of RC is that the reservoir is a fixed
system that can be either computationally or physically defined.
Since it is fixed it is not necessary to train the reservoir parameters
through BPTT, making RC networks much simpler to train than
RNNs. Furthermore, the random structure of a RC network
renders the input history over widely different time-scales,
offering a representation that can be used for a wide variety of
tasks without optimising the recurrent connectivity
between nodes.

Reservoirs have biological analogues in cerebellum-like

networks (such as the cerebellum, the insect mushroom body
and the electrosensory lobe of electric fish), in which input signals
encoded by relatively few neurons are transformed via “expansion
re-coding” into a higher-dimensional space in the next layer of
the network, which has many more neurons than the input layer
[5–8]. This large population of neurons (granule cells in the
cerebellum; Kenyon cells in the mushroom body) acts as a
reservoir because their input connectivity is fixed and learning
occurs only at their output synapses. The principal neurons of the
“reservoir” can form chemical and electrical synapses on each
other (e.g., Kenyon cells: [9–11]), analogous to the recurrent

connectivity in reservoir computing that allows the network to
track and transform temporal sequences of input signals. In some
cases, one neuronal layer with recurrent connectivity might in
turn connect to another neuronal layer with recurrent
connectivity; for example, Kenyon cells of the mushroom body
receive input from olfactory projection neurons of the antennal
lobe, which are connected to each other by inhibitory and
excitatory interneurons [12, 13]. Such cases can be analogised
to hierarchically connected reservoirs. In biological systems, it is
thought that transforming inputs into a higher-dimensional
neural code in the “reservoir” increases the associative

memory capacity of the network [5]. Moreover, it is known
that for the efficient processing of information unfolding in
time, which requires networks to dynamically keep track of
past stimuli, the brain can implement ladders of neural
populations with hierarchically organised “temporal receptive
fields” [14].

The same principles of dimensional expansion in space and/
or time apply to artificial RC networks, depending on the non-
linear transformation of the inputs into a representation useful
for learning the task at the single linear output layer. We focus
here on a popular form of RC called Echo State Networks [15],

where the reservoir is implemented as a RNN with a fixed,
random synaptic connection matrix. This connection matrix is
set so the input “echoes” within the network with decaying
amplitude. The performance of an Echo State Network
depends on certain network hyper-parameters that need to
be optimised through grid search or explicit gradient descent.
Given that the dependence of the network’s performance on
such hyper-parameters is both non-linear and task-dependent,
such optimisation can be tedious.

Previous works have studied the dependence of the
reservoir properties on the structure of the random
connectivity adopted, studying the dependence of the
reservoir performance on the parameters defining the

random connectivity distribution, and formulating
alternatives to the typical Erdos-Renyi graph structure of
the network [16–18]. In this sense, in [17] a model with a
regular graph structure has been proposed, where the nodes
are connected forming a circular path with constant shortest
path lengths equal to the size of the network, introducing long
temporal memory capacity by construction. The memory
capacity has been studied previously for network
parameters such as the spectral radius (ρ) and sparsity; in
general memory capacity is higher for ρ close to one and low
sparsity, but high memory capacity does not guarantee high

prediction [19, 20]. ESNs are known to perform optimally
when at the “edge of criticality” [21], where low prediction
error and high memory can be achieved through network
tuning.

More recently, models composed of multiple reservoirs have
gathered the attention of the community. From the two ESNs
with lateral inhibition proposed in [22], to the hierarchical
structure of reservoirs first analyzed by Jaeger in [23], these
complex architectures of multiple, multilayered reservoirs have
shown improved generalisation abilities over a variety of tasks
[23–25]. In particular, the works [26, 27] have studied different

dynamical properties of such hierarchical structures of ESNs,
while [28] have proposed hierarchical (or deep) ESNs with
projection encoders between layers to enhance the connectivity
of the ESN layers. The partitioning (or modularity) of ESNs was
studied by [29], where the ratio of external to internal
connections was varied. By tuning this partitioning
performance can be increased on memory or recall tasks. Here
we demonstrate that one of the main reasons to adopt a network
composed by multiple, pipelined sub-networks, is the ability to
introduce multiple timescales in the network’s dynamics, which
can be important in finding optimal solutions for complex tasks.

Examples of tasks that require such properties are in the fields of
speech, natural language processing, and reward driven learning
in partially observable Markov decision processes [30]. A
hierarchical structure of temporal kernels [31], as multiple
connected ESNs, can discover higher level features of the
input temporal dynamics. Furthermore, while a single ESN
can be tuned to incorporate a distribution of timescales with a
prefixed mode, optimising the system hyper-parameters to cover
a wide range of timescales can be problematic.

Here, we show that optimisation of hyper-parameters can be
guided by analysing how these hyper-parameters are related to

the timescales of the network, and by optimising them according
to the temporal dynamics of the input signal and the memory
required to solve the considered task. This analysis improves
performance and reduces the search space required in hyper-
parameter optimisation. In particular, we consider the case where
an ESN is split into two sections with different hyper-parameters
resulting in separate temporal properties. In the following, we will
first provide a survey of timescales in ESNs before presenting the
comparative success of these hierarchical ESNs on three different
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tasks. The first is the non-linear auto-regressive moving average
10 (NARMA10) task which requires both memory and fast non-
linear transformation of the input. Second, we explore the
performance of the network in a reconstruction and state

“perception” task with different levels of external white noise
applied on the input signal. Finally, we apply the hierarchical ESN
to a permuted sequential MNIST classification task, where the
usual MNIST hand written digit database is serialised and
permuted as a 1 dimensional time-series.

2 SURVEY OF TIMESCALES IN ECHO
STATE NETWORKS

We begin by describing the operations of an ESN and present a
didactic survey of their inherent timescales, which will be drawn
upon in later sections to analyze the results.

As introduced in the previous section, an ESN is a recurrent
neural network and the activity, x(t), of the neurons due to a
temporal input signal s(t) is given by

x(t + δt) � (1 − α)x(t) + αf (h(t)), (1)

h(t) � cWins(t) + ρWx(t), (2)

where W is a possibly sparse random matrix defining the
connectivity of the network, Win defines the input adjacency
matrix, and γ is a rescaling factor of the input weights. α � δt/τ is
the leakage term of the node, and ρ is a scaling factor for the
spectral radius of the connectivity matrix and will be discussed in
more detail in the following. f () is a non-linear function, which in
this work we define as the hyperbolic tangent. To ensure that the
network exhibits the Echo-State property, and so that the activity
does not saturate, the initial random connectivity matrix, W, is
rescaled by its maximum eigenvalue magnitude (spectral radius),∣∣∣∣λmax

W

∣∣∣∣ � max
∣∣∣∣eig(W)

∣∣∣∣, thus ensuring a unitary spectral radius

which can be tuned using ρ as a hyper-parameter. In practice,
W is constructed from a matrix of Normally distributed random
numbers and the sparseness is enforced by randomly setting to
zero a fixed proportion of these elements. Typically 10 non-zero
connections per node are retained in W.

