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Abstract. In the current paper, an application of the neuroevolution of augmenting topologies

(NEAT) algorithm is considered in a structural health monitoring (SHM) application. The al-

gorithm is a variation of genetic algorithms, applied in neural networks, and has the goal of

optimising both the topology and the weights and biases of a neural network model. The algo-

rithm is applied here to an SHM problem instead of using feedforward neural networks. The

algorithm is called to search for the best-fitting topology in the task, which would otherwise

be sought through experimenting with the size and number of the layers of the neural network.

Having used the algorithm, the accuracy is found to be close to the one achieved using clas-

sically trained neural networks. Another aspect of the application is that subnetworks were

defined for every damage case of the problem, whose topologies are much simpler than a fully-

connected feedforward neural network. These subnetworks define classification submodels that

may be used in different combinations, building models for a subset of damage cases and input

features.
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1 Introduction

Structures are essential elements of human everyday life. From living in houses to moving

from one place to another, structures play a key role in activities that are vital for everyone and

monitoring them is required in order to make sure that they operate in the way in which they

were designed. A malfunctioning structure could cause various problems. A building that has

been damaged endangers the lives of those that live within it. Malfunctioning wind turbines

may produce reduced electrical energy or even collapse, having as a result huge economic costs.

A damaged bridge that requires stopping traffic on it, results in huge delays and even bigger

financial damage to people who need to cross the bridge as part of their business. Taking into

account the potential consequences of failure of structures, the need to monitor them emerges.

The discipline of acquiring data from structures through sensors, processing them and inferring

results about the health state of the structure is called structural health monitoring (SHM).

There are several approaches to monitoring structures but the most dominant use data-driven or

machine learning (ML) methods [1], in order to infer results about the data. The models created

are, in general, black-box models that rely on existing data acquired from a structure. There are

several tasks that such a model may be called on to perform; a hierarchical way of classifying

these tasks is given by Rytter in [2]:

1. Is there damage (existence)?

2. Where is the damage in the system (location)?

3. What kind of damage is present (type/classification)?

4. How severe is the damage (extent/severity)?

5. How much useful (safe) life remains (prognosis)?

The first two tasks are the most simple ones and in the context of machine learning, they have

been dealt with using quite simple approaches. In [3], Mahalanobis distances were calculated

between the baseline condition of a structure and the condition that is tested for the existence of

damage. More complicated and more robust approaches for detecting the existence of damage

are given in [4]. Another novelty measure that indicates existence of damage is given in [5]; it is

defined using autoencoders in order to describe the manifold to which the data of the normal

condition of the structure belong. If some testing data belong to the same manifold, the samples

are considered as healthy; otherwise, it is considered that damage exists in the structure and it

should be examined. Regarding the second level of Rytter’s hierarchy; in [6], neural networks

have been used to localise damage in an aircraft wing. The neural network was trained to

classify damage into nine location different classes, according to features that were extracted

from sensors placed on the wing.

Neural networks are machine learning algorithms that can approximate any arbitrary function [7],

that explains the relationship between some input and some output values. For this reason, they

have been widely used in the context of SHM and in many other disciplines including natural

language processing, computer vision, etc. A major drawback of neural networks is that they

require large training datasets in order to generalise well on unseen data. Moreover, selecting

their architecture involves hyperparameters that have to be tuned by the user with a view to

creating a model that fits the training data and generalises well on testing data.

In the current work, an approach to avoid selecting the exact architecture of a neural network for
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an SHM problem is studied. This approach is called neuroevolution of augmenting topologies

(NEAT) [8]. According to this approach, a genetic algorithm scheme is followed to train the

neural network weights and at the same time create its topology from scratch [9]. The mainstream

approach of training a feed-forward neural network requires trying different numbers and sizes

for the hidden layers. In the end, the neural network that performs best on the task that they

were trained for is used. This may be considered a brute force search for the best architecture

and sometimes may take a lot of time. In addition, the architectures that are tested through this

approach follow a specific pattern and more complicated approaches are not considered. The

algorithm is tested here on experimental data with the task of localising/classifying damage on a

structure.

2 Training neural networks using genetic algorithms

2.1 Genetic algorithms

Genetic algorithms are widely used in many scientific disciplines; they are a means of optimi-

sation of given objective functions, as explained in [10]. In engineering, such algorithms have

been used in order to optimise the design of whole structures [11], according to a quantity of

interest, or even to select the model that best describes some acquired data [12].

