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 
Abstract— This research is motivated by the need of real-time 

needle tracking solutions in brachytherapy procedures for 

improving targeting accuracy. We compare two different 

modelling approaches to estimate brachytherapy 3D needle 

deflection during insertion into soft tissue from reaction forces and 

moments measured at the base of the needle: an analytical model 

based on beam deflection theory and, a data-driven model using a 

multilayer perceptron artificial neural network (ANN). 

Verification of the analytical model as well as training, validation, 

and testing of the ANN model were performed with experimental 

data obtained from over 120 insertion tests into gelatine tissue 

phantoms including a variety of needle types and tissue properties. 

The ANN model has lower prediction errors and is more robust to 

changes in testing conditions, with accurate predictions in 3 out of 

4 tested scenarios; whereas the analytical model predictions are 

not statistically comparable to ground truth values in any of the 

tested scenarios. ANN models show a big potential for online 3D 

tracking of brachytherapy needles in a clinical context in 

comparison with beam theory analytical models. A simple neural 

network trained with numerous needle insertions into 

representative biological soft tissue could estimate needle tip 

position with submillimetre accuracy. 

 
Index Terms— Brachytherapy, Imageless needle tip tracking, 

Needle deflection model, Multilayer perceptron, Artificial Neural 

Network 

I. INTRODUCTION 

Brachytherapy is a localized radiotherapy procedure to treat 

prostate cancer through targeted radiation applied to the 

affected tissue using special needles (Fig. 1). Among existing 

brachytherapy techniques, low-dose rate (LDR) brachytherapy 

consists in permanent placement of multiple radioactive seeds 

into the prostate and surrounding tissue [4]. The implantation 

locations of the seeds and their radiation dose are calculated 

through computer-assisted preoperative planning with 

multiplane clinical images of the prostate anatomical region. 

After the plan is completed, radioactive sources are loaded on 

the needles and these are inserted into the prostate gland up to 

the planned depths using a guiding external grid template. 

Needle insertion procedure is done manually using transrectal 

ultrasound (TRUS) image for guidance. This visual feedback 
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helps the surgeon to track the needle trajectory and tip location 

during the insertion, but does not provide a quantitative 

measurement of the needle tip location nor of the deviation from 

the planned trajectory.  

Targeting accuracy is a critical factor for the clinical 

effectiveness of brachytherapy procedures since a 

misplacement of the implanted radiation sources from the 

planned optimal locations would alter the radiation dose 

received by the tumour [5, 20]. Needle deflection and soft tissue 

deformation during the needle insertion process affect targeting 

accuracy producing an average deviation of the implanted seeds 

of 3-6mm from the intended target [5, 11, 15, and 21]. 

According to a recent study, positioning error thresholds to 

prevent a significant change of the radiation dose in prostate 

treatment range from 2 to 5 mm [20], confirming the 

importance of targeting accuracy.  

Real-time tracking of the needle tip trajectory during the 

insertion procedure and quantification of the deviation from the 

planned path can help to minimize seed placement errors. By 
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Fig. 1.  Brachytherapy needle insertion procedure for prostate cancer 

treatment. In LDR brachytherapy radioactive seeds are permanently implanted 

in the prostate gland using needles inserted through a guiding grid template. 

The procedure is image-guided by transrectal ultrasound (TRUS).  
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knowing the deviation from the planned path at all times, the 

surgeon would be able to apply the necessary corrections to 

reach the target position or adjust the treatment plan 

accordingly. 

For the development of real-time needle tracking solutions 

for brachytherapy procedures, two different approaches have 

been considered by the research community:  image-guided 

tracking using computer vision technology and imageless 

tracking using non-vision based sensors. Image-guided tracking 

is a complex and computationally expensive process that 

involves image acquisition in more than one plane, image 

processing and robust computer vision algorithms in order to 

identify the needle tip in the intraoperative TRUS images and 

calculate its 3D position. Real-time 3D tracking of needle 

insertion using the low resolution ultrasound (US) images is 

still a challenge, mainly due to the difficulty in the needle image 

segmentation.  Continuous visualization of the needle tip on 

different US image planes during the whole insertion procedure 

is another technical challenge for the design of these image-

guided systems.  

On the other hand, imageless tracking technologies are seen 

as an alternative solution to computer vision systems for real-

time needle tracking due to their lower computational demands 

and their capability for high frequency sensor data acquisition. 

Among imageless technologies, needle tip location could be 

directly measured using electromagnetic sensor coils placed 

inside the needle [1, 23]. These sensors allow real-time 3D 

tracking; however, their measurement accuracy can be 

significantly affected by their limited sensing field, with 

accuracy dropping over a certain distance to the magnetic field 

generator, as well as their sensitivity to the presence of metals, 

which can produce significant distortion and drift in the signal. 

Moreover, the use of sensors inserted within the needle could 

alter the deflection behaviour of the needle, introducing a new 

source of error to the needle trajectory. An alternative, less 

invasive, approach is to indirectly measure needle deflection 

using predictive needle-tissue interaction models with real-time 

input data obtained through force sensors placed at the base of 

the needle. This last approach is the one selected in the present 

study; an indirect measurement of needle tip deflection by using 

real-time force data measured by a load cell during needle 

insertion combined with a predictive model that calculates 

needle deflection using force data as inputs.   