The timescales of this dynamical system are closely linked to
the specific structure of W and to the two hyper-parameters; α
and ρ. Since α is the leakage rate, it directly controls the retention
of information from previous time steps, while ρ specifies the
maximum absolute magnitude of the eigenvalues and as such
tunes the decay time of internal activity of the network. Thus, the

basic hyper-parameters that need to be set are γ, α and ρ.
Considering the nonlinear dependence of the network
performance on these values and the task-dependent nature of
an efficient parameterisation, this process can be challenging.
Such hyper-parameters are commonly optimised through a grid
search or through explicit gradient descent methods in online
learning paradigms [32]. However, the fine tuning procedure can
be guided, and the searchable space reduced, using a simple
analysis of the hyper-parameters’ relation to the timescales of the
network, the external signal’s temporal dynamics, and the
memory required to solve the considered task.

Considering that the eigenvalues λW of the connectivity matrix
are inside the imaginary unit circle due to the normalisation
procedure described previously, and that α is a constant common
to all neurons, the eigenvalues of the linearised system given by

Eq. 1 are

λ � 1 − α(1 − ρλW). (3)

This corresponds to a rescaling of value αρ and to a translation
of value 1 − α across the real axis of the original λW. This
operation on the eigenvalues of W is depicted in Figure 1A.
Thus, considering that each eigenvalue λi can be decomposed in
its corresponding exponential decaying part exp(−δt/τi) and its
oscillatory imaginary component, the timescales of the linearised
system are

τ �
δt

1 − Re(λ)
(4)

�
δt

α(1 − ρRe(λW)) (5)

When the connectivity matrix, W, is given by a sparse matrix
with non-zero elements drawn randomly from a uniform
distribution with the range [−1, 1], then the corresponding
eigenvalues will be uniformly distributed within a circle with a
radius of max(|λW|) in the complex plane [33]. These eigenvalues
are then re-scaled by max(|λW|) to ensure they are within the unit
circle. The distribution of the eigenvalues then reveals the
distribution of timescales of the linearised system. Indeed,
given p(Re(λ), Im(λ)), the distribution of timescales can be
found through computation of the marginal p(Re(λ)) �∫ 
p(Re(λ), Im(λ))dIm(λ) and the change of variable defined in

Eq. 5, giving

p(τ) �
2δt2

πα2ρ2τ2

���������������
α2ρ2 − (α − δt/τ)2

√
(6)

Importantly we note that while the eigenvalues are uniformly
distributed over the unit circle, the timescales are not due to the
inverse relationship between them. The resulting distribution of
the linearised system, shown in Figure 1B (red line), is in
excellent agreement with the numerically computed
distribution for a single ESN (black points + shaded area).

The analytical form of the distribution, together with Eq. 5,
allows us to explicitly derive how changes in α and ρ affect the

network timescales. Notably we can obtain analytical expression
for the minimum, maximum and most probable (peak of the
distribution) timescale:

τmin �
δt

α(1 + ρ) , (7)

τmax �
δt

α(1 − ρ) , (8)

τpeak �
5δt

4α(1 − ρ2) (1 −
������������
1 −

24

25
(1 − ρ2)√ ) (9)

where Eqs. 8 and 7 can be derived directly from Eq. 5, while Eq. 9
follows from maximisation of Eq. 6. As expected, α strongly
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affects all these three quantities; interestingly, though, α does not
influence the relative range of the distribution,
τmax/τmin � (1 + ρ)/(1 − ρ). Indeed α plays the role of a unit
of measure for the τ’s, and can then be used to scale the
distribution in order to match the relevant timescales for the
specific task. On the other hand, ρ does not strongly affect the
shape of the distribution, but determines how dispersed the τ’s
are. Given the finite number of τ’s expressed by a finite ESN, the
hyper-parameter ρ can be used to balance the raw representation
power of the network (how wide the range of timescales is) with
the capacity to approximate any given timescale in that range.

Figures 1C,D give a more detailed view of how the distribution of
timescales changes as α and ρ, respectively, vary; note the
logarithmic scale on the y-axis, that makes the dependence on
α linear. The link between the eigenvalues and the reservoir
dynamics can be shown through the analysis of the network
response to an impulsive signal, shown in Section 2

Supplementary Material where the experimental activities are
compared with the theoretical ones expected from the linearised
system.

2.1 Hierarchical Echo-State Networks
Different studies have proposed alternatives to the random
structure of the connectivity matrix of ESNs, formulating

models of reservoirs with regular graph structures. Examples
include a delay line [17], where each node receives and provides
information only from the previous node and the following one
respectively, and the concentric reservoir proposed in [18],
where multiple delay lines are connected to form a
concentric structure. Furthermore, the idea of a hierarchical
architecture of ESNs, where each ESN is connected to the

preceding and following one, has attracted the reservoir

computing community for its capability of discovering higher

level features of the external signal [34]. Figure 2 schematically

shows the architecture for (A) a single ESN, (B) 2 sub-reservoir

hierarchical ESN for which the input is fed into only the first

sub-reservoir which in turn feeds into the second and (C) a

parallel ESN, where two unconnected sub-reservoirs receive the

same input. These hierarchical ESNs are identical to the 2 layer

DeepESN given by [27]. A general ensemble of interacting ESNs

can be described by

x(k)(t + δt) � (1 − α(k))x(k) + α(k)f (h(k)
(t)), (10)

h(k)
(t) � c(k)W(k)

in s(k)(t) + ∑NESN

l

ρ(kl)W(kl)x(l)(t), (11)

where the parameters have the similar definitions as in the case of a

single ESN in Eq. 1. The index k indicates the network number and
NESN is the total number of networks under consideration. In a
hierarchical structure of ESNs W(kl)

≠ 0 for k � l or k � l + 1 only,
andW(kl) can be drawn from any desirable distribution thanks to the
absence of feedback connections to higher-order reservoirs. Indeed,
in this case, the necessary condition for the Echo-State network
property is that all the inner connectivity matrices W(kk) have
eigenvalues with an absolute value less than one. Furthermore, in
the typical hierarchical structure proposed in previous works [23–25,
27, 35], the input is fed to the first network only, and W(k)

in ≠ 0 if
k � 1 only. We emphasise that the values of α(k) and ρ(k), which are

closely related to the timescales and repertoire of dynamics of
network number k (and, in the case of hierarchical reservoirs,
also to all subsequent networks), do not have to be equal for

FIGURE 1 | The analysis of the timescales of the system in the linear regime can guide the search for the optimal values of the hyper-parameters α and ρ. (A):

Translation and scaling of the eigenvalues of the system due to the presence of the leakage factor. (B): Example of distribution of timescales, computed analytically (red

line) and computationally (black points) estimated from the eigenvalues ofW. (C): Pirate plot of the distributions of timescales as α increases. Both axes are logarithmic.