Genetic algorithms draw inspiration from the natural selection scheme that exists in nature;

individuals - structures, models or whichever entity is set to be optimised - are initially born with

random characteristics. Afterwards, their strength is calculated through a fitness function that

reflects the quantity whose optimisation is sought. In every generation, individuals that do better

according to the fitness function, survive, while the rest die. One of the most important aspects of

a genetic algorithm is the creation of offspring. Couples of individuals that have survived, create

offspring that inherit characteristics from both their parents and have a probability of a mutation

in their characteristics. Following this framework, the population moves towards the areas in the

parameter space that generate more appropriate values regarding the fitness function and through

creation of offspring through mutation, the space is further explored. The individuals may be

points in an n-dimensional space representing parameters of a model, or even whole structures.

There are many variations on the described genetic algorithm but they all, more or less, follow

this scheme.

One of the main reasons that genetic algorithms are chosen as an optimisation tool is that the

quantities that are being optimised or minimised may be a function without a specific formula.

A quite common way of optimising function parameter values is using gradient descent [13], a

requirement of which is having a formula that needs to be minimised or maximised and also, the

formula should be differentiable. Quite often, the quantity that needs to be optimised may be a

discrete one, such as the accuracy of a model in terms of number of correct decisions.

Another aspect that makes genetic algorithms powerful, is that they are thought to be exploring

the parameter space to a greater extent than other methods, including gradient descent. An ideal

solution to the problem of finding the optimal value for some quantities of interest, would be

an exhaustive search in the whole parameter space. Through this kind of search, finding the

optimal solution/global minimum or maximum is ensured, but in most cases it is computationally

intractable. In contrast, a gradient-descent search, will follow a single path in the parameter

space that depends on the initial value of the parameters and on the gradient of the objective

function on each point during search and may hit a local minimum. Using a genetic algorithm,

discrete points in the parameter space are chosen and the ones that do better in optimising the
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objective function survive. The population slowly moves towards the areas in space that optimise

the objective function, but at the same time explores a bigger part of the space than the gradient

descent, since mutations create many different points in space rather than following a single

path. This property is also the reason that a genetic algorithm is less likely to get stuck in local

minima/maxima.

In the context of neural networks, where gradient descent through backpropagation is the most

common way of training, tuning the trainable parameters may be alternatively performed using

a genetic algorithm [14]. Using this approach, local minima may be avoided and also the loss

function does not need to be differentiable. According to this framework of training, the neural

network still has a fixed architecture. This idea may not allow finding the optimal solution, since

the optimal network architectures vary according to the task for which they are used. Since

the topology/architecture of the network also affects its functionality, exploring the space of

topologies along with the space of parameters would be convenient and so a different scheme is

proposed in [8] -the neuroevolution of augmenting topologies.

2.2 Neuroevolution of augmenting topologies (NEAT)

Following the aforementioned approach, the architecture of the network is not predefined. To

avoid a predefined topology and force the algorithm to search for the one that performs best in

some task, an augmenting topology scheme is followed. Again, the general genetic algorithm

is used, as random individual neural networks are generated. The initial state of networks is

considered to be a totally unconnected network with some input and output nodes. The first

population is formed by creating random connections between these nodes. A fitness function is

defined and performance of each network is evaluated in every generation. Consequently, the

procedures of genetic encoding, mutation and crossover between networks have to be defined.

2.2.1 Genetic encoding

In order to perform the operations needed for the evolution of the population, an encoding of each

individual neural network is needed. This encoding is referred to as the genome or genotype, and

the network it corresponds to is the phenotype, in parallel with human DNA being an encoding

and the phenotype being the way this encoding is translated into human characteristics. For the

purposes of the algorithm, the genome will be a list with the connections, called genes, that

have been defined in the network with a chronological order. The list will increase in length as

generations pass, since new connections will be defined due to mutations or crossover.