Most published needle-tissue interaction models are 

analytical and calculate needle deflection using different 

mechanical principles: Webster et al. [25] proposed a 

nonholonomic kinematic model where needle motion is 

compared to that of a bicycle with a fixed curved trajectory. The 

application of this type of model requires a previous 

experimental characterization of each needle and tissue 

combination in order to fit the model parameters.  A different 

approach was proposed by Glozman et al. [8], who modelled 

the needle as a series of linear beam elements supported by 

virtual linear springs simulating needle-tissue interaction 

forces. The stiffness coefficients of the springs are obtained 

experimentally through image processing of the needle shape 

and calculation of the displacement of the virtual spring points 

from the reference straight line. This method is suitable for 

highly flexible needles which can change shape along the path. 

It requires clinical images to adjust the model parameters from 

the needle shape, adding more complexity to the estimation of 

needle deflection. Goksel et al. [9] developed an ‘angular 

springs’ model where the needle is split into small rigid rods 

connected by spring-loaded joints. Consecutive needle 

segments bend and twist relative to each other when exposed to 

external loads. Two rotational springs at each joint simulate the 

internal reaction torques or resistance of the needle shaft to bend 

or twist. The model spring constants are obtained by fitting of 

experimental data. Energy-based formulations have also been 

used to model needle deflection behaviour: Misra et al. [18] 

created a 2D model of flexible bevel tip needles where the total 

energy of the system is expressed in terms of the transverse and 

axial deflections of the needle. Inputs to the model are the 

material and geometric properties of both the needle and the 

tissue, therefore a previous characterization of the tissue 

properties is required.   

The above analytical models were mainly defined for highly 

flexible needles which experience significant deflection and 

curvature. However, brachytherapy needles are only 

moderately flexible, experiencing small deflections in respect 

to their length. This is why mechanical models based on Euler-

Bernoulli beam theory have shown a reasonably good 

performance for estimating deflection of brachytherapy needles 

[1, 12-15]. Beam-theory models establish an equivalence 

between the needle and a cantilever beam and define needle 

deflection as a function of the loads acting on the needle during 

insertion into soft tissue. A key assumption for the applicability 

of beam-theory equations is that beam deflections must be 

significantly low with regard to the total beam length. Needles 

used for brachytherapy procedures are rigid enough and 

experience sufficiently small deflections to meet beam-theory 

requirements. In fact, beam-theory models have shown 

deflection estimation errors below 1mm when applied to in-

vitro needle insertion experiments, using both phantoms and 

biological tissue [1, 13]. A practical advantage of beam-theory 

models against the analytical models cited above is that they do 

not require previous experimental characterization of tissue 

mechanical properties, thus allowing a more straightforward 

application. Needle deflection is calculated by applying Euler-

 
 

 

Fig. 2.  Graphical representation of needle deflection. Total needle deflection 
in our study δr is defined as the Euclidean distance of the needle tip from the 

needle insertion axis; it is the resultant of perpendicular deflections δx 
(vertical) and δy (horizontal). 
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Bernoulli equations to the proposed needle-tissue interaction 

model with the only input variables being the reaction forces 

and moments at the base of the needle and the insertion depth. 

Reaction loads can be measured in real time during needle 

insertion using a load cell attached to the needle base support. 

Nevertheless, despite the reasonable performance shown by 

analytical models in some studies, the heterogeneous and 

multilayer nature of biological tissue limits the accuracy and 

clinical applicability of this type of models which are built on 

assumptions that simplify the behaviour of the needle and 

surrounding tissue. Data-driven models represent an alternative 

approach to estimate needle deflection under highly nonlinear 

conditions typical for heterogeneous physiological tissues [22]. 

However, the accuracy of these models depends on the size and 

variety of the available database of observations. In this paper, 

we compare the performance of two modelling approaches for 

estimating brachytherapy needle deflection during insertion 

into soft tissue phantoms without using image guidance: an 

analytical model based on beam deflection theory and a data-

driven model using a multilayer perceptron artificial neural 

network. In both cases, input parameters are the reaction forces 

and moments measured at the base of the needle, the insertion 

depth, and needle structural properties. Outputs from both 

models are needle tip deflections in two orthogonal axes (Fig. 

2), allowing for 3D tracking of the tip position during insertion. 

Accuracy of both models was assessed using ground truth 

measurements of needle tip deflections obtained from 

continuous optical tracking of the needle insertion in two 

perpendicular planes.  

II. METHODOLOGY 

A. Beam-Theory model 

The model estimates needle tip deflection in two orthogonal 

axes by applying static beam deflection equations to two 

perpendicular bending planes (vertical or XZ and, horizontal or 

YZ). Total needle tip deflection δr has been defined as the 

Euclidean distance of the needle tip from the needle insertion 

axis in the perpendicular plane to the insertion axis. Total 

deflection δr can be split into perpendicular components δx and 

δy, which quantify needle tip deflections along vertical (x) and 

horizontal (y) axes, respectively (Fig. 2). 