Higher α values correspond to longer timescales and to a more compressed range of timescales (logarithmic y-axis). (D): Pirate plot of the distributions of

timescales: as ρ increases, the range of timescales expands. Again, both axes are logarithmic. (E): Example distributions of timescales for reservoirs with different

connectivity structure. From left to right, a delay line, single ESN, 2 ESNs (connected and unconnected, see text for the reason why the timescales for these two

structures are the same in the linear regime). The higher complexity of the models reported is reflected in a richer distribution of timescales.
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each ESN, but can be chosen differently tofit the necessity of the task.
In particular, some tasks could require memory over a wide range of

timescales that could not effectively be covered by a single ESN.
In Figure 1E we show examples of the timescale distributions

of the corresponding linearised dynamical systems for different
ESN structures, from the simple delay line model to the higher
complexity exhibited from two hierarchical ESNs. In order from
left to right, the histograms of timescales are for a delay line, a
single ESN, and two ESNs (whether hierarchically connected or
unconnected; see below for clarification). All the models share an
ESNwith ρ � 0.9 and α � 0.9;where present, the second reservoir
has α � 0.2. By construction, the richness and range of timescales
distributions reported increases with the complexity of the

models. However, we note how a simple delay line could
exhibit longer temporal scales than the other structures
analyzed thanks to its constant and high value of minimum
path length between any pairs of nodes. Nevertheless, its limited
dynamics restricts its application to simple tasks. The cases with
two ESNs show a bimodal distribution corresponding to the two
values of α.

Yet, the spectrum of the eigenvalues of the linearised system is
only partially informative of the functioning and capabilities of an
ESN. This is clearly demonstrated by the fact that a hierarchical
and a parallel ESN share the same spectrum in the linear regime.

Indeed, for a hierarchical ESN, whose connectivity matrix of the
linearised dynamics is given by:

W � [W(11) 0
W(21) W(22) ], (12)

it is easy to demonstrate that every eigenvalue of W(11) and

W(22) is also an eigenvalue of W , irrespective of W(21), not
unlike what happens for a parallel ESN (where W(21) � 0,

and hence the demonstration follows immediately).

Nonetheless, as we will see in the next sections, the
hierarchical ESN has better performance on different

tasks compared to the other structures considered,
including the parallel ESN.

It is interesting to note, in this respect, that the success of the
hierarchical ESN is generally achieved when the leakage term of
the first reservoir is higher than the leakage term of the second
(or, in other words, when the first network has much shorter
timescales). Such observation opens the way to an alternative
route to understand the functioning of the hierarchical structure,
as the first reservoir expanding the dimensionality of the input
and then feeding the enriched signal into the second network.
Indeed, in the following, we will show how, in a crude
approximation and under the above condition of a wide
separation of timescales, the first ESN extracts information on
the short term behavior of the input signal, notably its derivatives,
and the second ESN integrates such information over
longer times.

We begin with the (continuous time) linearized dynamics of a
Hierarchical ESN given by

_x(1)(t) � −M(1)x(1)(t) +W(1)
in s(t), (13)

_x(2)(t) � −M(2)x(2)(t) +W(21)x(1)(t), (14)

where, for simplicity, we have reabsorbed the ρ(kl) and c(k) factors
into the definitions of W(kl) and W(k)

in respectively, and the new
constants can be derived with reference to Eqs 1,2; for example:

M(k) �
α(k)

δt
[I − f ′(0) W(kk)]. (15)

The neuron activity can be projected on to the left eigenvector
of each of the M(i) matrices. As such we define the eigenvector

matrices, V(i), where each row is a left eigenvector and so satisfies
the equation V(i)M(i) � Λ

(i)V(i). Λ(1) and Λ
(22) are the diagonal

FIGURE 2 | Single and hierarchical echo-state network (ESN) architectures. (A): A single ESNwith internally connected nodes with a single set of hyper-parameters

α and ρ. (B): A hierarchical ESN composed of 2 connected reservoirs where the input is fed into reservoir one only and the connection is unidirectional from R1 to R2,

which is identical to the 2 layer DeepESN of [27]. (C): A parallel (or unconnected hierarchical) ESN where the network is partitioned into 2 reservoirs, R1 and R2, which

each receive the input and provide output but have distinct hyper-parameters.
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matrices of the eigenvalues of the twoMmatrices. Using these we
can define y(k) ≡ V(k)x(k), and so the dynamical equations can be
expressed as

_y(1)(t) � −Λ(1)y(1)(t) + ~W
(1)

in s(t), (16)

_y(2)(t) � −Λ(2)y(2)(t) + ~W
(21)

y(1)(t), (17)

where ~W
(1)

in � V(1)W(1)
in and ~W

(21)
� V(2)W(21) (V(1))− 1 are the

input and connection matrices expanded in this basis. Taking the
Fourier transform on both sides of Eq. 16, such that
FT[y(1)(t)] � ~y(1)(ω) and FT[ _y(1)(t)] � −iω~y(1)(ω), where i is
the imaginary unit. The transform ~y(2)(ω) of y(2)(t) can now be
expressed as a function of the transform of the signal ~s(ω) giving

(Λ(1) − iωI)~y(1)(ω) � ~W
(1)

in ~s(ω) (18)

where I is the identity matrix of the same size as Λ
(1). If the

second ESN’s timescale are much longer than that of the first one
(i.e., Λ(1)

≫Λ
(2)), then we can expand the inverse of the ~y(1)

coefficient on the LHS of Eq. 18 when Λ
(1)

→∞ as

(Λ(1) − iωI)− 1 � (Λ(1))− 1(1 − iω(Λ(1))− 1)− 1
, (19)

≈ (Λ(1))− 1∑∞
n�0

(iω(Λ(1))− 1)n, (20)

By applying this approximation to Eq. 18, and by defining the
diagonal matrix of characteristic times T(1)

≡ − (Λ(1))− 1, the
relation between the activity of reservoir one and the input in
Fourier space is given by

~y(1)(ω) � −T(1) ∑∞
n�0

( − iωT(1))n ~W(1)

in ~s(ω). (21)

The coefficients of this series are equivalent to taking
successive time derivatives in Fourier space, such that
(−iω)n~s � d(n)~s/dt(n). So by taking the inverse Fourier
transform we find the following differential equation for y(1)

y(1)(t) � −T(1) ∑∞
n�0

(T(1))n ~W(1)

in

d(n)s(t)

dt(n)
, (22)

which can be inserted into Eq. 17 to give

_y(2) � Λ
(2)y(2) − ~W

(21)
T(1)⎡⎣ ~W

(1)

in s(t) +∑∞
n�1

(T(1))n ~W(1)

in

d(n)s(t)

dt(n)
⎤⎦.

(23)

Thus the second ESN integrates the signal with a linear
combination of its derivatives. In other words, the first
reservoir expands the dimensionality of the signal to include
information regarding the signal’s derivatives (or, equivalently
in discretized time, the previous values assumed by the signal).

In this respect, Eq. 23 is key to understanding how the
hierarchical connectivity between the two reservoirs enhances
the representational capabilities of the system. The finite-
difference approximation of the time derivatives appearing in
Eq. 23 implies that a combination of past values of the signal

appears, going back in time as much as the retained derivative
order dictates.