By defining a chronological order or historical marking as mentioned in [8], a global naming

for every mutation that has happened is achieved. Since mutations will be happening at random

within the population, it is plausible that the same mutation may occur more than once. In such a

case, the genes that correspond to the same connection in the networks, should be identified as

so. During crossover, if a historical marking exists in both parents, it should be inherited to the

offspring. An example of a genome and its phenotype is shown in Figure 1, where the encoding

of a network is shown. Using the historical markings, encoding of the same connection in many

different genes, is avoided.
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In: 1
Out: 5

Weight: 0.7

Bias: 0.3
Enabled

Hist. marking: 1

In: 2
Out: 5

Weight: -0.5

Bias: 0.12
Enabled

Hist. marking: 3

In: 3
Out: 4

Weight: -0.17

Bias: 0.92
Enabled

Hist. marking: 5

In: 5
Out: 4

Weight: 1.22

Bias: 0.83
Enabled

Hist. marking: 6

1 2

5

4

3

Figure 1: Example of a genome and the corresponding phenotype [8].

2.2.2 Mutation

One of the basic operations of a genetic algorithm is the mutation of individuals; this allows

further exploration of the parameter space. In the case of NEAT, mutations should be able to

explore both the network topology space and the parameter space of the networks. In order to

explore the parameter space of the networks, mutations are allowed in the weights and biases of

the connections and the activation and aggregative functions of nodes.

Mutations of the weights and biases are quite trivial. At the end of every generation, offspring

have a probability of mutating a weight or a bias term from their connections. The mutations

are simply changes in the values of the variables. The most common way of defining the new

value is through sampling from a normal distribution with mean value µ equal to the current

value of the parameter and a variance σ2 that is defined by the user. This scheme introduces

four hyper-parameters in the algorithm that the user has to define; the probabilities of a weight

(pw) or a bias mutation (pb) and the power of the mutations or the variances (σ2

w and σ2

b ) of the

distributions used to define the mutated value. Small values assigned to these hyper-parameters

will result in a more thorough search in the parameter space, but also probably in a slower

convergence of the algorithm.

The first mutation that applies to the topology of the networks is the add connection mutation; a

connection is added between two nodes that so far have not been connected. Nodes and their

IDs are shared amongst every individual in the population. Every network though has different

connections defined in between the nodes and through this mutation type, new connections are

defined within the mutated individual. The weight of the new connection is sampled from a

random distribution and a historical marking is assigned to it. The opposite mutation should

also be considered, the disable connection. This type of mutation, straightforwardly disables an

existing connection in an individual. An example of how an add connection mutation is encoded
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1 2

5

4

3 1 2

5

4

3

Mutate add
connection

1
1 → 5

2
2 → 5

4
3 → 4

DIS

5
5 → 4

1
1 → 5

2
2 → 5

4
3 → 4

DIS

5
5 → 4

6
3 → 5

Figure 2: Example of an add connection mutation and the corresponding genome change [8].

is shown in Figure 2, where also a disabled connection is shown.

The second mutation regarding the topology is the add node, where a new node that did not exist

so far is introduced. The way that such a node is added is by splitting an existing connection into

two and placing a node between the two new ones. The old connection is disabled and the two

new ones are added to the genome of the individual. The connection leading to the new node has

a weight of 1 and the second one has weight equal to the weight of the old connection. The new

node has a new ID and it is available in every individual to be connected through add connection

mutations with other nodes. An example of the add node mutation is shown in Figure 3.

2.2.3 Crossover

Finally, the crossover operation is needed to completely define the genetic algorithm procedure.

The crossover is performed using the genetic encoding of the networks. The genomes of the

parents are placed in parallel according to the historical marking of each gene in the genomes.

If a gene with a specific historical marking exists only within the genome of one parent, it is

directly inherited to the offspring. If a gene with the same historical marking exists in both

parents, it is inherited to the child by the most fit parent. An example is shown in Figure 4.

3 Application on experimental data

3.1 Experiment description

In order to test the algorithm, an experimental setup is considered [6]. The experiment is that of

simulating damage on an aircraft wing. The wing was set in the laboratory and was excited with

white noise using a shaker attached to its bottom surface. Sensors were placed on it as shown

in Figure 5. The experiments were performed using the wing in both damaged and undamaged

states. The damaged states were simulated by removal of one out of nine different wing panels.

The panels that correspond to a different damage case are each shown in Figure 6.