2.2 Online Learning of Hyper-Parameter
Selecting the hyper-parameters of such systems can be
challenging. Such selection process can be informed by the
knowledge of the natural timescales of the task/signal at hand.
Alternatively one can resort to a learning method to optimise the
parameters directly. The inherent limitation of these methods is
the same as learning the network weights with BPTT: the whole
history of network activations is required at once. One way to by-
pass this issue is to approximate the error signal by considering
only past and same-time contributions, as suggested by Bellec
et al. [4] in their framework known as e-prop (see also [36]), and
derive from this approximation an online learning rule for the

ESN hyper-parameters. Following their approach, we end up with
a novel learning rule for the leakage terms of connected ESNs that
is similar to the rule proposed by Jaeger et al. [32] but extended to
two hierarchical reservoirs. The main learning rule is given by:

dE

dα(i)
(t) � ∑NESN

k�1

zE

zx(k)(t)
e(ki)(t), (24)

where e(ki)(t) � dx(k)(t)/dα(i) is known as the eligibility trace
which tracks the gradient of neuron activities in the reservoir
number k with respect to the ith leakage rate. Given the closed
form for the hierarchical ESNs in Eqs 10,11 these terms can be
readily calculated. For our NESN sub-reservoirs in the hierarchical
structure there will be N2

ESN eligibility traces to track how each
sub-reservoir depends on the other leakage rates. In the
hierarchical case of a fixed feed-forward structure some of
these traces will be zero, and the number of non-zero

eligibility traces would be N(N + 1)/2. Since the update of the
neuron’s activity depends on its previous values, so do the
eligibility traces; therefore, they can be calculated recursively
through

e(ki)(t + δt) � (1 − α(k))e(ki)(t) + δki(f (h(k)
(t)) − x(k)(t))

+ α(k)f ′(h(k)
(t))∑

l ≠ k

ρ(kl)W(kl)e(li)(t), (25)

where δki � 1 if k � i and 0 otherwise, i. e the Kronecker delta.
The update of Eq. 25 for each k-i pair needs to follow the order of

dependencies given by the structure of connected reservoirs
considered. The eligibility trace is an approximation that only
includes same-time contributions to the gradient but has the
advantage that is can be easily computed online. A complete
description of our method is given in the Supplementary

Material. For an example where the mean squared error
function E(t) � 1

2
[~y(t) − y(t)]2 is used in a regression task and

a structure composed by two reservoirs, the updating equations
on the leakage terms are

α(1)
←α(1) − ηα[~y(t) − y(t)]Wout( e(11)(t)

e(12)(t)
)

α(2)
←α(2) − ηα[~y(t) − y(t)]Wout( e(21)(t)

e(22)(t)
) (26)
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where ηα is the learning rate on the leakage terms and
(e(k1)(t), e(k2)(t)) (k � 1, 2 in this case with two reservoirs) is
a vector composed by the juxtaposition of the eligibility traces,
which can be computed through Eq. 25. Of course, the gradient

can be combined with existing gradient learning techniques,
among which we adopt the Adam optimiser, described in the
Supplementary Material. In all online learning simulations,
training is accomplished through minibatches with updates at
each time step. Training is stopped after convergence. When
learning α′s and the output weights simultaneously, the learning
rates corresponding to these hyper-parameters need to be
carefully set, since the weights need to adapt quickly to the
changing dynamic of the network, but a fast convergence of
Wout can trap the optimisation process around sub-optimal
values of the leakage terms. For a reservoir with trained and

converged output weights, a further variation of α′s, even in the
right direction, could correspond to an undesirable increase in
the error function. We found that this problem of local
minimum can be avoided by applying a high momentum in
the optimisation process of α and randomly re-initialising the
output weights when the α′s are close to convergence. The
random re-initialisation functions to keep the output weights
from being too close to convergence. Thus, we defined the
convergence of the algorithm for α′s as when the α′s do not
change considerably after re-initialisation. When this happens,
it is possible to turn off the learning on the leakage terms and to

optimise the read-out only. More details about online training
can be found in the discussions related to each task.

3 RESULTS

The following sections are dedicated to the study of the role of
timescales and the particular choices of α and ρ in various tasks,

with attention on networks composed by a single ESN, 2
unconnected ESNs and 2 hierarchical ESNs. The number of
trainable parameters in each task for the different models will
be preserved by using the same total number of neurons in each
model. The results analyzed will be consequently interpreted
through the analysis of timescales of the linearised systems.

3.1 NARMA10
A common test signal for reservoir computing systems is the non-
linear auto-regressive moving average sequence computed with a
10 step time delay (NARMA10) [37, 38]. Here we adopt a discrete
time formalism where n � t/δt and the internal state of the
reservoir is denoted as xn � x(nδt). The input, sn, is a
uniformly distributed random number in the range [0, 0.5]
and the output time-series is computed using

yn � yn−1⎛⎝a + b∑D
k�1

yn−k⎞⎠ + csn−1sn−D + d, (27)

where D � 10 is the memory length, a � 0.3, b � 0.05, c � 1.5,
and d � 0.1. The task for the network is to predict the NARMA10
output yn given the input sn. We have adapted this to also

generate a NARMA5 task where D � 5 but the other
parameters are unchanged. This provides an almost identical
task but with different timescales for comparison.

The task of reconstructing the output of the NARMA10

sequence can be challenging for a reservoir as it requires both
a memory (and average) over the previous 10 steps and fast
variation with the current input values to produce the desired
output. A typical input and output signal is shown in Figure 3A

and the corresponding auto-correlation function of the input and
output in B. Since the input is a random sequence it does not
exhibit any interesting features but for the output the auto-
correlation shows a clear peak at a delay of 9 δt in accordance
with the governing equation. For a reservoir to handle this task
well it is necessary to include not only highly non-linear dynamics
on a short timescale but also slower dynamics to handle the

memory aspect of the task.
This regression task is solved by training a set of linear output

weights to minimise the mean squared error (MSE) of the
network output and true output. The predicted output is
computed using linear output weights on the concatenated
network activity (xn � (x(1)n , x(2)n )

T
), such that

~yn � xTnWout (28)

whereWout is the weight vector of length N+1 when an additional
bias unit is included. The MSE is minimised by using the ridge
regression method [39] such that the weights are computed using

Wout � (xTx − λI)− 1xTy (29)

where x is a matrix formed from the activation of the internal
states with a shape of number of samples by number of neurons, y
is the desired output vector, λ is the regularisation parameter that
is selected using a validation data set and I the identity matrix. To
analyze the performance of the ESNs on the NARMA10 task we

use the normalised root mean squared error as

NRMSE �

�������������
1

Ns

∑Ns

n

(~yn − yn)2
Var(y)

√√
, (30)

where ~yn is the predicted output of the network and yn is the true
output as defined by Eq. 27.

To test the effectiveness of including multiple time-scales in
ESNs, we simulate first a single ESN with N � 100 neurons and
vary both α and ρ to alter the time-scale distribution. Secondly,
we simulate a hierarchical ESN split into 2 reservoirs each with
N � 50 neurons, where we vary α(1) and α(2) with
ρ(1) � ρ(2) � 0.95. The input factor was set as c(1) � 0.2 and
c(2) � 0 for the connected hierarchical ESN but when they are
unconnected the input is fed into both, such that
c(1) � c(2) � 0.2. In all cases the NRMSE is computed on an

unseen test set and averaged over 20 initialisations of the ESN
with a running median convolution is applied to the error
surfaces to reduce outliers. In parallel to this we have also
applied the online training method for the α hyper-parameters.
The hyper-parameters used for the gradient descent learning
are summarised in Table 1.
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Figures 3E–G and I–M show the NRMSE depending on α(1)

and α(2) for 3 variations of the hierarchical ESN connection
strength on the NARMA10 task. In the unconnected case
(ρ(21) � 0, panels E and I), we find that the NRMSE drops by
increasing both leakage rates but the minimum is when one of the
leakage rates is ≈ 0.5. This is in agreement with the online
learning method for the α’s in shown in I but the error

minimum is shallow and prone to noise in the signal or ESN
structure. For the weakly connected hierarchical ESN (ρ(21) � 0.1,
panels F and J) we find again that when the sub-reservoirs have
different timescales the NRMSE is reduced. In comparison to the
unconnected case the error surface is asymmetric with a
minimum at approximately α(1) � 1.0 and α(2) ≈ 0.5. As the
strength of the connection is increased (ρ(21) � 1.0, Panel G
and K), the minimum error moves to a lower leakage rate in
the second reservoir (α(2) ≈ 0.2) which reflects a better separation

of the timescale distributions. This is a gradual effect with respect
to the connection strength since stronger connection allows for a
relative increase of the expanded input from the first reservoir
compared to the base input signal. Since the input feeds into
reservoir 1, a high α provides a transformation on the input over
short time-scales, expanding the dimensionality of the signal,
offering a representation that preserves much of the dynamic of

the driving input and that is fed to the second reservoir. Then, since
the latter does not have a direct connection to the input it performs a
longer timescale transformation of the internal states of reservoir 1.
In this way the reservoirs naturally act on different parts of the task,
i.e., reservoir one provides a fast non-linear transformation of the
input while reservoir 2 follows the slower varying 10-step average of
the signal, and thus returning a lowerNRMSE. As a side note, we can
demonstrate the validity of the theoretical analysis in Section 2.1 by
replacing the first reservoir by Eq. 23 on the NARMA task (see

FIGURE 3 | Performance of single or hierarchical ESNs on the NARMA10 and NARMA5 task. (A): Example input signal (black) and desired output (red) for the

NARMA10 task. (B): The auto-correlation function of the (black) input (red) NARMA10 and (blue) NARMA5 desired output signals, showing a second peak at about 9

delay steps for the NARMA10 and 4 for the NARMA5. (C): The NRMSE for a single ESN for with ρ � 1.0 and 0.63 over a range of α. The NRMSE is lower for ρ ≈ 1 and

α � 1. The solid lines show the minimum NRMSE for the unconnected (blue line) and connected (red line); for the unconnected case the minimum NRMSE is similar

to the single ESN while the connected case has a smaller NRMSE by about 10%. (D): Average NRMSE of a single ESN for various α compared to the hierarchical ESNs

for the NARMA5 task. (E–K): The average NRMSE surface using a hierarchical ESN computed for varying the leakage rates α(k) of both the reservoir components for (E)

and (I) (no coupling, ρ(21) � 0), (F) and (J) (weak coupling, ρ(21) � 0.1), and (G) and (K) (strong coupling, ρ(21) � 1). Panels (I-L) show a close up in region for the range

α(k) � [0.1,1] to highlight the changing behaviors. The lines on these panels show the trajectory of the α(k) values trained directly using the online method. For each case

of the coupling the online learning trends toward the approximate error minimum. (H) shows the NRMSE surface for the NARMA5 task using a strongly connected

hierarchical ESN, with (N) again showing a zoom of the α � [0.1, 1] region. The region of best performance is with α(2) ≈ 0.5 which matches the shorter timescale

demonstrated in the auto-correlation in (B).
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Section 3 SupplementaryMaterial), resulting in a similar landscape
as in Figure 3G and a similar optimal value for α(2).

Figure 3C shows the relative performance of the single ESN to
the minimum values for the unconnected (ESNu

2) and connected
(ESNc

2) hierarchical reservoirs. The single ESN shows the similar
decrease inNRMSEwith increasing α and reaches a similarminimum
NRMSE as the unconnected case. In comparison with the connected
cases the multiple timescales provides a more optimised result. If we
consider the analysis of the timescales discussed in the previous section

the choice of these hyper-parameters becomes more evident. With
α � 1 the timescale distribution of the network is sharply peaked close
to theminimum timescale of one discrete stepwhilewhen α � 0.1 this
peak is broader and the peak of the distribution is closer to the second
peak present in the auto-correlation function shown in Panel B. We
note that while the most likely timescale is τpeak ≈ 6 for α � 0.1, ρ �
0.95 which is lower than the natural timescale of the problem, the
increased width of the distribution increases the number of timescales
at τ � 10 dramatically which maybe why a lower α is not necessary.

To further investigate the effect of the inherent timescale of the
task on the timescales we performed a similar analysis on
the NARMA5 task. Figures 3H,L show the NRMSE surface for

the strongly connected case. The minimum error occurs at
α(1) ≈ 1.0 (similar to the NARMA10 results in G and K) but
α(2) ≈ 0.5 (as opposed to ≈ 0.2 for NARMA10). This is due to
the shorter timescales required by the NARMA5 task and the peak
timescale for these values is much closer to the peak in the auto-
correlation shown inB. Panel D shows the performance of the single
ESN where again the optimal leakage rate is α � 1 and similar to the
unconnected cases but the NRMSE is higher than the
connected cases.

In this theoretical task where the desired output is designed a
priori, the memory required and the consequent range of

timescales necessary to solve the task are known.

Consequently, considering the mathematical analysis in
Section 2.1, and that for hierarchical ESNs the timescales of
the first ESN should be faster than those of the second Figure 3),
the best-performing values of the leakage terms can be set a priori

without the computationally expensive grid search reported in
Figures 3E–L. However, it can be difficult to guess the leakage
terms in the more complex cases where the autocorrelation
structure of the signal is only partially informative of the
timescales required.

This problem can be solved using the online learning approach
defined through Eq. 24. In this case, learning is accomplished
through minibatches and the error function can be written
explicitly as

E(t) �
1

2Nbatch

∑Nbatch

m�1

[~y(t,m) − y(t,m)]2 (31)

where Nbatch is the minibatch size and m is its corresponding
index. A minibatch is introduced artificially by dividing the input
sequence into Nbatch signals or by generating different NARMA
signals. Of course, the twomethods lead to equivalent results if we

assure that the Nbatch sequences are temporally long enough. A
learning rate ηα/ηW ≈ 10− 2 − 10− 3 was adopted. The optimiser
used for this purpose is Adam, with the suggested value of β1 �
0.9 adopted for the output weights and a higher first momentum
β1 � 0.99 adopted for the leakage terms. Instead, we set β2 �
0.999 of the second momentum for both types of parameters (See
Section 2.2 for a description of the updating rules). Panels I–L
show a zoomed in region of the error surface with the lines
showing the online training trajectory of the α hyper-parameters.
In each case the trajectory is moving toward the minimum
NRMSE of the α phase space.