The quantities that were recorded during the experiments with the damaged wing, were the
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1
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1 → 5

2
2 → 5

4
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5
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Figure 3: Example of an add node mutation and the corresponding genome change [8].
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4
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1
1 → 4

2
2 → 4

4
2 → 5

DIS

5
3 → 5

6
4 → 5

1
1 → 4

DIS

2
2 → 4

3
3 → 4

4
2 → 5

DIS

6
4 → 5

7
1 → 6

8
6 → 4

Parent 1 Parent 2

1
1 → 4

2
2 → 4

4
2 → 5

DIS

5
3 → 5

6
4 → 5

1
1 → 4

DIS

2
2 → 4

3
3 → 4

4
2 → 5

DIS

6
4 → 5

7
1 → 6

8
6 → 4

1
1 → 4

DIS

2
2 → 4

3
3 → 4

4
2 → 5

DIS

5
3 → 5

6
4 → 5

7
1 → 6

8
6 → 4

1 2

4

5

3

6

Figure 4: Crossover process given two parents and their genomes [8].
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Figure 5: Configuration of sensors placed on the GNAT wing [6].

transmissibilities between two sensors. Transmissibilities are a quite useful feature, since

knowledge about the excitation force is not required, in contrast to the case of a frequency

response function (FRF). The transmissibilities were recorded between sensors AR and A1, A2

and A3 and similarly between the rest of the sets shown in Figure 5. This procedure resulted in

nine different transmissibilities that were available for both the undamaged and the damaged

states. Subsequently, intervals within the transmissibilities that were more sensitive to damage

were identified “by eye”; this resulted in 72 different intervals and for each one of them, novelty

indices were calculated between the normal condition transmissibilities and the testing cases.

The novelty indices were calculated using the Mahalanobis distance,

D2

ζ = (x
ı
− x)TS−1(x

ı
− x) (1)

where x
ı

is the sample whose Mahalanobis distance is calculated, x is the mean vector of the

observations and S−1 is the covariance matrix of the observations.

The type of model that was selected to classify the data was a neural network taking as inputs

the values of the novelty indices and as output one out of nine classes of damage. In order

to further reduce the feature space, a genetic algorithm was used to select the best subset of

features out of the 72 novelty indices [15]; this resulted in nine novelty indices. The neural

network was selected to be a feedforward neural network with one input layer, a hidden layer

and a decision/output layer. The best size for the hidden layer was selected according to the

performance of the networks in the validation set after having tried different sizes. The optimal

network had nine nodes in the hidden layer and the its accuracy is shown in the confusion matrix

in Table 1. The total accuracy was 98.14% on the testing set.
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Figure 6: Schematic drawing of wing panels removed to simulate the nine damage cases [6].

Predicted panel 1 2 3 4 5 6 7 8 9

Missing panel 1 65 0 0 0 0 0 0 0 1

Missing panel 2 0 65 0 1 0 0 0 0 0

Missing panel 3 1 0 62 0 0 1 0 1 1

Missing panel 4 0 0 0 66 0 0 0 0 0

Missing panel 5 0 0 0 0 66 0 0 0 0

Missing panel 6 0 3 0 0 0 62 0 1 0

Missing panel 7 0 0 0 0 0 0 66 0 0

Missing panel 8 1 0 0 0 0 0 0 65 0

Missing panel 9 0 0 0 0 0 0 0 0 66

Table 1: Confusion Matrix of neural network classifier, test set, total accuracy: 98.14% [15].
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Predicted panel 1 2 3 4 5 6 7 8 9

Missing panel 1 63 1 0 0 0 0 0 0 2

Missing panel 2 0 62 0 1 0 0 0 0 3

Missing panel 3 0 1 61 2 0 0 0 0 2

Missing panel 4 1 0 0 65 0 0 0 0 0

Missing panel 5 0 0 0 0 66 0 0 0 0

Missing panel 6 1 1 1 0 1 61 0 0 1

Missing panel 7 0 0 0 0 0 2 63 0 1

Missing panel 8 1 0 0 0 0 0 0 65 0

Missing panel 9 1 0 0 0 0 2 0 0 63

Table 2: Confusion Matrix of fittest NEAT individual, test set, total accuracy: 95.79%.

3.2 NEAT training

Taking into account the time needed to select the optimal size for the hidden layer, as well as the

fact that the neural network selected had a restricted architecture since it was a feedforward one,

application of NEAT was attempted on the same problem. By applying NEAT in this problem, a

different topology for the network is expected and maybe a more interpretable model. The exact

datasets were used in order to facilitate comparison between the two algorithms.