3.2 A Volatile Environment
We now turn to study the reservoir performance on a task of a
telegraph process in a simulated noisy environment. The

telegraph process s(1)(t) has two states that we will call up 1)
and down (0), where the probability of going from a down state
to an up state p(s � 1|s � 0) (or the opposite p(s � 0|s � 1)) is
fixed for any time step. The environment is also characterised by
a telegraph process s(2)(t), but the transition probability is much
lower and controls the transition probability of the first signal.
To simplify the notation in the following we denote the
probability of the signal i transitioning from state a to state b
as p(s(i)(t) � a

∣∣∣∣s(i)(t − δt) � b) � p(i)ab(t). The signal taken under
consideration is then composed by a fast telegraph process with
probabilities p(1)01 (t) and p(1)10 (t), whose values are interchanged

by following the dynamic of a slower telegraph process s(2)(t).
Every time the slower environment signal changes its state, the
probabilities of the first signal are changed, i. e., p(1)01 (t)↔p(1)10 (t).
The resulting signal is then characterised by

p(1)10 (t) � { p1, if s(2)(t) � 0
p2, if s(2)(t) � 1

(32)

p(1)01 (t) � { p2, if s(2)(t) � 0
p1, if s(2)(t) � 1

(33)

TABLE 1 | Table of the hyper-parameters adopted in the online learning process.

η is the learning rate in each case, while β1 , β2 and ϵ are parameters for the

Adam optimiser (further details are given in the Supplementary Material).

Learning hyper-parameters

NARMA/Telegraph psMNIST

Network size N 100 1200

Minibatch size Nbatch 10 50

Learning Wout

ηW 10− 3 10−3 [10−4]a

β1 0.9 0.9

β2 0.999 0.999

ϵ 10− 8 10− 8

Learning α

ηα 5 × 10− 6 10− 3

β1 0.99 0.999

β2 0.999 0.999

ϵ 10− 8 10− 8

asymbol indicates that the learning rate 10−3 is for the case with 4 hidden states, while the

learning rate [10−4] is for the case with 28 hidden states. This decrease of η is due to the

increase in the dimensionality of the representation for the latter case in comparison to

the situation where the read-out is composed by four concatenated values of activity.

Furthermore, such learning rates are 10 times higher than the case in which only the read-

out is trained (only in the psMNIST task). Thus, the high learning rate adopted has the

purpose to introduce noise in the learning process and to avoid local minima in the

complex case where α and Wout are optimised simultaneously.
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The transition probabilities of the second signal are fixed and
symmetric such that

p(2)01 (t) � p(2)10 (t) � p3, (34)

The probabilities p1, p2 and p3 are fixed parameters of the signal

that define the process. Given that the second signal controls the

probabilities of the first telegraph process, we say that it defines the

regime of the input, while we refer to the up and down values of the

first process simply as states. Thus, the reconstruction of s(1)(t) from

the input will be called state reconstruction, while reconstruction of

s(2)(t) will be called regime reconstruction. These reconstructions

can be considered separately or as a joint task requiring the system to

be modeled on long and short timescales simultaneously. Due to the

probability transition caused by s(2)(t), both states and regime will

be equally present over a infinitely long signal. The values adopted

for the simulation are p1 � 0.05, p2 � 0.1 and p3 � 0.0005.
The input signal corresponds to s(1)(t) + σN (0, 1), that is the

faster telegraph process with additional white noise. The input

signal constructed is a metaphor of a highly stochastic

environment with two states and two possible regimes that define

the probability of switching between the two states. The reservoir will

be asked to understand in which state (s(1)(t) � 1 or 0) and/or regime

(s(2)(t) � 1 or 0) it is for each time t, measuring the understanding of

themodel to estimate the state of the input signal. The input signal and

telegraph processes is shown in Figure 4A, while B shows the

corresponding auto-correlation structure of the processes. The

auto-correlation shows that the input has a temporal structure of

around 10 δt while the slow ‘environment’ process has a structure

close to 1000 δt. This corresponds directly to the timescales defined by

the probabilities of the signals.
Panels C andDof Figure 4 show the performance of a single ESN

when it is tasked to reconstruct the processes s(1)(t) (state
recognition) and s(2)(t) (regime recognition) respectively. In this

simulation, learning is always accomplished online and the error
function is the same as Eq. 31. First, panel C demonstrates how the
leakage term, α, must be tuned to the level of noise of the
environment, and how lower values of α are desirable for
noisier signals, in order to solve the state recognition
problem. Indeed, the need to smooth the fluctuations of the
input signal increases with σ, while for low values of noise the
network should simply mimic the driving input. Second, panel
D shows how the desirable values of αmust be lower in the case
where the network is asked to reproduce the slower dynamic of
s(2)(t) independently of having to output the fast signal, in
order to solve the regime recognition problem. This result

exemplifies how the timescales of the network must be tuned
depending on the desired output. It demonstrates that, even in
this relatively simple environment, it is crucial to adopt
multiple timescales in the network to obtain results that are
robust with respect to a variation of the additional white
noise σ.

Finally, panels E and F of Figure 4 show the accuracy of two
unconnected (E) and connected (F) reservoirs when the network

FIGURE 4 | The best structure and parameters of the model depend on the specific environment considered, that is different values of the additive noise in the input

signal, and on the specific desired output. (A): Example of input signal and of its generative processes, which have a faster and a slower dynamic respectively. When the

slower process (red line) is up (down), the other signal is in a regime where the average time in the zero (one) state is greater than the average time spent in the other state.

The input signal (gray line) corresponds to the faster process (black line) with additional white noise. (B): Auto-correlation structure of the two generative processes.

(C): The accuracy surface for a single ESN on the state recognition sub-task for varying level of noise (σ) and leakage rate of the network showing that for increasing levels

of noise a lower leakage rate is needed to determine the state. The line shows the trajectory of α using the online learning method when the strength of the noise is

changed. (D): The accuracy for a single ESN on the regime recognition sub-task for varying noise and leakage rate. In this case the low leakage rate is preferred for all

values of noise. (E): Accuracy surface for the state recognition sub-task for an unconnected hierarchical ESN showing how either of the leakage rates must be low while

the other is high. (F): Accuracy surface for the regime recognition sub-task for a hierarchical ESN showing the first reservoir must have a high leakage rate and the second

a low leakage rate.
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has to classify the state and the regime of the input signal at the
same time. In this case, the desired output corresponds to a four
dimensional signal that encodes all the possible combinations of
states and regimes; for instance, when the signal is in the state one
and in the regime one, we would require the first dimension of the
output to be equal to one and all other dimensions to be equal to
zero, and so on. The best performance occurs when one leakage
term is high and the other one is low and in the range of
significant delays of the auto-correlation function. This
corresponds to one network solving the regime recognition

and the other network solving the state recognition. For the
unconnected reservoirs, it does not matter which reservoir has
high vs. low leakage terms, reflected by the symmetry of
Figure 4E, while for the connected reservoirs, the best
performance occurs when the first reservoir has the high
leakage term and the second the low leakage terms, see
Figure 4F, similar to Figure 3. Both two-reservoir networks
can achieve accuracy 0.75, but the single ESN can not solve
the task efficiently, since it cannot simultaneously satisfy the need
for high and low αs, reporting a maximum performance of
about 0.64.

The path reported in panel C of Figure 4 and all panels in
Figure 5 show the application of the online training algorithm
in this environment. The values of the hyper-parameters
adopted in the optimisation process through the Adam
optimiser are the same as in Section 3.1, where we used a
slower learning rate and a higher first momentum on the
leakage terms in comparison to the values adopted for the
output weights. The line of panel C (Figure 4) shows the online
adaptation of α for a simulation where the external noise
increases from one to four with six constant steps of 0.5
equally spaced across the computational time of the

simulation. The result shows how the timescales of the
network decrease for each increase in σ, depicted with a
circle along the black line. The path of online adaptation
reports a decrease of the α value for noisier external signals.
This result occurs because as the signal becomes noisier (σ
rises), it becomes more important to dampen signal
fluctuations. This result also shows that the online
algorithm can adapt in environments with varying signal to
noise ratio. Figure 5 shows the online training of α(1) and α(2)

for an environment composed by a faster and a slower
composition of telegraph processes. This specific simulation
is characterised by the alternation of two signals defined by Eqs
32, 33 and 34, each with different values of p1 and p2. In
particular, while p1 � 0.5 and p2 � 0.1 for the ‘fast’ phase of the
external signal, p1 � 0.1 and p2 � 0.05 for the “slow” phase. In
contrast, the slower timescale of the task defined by p3 �
0.0005 remains invariant across the experiment. Panel C
shows the adaptation of the leakage terms for this task in
the case of a hierarchical structure of ESNs. While α(2) adapts

to the change of p1 and p2 following the transition between the
two phases of the external signals, the relatively constant value
of α(1) indicates how the first network sets its timescales to
follow the slower dynamic of the signal, characterised by the
constant value of p3. Thus, the composed network exploits the
two reservoirs separately, and the first (second) reservoir is
used to represent the information necessary to recognise the
regime (state) of the external signal.

3.3 Permuted Sequential MNIST
The Permuted Sequential MNIST (psMNIST) task is

considered a standard benchmark for studying the ability of
recurrent neural networks to understand long temporal
dependencies. The task is based on the MNIST dataset,
which is composed of 60, 000 handwritten digits digitised to
28 × 28 pixel images. In the standard MNIST protocol every
pixel is presented at the same temporal step so a machine has
all the information of the image available at once and needs to
classify the input into one out of ten classes. In contrast, in the
psMNIST task, the model receives each pixel sequentially once
at a time, so that the length of the one dimensional input
sequence is 784. Thus, the machine has to rely on its intrinsic

temporal dynamic and consequent memory ability to classify
the image correctly. Furthermore, each image in the dataset is
transformed through a random permutation of its pixels in
order to include temporal dependencies over a wide range of
input timescales and to destroy the original images’ structure.
Of course, the same permutation is applied on the entire
dataset. The performance of ESNs on the MNIST dataset,
where each columns of pixels in a image is fed to the
network sequentially (each image corresponds to a 28

FIGURE 5 | The online training of the leakage terms can adapt to the changing environment, that is the signal probabilities are increased or decreased periodically.

(A): Scheme of the change of the values of probabilities, where high probabilities of switching are referred to as fast phase of the telegraph process, while low probabilities

as slow phase. (B): Running average of the gradients of α(1) and α(2) as time varies. (C): Online adaptation of the leakage terms.
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dimensional signal of length 28 time steps), has been analyzed

in [40] and in [41]. In [40] the original dataset was
preprocessed through reshaping and rotating the original
image to enhance the network’s ability to understand high
level features of the data. In this case, the original dataset is
used. In [41], the addition of thresholds and the introduction
of sparse representation in the read-out of the reservoir was
used to improve the performance of the network in the online
learning of the standard MNIST task through reservoir
computing. This section is focused on the analysis of the
performance of ESNs on the psMNIST task and on their
dependence on the range of timescales available in the

network, i.e. the values of α and ρ chosen. In contrast to the
previous sections where ESNs are trained through ridge
regression, we have applied an online gradient descent
optimisation method. The cost function chosen to be
minimised is the cross entropy loss

E � −
1

Nbatch

∑Nbatch

m�1

∑Nclass

j�1

[yj(m)log(~yj(m))
+ (1 − yj(m))log(1 − ~yj(m))],

(35)

where m is the minibatch index, Nbatch corresponds to the
minibatch size and Nclass is the number of classes. For this task
the desired output, yj, is a one-hot encoded vector of the
correct classification while the desired output is a sigmoid
function of the readout of the reservoir nodes. Furthermore,

instead of reading out the activity of the reservoir from the
final temporal step of each sequence only, we have expanded
the reservoir representation by using previous temporal
activities of the network. In practice, given the sequence of
activities x(0), x(δt), . . . , x(δtT) (T � 784) that defines the
whole temporal dynamic of the network subjected to an
example input sequence, we trained the network by reading

FIGURE 6 | The additional non linearity added by the hierarchical reservoir structure is responsible for a relevant modification and increase of the performance

surface. (A,C): Auto-correlation structure of the MNIST dataset for two examples of digits, where each pixel is presented one after the other (C), and auto-correlation

structure of the data after the random permutation (A). The oscillatory trend inC reflects the form of the written digits, when this is seen one pixel after the other. The auto-

correlation function of the permuted data is low, but not negligible, for all the temporal steps, showing the necessity to have a wide repertoire of timescales in the

interval corresponding to the image size. (B,D): Accuracy of a single ESN for various α values compared the maximum accuracy of the hierarchical ESNs with 4 hidden

states (B) or 28 hidden states (D). (E–F): case with low sampling frequency of the ESNs which corresponds to a higher demand of internal memory in the reservoir. While

the best region of accuracy for the unconnected reservoirs is characterised by intermediate values of the leakage factors, the hierarchically connected network structure

reports the best performance when the second network has slower dynamics. (G–H): The utilisation of a high sampling frequency alleviates the need for long term

memory, and the reservoirs prefer the regions with fast timescales. In both cases analyzed, the additional complexity of the hierarchical model leads to a considerable

boost in performance. (I–N): Paths (black line, starting from the circle and ending in the star) that describe the online changes of the leakage terms achieved through the

online training algorithm in a zoomed region of the performance surface of α(1) and α(2). The paths are smoothed through a running average.
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out from the expanded vector
X � [x(Mδt), x(2Mδt), . . . , x(Tδt)], where M defines the
“time frame” used to sample the activities of the evolution
of the system across time.