The population for NEAT was chosen to be a 500-neural network population with a rectifier or

relu activation function on their nodes. The probabilities of mutating a weight or a bias term

were both 0.7 and the mutate power was 0.1 in both cases. Moreover, the probabilities of adding

a new connection or a new node were both 0.5 and the probability of deleting a connection was

0.05. The fitness function was set to be the accuracy of predictions given by a softmax function

σ,

σ(x)i =
exp(xi)∑
j exp(xj)

(2)

applied on the values of the output nodes of each network, using this function on the output of

the networks, the algorithm allows their interpretation as probabilities.

3.3 Results and splitting into subnetworks

Having trained the population, after 3216 generations and about a day of training, the fitness

of the “strongest” individual had been stable for many generations and so it was considered to

have converged. The confusion matrix for the fittest individual on the testing set is shown in

Table 2. The accuracy is slightly lower than the accuracy of the original work where feedforward

networks were used.

It is worth isolating the sub-networks that describe how each output node is activated. This is

done by looking for paths from every input node to each output node separately. Doing so, the

subnetworks that are found for every damage class are shown in Figure 7. Connections with

green colour represent positive weights while the ones in red correspond to negative weights. It

is particularly interesting that subnetworks whose structure is quite simple have been created.

For example the subnetwork corresponding to panel 9, is affected only by input features 3, 7 and
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Predicted panel 1 2

Missing panel 1 64 2

Missing panel 2 0 66

Table 3: Confusion Matrix regarding classifying cases of missing panels 1 and 2 using the

respective subnetworks, accuracy = 98.48%.

8. This separation could result in further insight into the physics of the problem, as it is more

interpretable than a fully connected neural network.

Another aspect of this approach is that these subnetworks could be combined and used as a

modular classification model for a subset of damage cases. For example, one may be interested

in creating a classifier that would be able to distinguish between the classes of missing panel

1 or missing panel 2. The procedure to be followed is to use the subnetworks of the two cases

and assign a label to the sample according to which subnetwork generated a greater value on its

output node. By applying this algorithm for the case of damage cases 1 and 2, the confusion

matrix for the testing data is shown in Table 3. It is also worth noting that using this approach,

the values of the input features that are needed are those of features 1, 2, 3, 4, 5, 6, 8, since they

are the subset of input features that are used by the two subnetworks.

4 Conclusions

An alternative approach to training neural networks for SHM was presented, that of augmenting

topologies. The algorithm used does not have a specific topology for the neural network that is

going to be trained, but is searching for an optimal one using a genetic algorithm. Following

this approach, the size and architecture of the network to be used does not have to be predefined.

Even though selection of a topology is avoided, new training hyperparameters have to be defined,

for example the probabilities of the creation of a new node or a new connection in the population

of neural networks.

The results of the classification task in the SHM example described, reveal that the accuracy of

the fittest individual was close to the accuracy of a feedforward neural network trained using

backpropagation. The training time, taking into account recent advances in hardware used in

applying backpropagation in neural networks, is much larger for the NEAT algorithm. The

training time for NEAT could be lower if a parallelisation scheme was followed, which was not

used in the current work.

Although there are some disadvantages in applying such an algorithm, some advantages emerged;

the first is that the fitness function may be a discrete quantity that could not be used as a cost

function in a feedforward neural network. Furthermore, the isolation of subnetworks presented,

generated quite simple sub-models for each damage case, whose extraction is not applicable

in a feedforward neural network. The use of such subnetworks for classification of a subset of

damage cases was also shown to be possible. These modular models used a subset of features

which may prove useful in cases that some features may not available. In such cases, inference

may still be made for subsets of damage cases.

Finally, more simple or more complex architectures that are not achievable by using a mainstream

feedforward network are considered. The approach of augmenting topologies allows a greater

variety of networks to be tested for the task at hand. In many problems, this may result in models

that achieve greater accuracy compared to other neural networks. The algorithm has also the
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potential of allowing recurrent connections that may also fit the underlying physics of a problem

and approximate better the real relationship between inputs and outputs.
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Figure 7: Subnetworks for each damage case.
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