~y � sigm⎛⎝ ∑T/M
n�1

W(n)
outx(nMδt)⎞⎠ (36)

where sigm stands for sigmoid activation function. We then
repeat the simulation for two different time frames of

sampling for each different model, that is a single ESN and a
pair of unconnected or connected ESNs, as in the previous
sections.

The two values of M used are 28 and 196, corresponding to a
sampling of 28 and 4 previous representations of the network
respectively. Of course, a higher value ofM corresponds to a more
challenging task, since the network has to exploit more its
dynamic to infer temporal dependencies. We note, however,
that none of the representation expansions used can guarantee
a good understanding of the temporal dependencies of the task, or
in other words, can guarantee that the system would be able to

discover higher order features of the image, considering that these
features depend on events that could be distant in time.

In Figure 6 we again analyze the performance of two
connected or unconnected ESNs varying α(1) and α(2) for
both M � 28 and 196. In contrast to the previous sections, we
now use gradient descent learning on the output weights
instead of ridge regression and increase the total number of
neurons in each model to N � 1200 due to the complexity of
the task. The Adam optimiser is used; its parameters, for both
the output weights and α learning, are in Table 1. As
previously, we have trained the output weights over a

range of fixed αs and report the performance on an unseen
test data set. In parallel to this we have trained both the
output weights and α values which, as shown by the lines on
the contour plots, converge toward the minimum computed
using the fixed α′s.

As in the other simulations, we found that the values of ρ
corresponding to the best performance was approximately one,
which maximises the range of timescales and the memory
available in the network. Figures 6E,F shows the case with
M � 28, while Figures 6G,H reports the accuracy for the
simulation with M � 196 where E and G are unconnected and

F and H connected reservoirs. The accuracy surface demonstrates
how, in the case of the unconnected ESNs with a fast sampling
rate in panel G, the best performance is achieved when at least one
of the two values of α is close to one. The result is due to the fast
changing dynamic of the temporal sequence that is introduced
through the random permutation of the pixels. On the contrary,
in the case of the unconnected ESNs with a slow sampling rate in
panel E the best accuracy is in a range of intermediate timescales
since both partitions must respond to both fast and slow
timescales.

This relatively simple behavior of the dependence of the accuracy
on the setting of the hyper-parameters changes in the cases of two

connected ESNs, whose additional complexity corresponds to a
considerable increase in the performance. Figure 6H reports how

the network prefers a regime with a fast timescale in the first
reservoir and a intermediate timescale in the second, which acts
as an additional non-linear temporal filter of the input provided by
the first network. The need of memory of events distant in time is

emphasised in 6F, where the best performing network is composed
by reservoirs with fast and slow dynamics respectively. The
performance boost from the panels E–G to the ones F-H has
only two possible explanations: first, the timescales of the second
network are increased naturally thanks to the input from the first
reservoir; second, the connections between the two reservoirs
provide an additional non-linear filter of the input that can be
exploited to discover higher level features of the signal. Thus, we can
conclude once again that achieving high performance in applying
reservoir models requires 1) additional non-linearity introduced
through the interconnections among the reservoirs and 2) an

appropriate choice of timescales, reflecting the task requirements
in terms of external signal and memory.

Panels I, L, M and N show the application of the online
training of αs for the various cases analyzed. In the psMNIST task
we found that the major difficulties in the application of an
iterative learning rule on the leakage terms are: the possibility to
get trapped in local minima, whose abundance can be caused by
the intrinsic complexity of the task, the intrinsic noise of the
dataset, the randomness of the reservoir and of the applied
permutation; the high computational time of a simulation that
exploits an iterative optimisation process on αs arising from a

practical constraint in the implementation. Indeed, while the
activities of the reservoir can be computed once across the whole
dataset and then saved in the case of untrained values of αs, the
activities of the nodes need to be computed every time the leakage
terms change in the online learning paradigm. However, we
found that using a higher learning rate ηW on the output
weights, compared to the value adopted in the paradigm
where the leakage terms are not optimised (as in Panels E, F,
G and H), can introduce beneficial noise in the learning process
and help to avoid local minima. Furthermore, a higher value of
the learning rate on the output weights corresponds to an

increased learning rate on the thresholds, as shown from
Supplementary Equation S7 and from the dependence of the
updating equations on Wout. As in the previous simulations of
Sections 3.1 and 3.2, the output weights are randomly
reinitialised after the convergence of αs, helping the algorithm
to avoid an undesirable quick convergence of weights. The online
process is then ended when the leakage terms remain
approximately constant even after the re-initialisation.
Following this computational recipe, it possible to avoid the
difficulties found and train the leakage terms efficiently.

Finally, we note how the best accuracy of 0.96 reached

throughout all the experiments on the psMNIST is comparable
to the results obtained by recurrent neural networks trained with
BPTT, whose performance on this task are analyzed in [42] and can
vary from 0.88 to 0.95. In comparison to recurrent structures trained
through BPTT, a networkwith two interacting ESNs provide a cheap
and easily trainable model. However, this comparison is limited by
the necessity of recurrent neural networks to carry the information
from the beginning to the end of the sequence, and to use the last
temporal state only or to adopt attention mechanisms.
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4 CONCLUSION

In summary, ESNs are a powerful tool for processing temporal data,
since they contain internal memory and time-scales that can be
adjusted via network hyper-parameters. Here we have highlighted
that multiple internal time-scales can be accessed by adopting a split
network architecture with differing hyper-parameters. We have
explored the performance of this architecture on three different
tasks: NARMA10, a benchmark composed by a fast-slow telegraph
process and PSMNIST. In each task, since multiple timescales

are present the hierarchical ESN performs better than a single
ESN when the two reservoirs have separate slow and fast timescales.
We have demonstrated how choosing the optimal leakage terms of a
reservoir can be aided by the theoretical analysis in the linear regime
of the network, and by studying the auto-correlation structure of the
input and/or desired output and the memory required to solve the
task. The theoretical analysis developed needs to be considered as a
guide for the tuning of the reservoir hyper-parameters, and in some
specific applications it could be insufficient because of the lack of
information about the nature of the task. In this regard, we showed
how to apply a data-driven online learning method to optimise the

timescales of reservoirs with different structures, demonstrating its
ability to find the operating regimes of the network that correspond
to high performance and to the best, task-dependent, choice of
timescales. The necessity of adopting different leakage factors is
emphasised in the case of interactive reservoirs, whose
additional complexity leads to better performance in all cases
analyzed. Indeed, the second reservoir, which acts as an
additional non linear filter with respect to the input, is the
perfect candidate to discover higher temporal features of the
signal, and it consequently prefers to adopt longer timescales in
comparison to the first reservoir, which has instead the role of

efficiently representing the input. We believe such hierarchical
architectures will be useful for addressing complex temporal
problems and there is also potential to further optimise the
connectivity between the component reservoirs by appropriate
adaptation of the online learning framework presented here.
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