Fig. 3 shows a graphical representation of the model in both 

deflection planes considered for analysis. L represents the total 

length of the needle, d is the inserted length and a is the length 

outside the tissue (L-d). Reaction loads at the needle’s base are 

force Frx and torque Try in the vertical plane XZ and force Fry 

and torque Trx in the horizontal plane YZ (only those reaction 

loads contributing to needle bending are considered in beam-

deflection models). Needle-tissue interaction load is modelled 

with a uniform force distribution along the inserted portion of 

the needle having a force intensity per unit length of qx in plane 

XY and qy in plane YZ. Additionally, a single-point force Ftx 

acting on the tip of the needle along the vertical X axis accounts 

for the needle-tissue interaction resulting from the tissue cutting 

force. This point force was only considered in the vertical plane 

for consistency with the needle behaviour observed in our 

experimental tests, with predominantly larger vertical 

deflection than horizontal deflection. Proposed needle-tissue 

interaction load profiles are based on previously published 

beam-theory models for brachytherapy needles [1, 12-15]. In a 

previous research work [2] we compared the performance of the 

analytical model with different interaction load profiles using 

the same experimental data and the selected profiles shown in 

Fig. 3 are those producing the lowest mean absolute prediction 

error on each deflection plane. 

Model inputs are: 1) needle intrinsic parameters: Young’s 
Modulus (E), area moment of inertia (I), and total length of the 

needle (L), 2) needle insertion depth (d), and 3) reaction forces 

and torques measured at the base of the needle that contribute 

to needle deflection (Frx, Try, Fr and, Trx). Model outputs are 

the vertical, δx, and horizontal, δy, needle tip deflections. 

The basic differential equation of the deflection curve of a 

beam which relates bending moment M and deflection v(z) at a 

distance z from the base can be written as (1), where E is the 

Young’s modulus and I is the area moment of inertia of the 

beam. 𝑀 =   𝐸𝐼 𝑑2𝑣𝑑𝑧2  (1) 

For each deflection plane, needle tip deflection formula is 

obtained from double integration of the bending moment’s 
equation; using the superposition principle when more than one 

type of load is acting on the needle [7].  

For a cantilever beam subject to a uniform load distribution 

of intensity q along a distal portion d of the total length L, the 

formula for the tip deflection in a generic bending plane is: 𝑣𝑞(𝑧 = 𝐿) =  𝛿𝑞 =  𝑞24𝐸𝐼 (3𝐿4 − 4𝑎3𝐿 + 𝑎4)  (2) 

 

 

Fig. 3.  Load profiles characterising the proposed beam-theory model. 

Top: Forces acting on the vertical plane (XZ); Bottom: Forces acting on the 

horizontal plane (YZ). 
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Likewise, the formula for tip deflection for a cantilever beam 

under a point force Ft at the tip is: 𝑣𝐹𝑡(𝑧 = 𝐿) =  𝛿𝐹𝑡 =  𝐹𝑡𝐿33𝐸𝐼    (3) 

Needle tip deflection δx in the vertical plane can be obtained 

by applying the superposition method. Total vertical deflection 

is calculated with equation (4) as the sum of the vertical 

deflections due to the uniform load distribution qx (2) and the 

point force Ftx (3). The force intensity value qx and point load 

at the tip Ftx are previously obtained from the force and 

moment equilibrium equations at the needle, where the rest of 

parameters are known (reaction loads at the base of the needle 

are given measurements).   𝛿𝑥 =  𝛿𝑞𝑥 +  𝛿𝐹𝑡𝑥 =  𝑞𝑥24𝐸𝐼 (3𝐿4 − 4𝑎3𝐿 + 𝑎4) + 𝐹𝑡𝑥𝐿33𝐸𝐼      (4) 

Needle tip deflection δy in the horizontal plane can be 

calculated with equation (5), where the force intensity value qy 

is first obtained from the force and moment equilibrium 

equations at the needle. 𝛿𝑦 =  𝑞𝑦24𝐸𝐼 (3𝐿4 − 4𝑎3𝐿 + 𝑎4)    (5) 

 

B. Neural-Network model 

Multilayer perceptron (MLP) artificial neural networks are 

known as powerful function approximators, able to fit any 

input-output mapping problem. A MLP network with one 

hidden layer of neurons using continuous nonlinear sigmoid 

activation functions and one output layer with linear activation 

function neurons can approximate any continuous function to 

arbitrary precision, provided the network has a sufficiently 

large number of hidden neurons [3]. Another advantage of MLP 

networks is that they are good at generalization even for small 

datasets providing reasonably accurate predictions for datasets 

independent of those used for training and validation. For these 

reasons, a multilayer perceptron feed-forward artificial neural 

network (ANN) was selected as a suitable data learning 

approach to estimate needle deflection from a set of known 

parameters characterizing needle insertion behaviour.  

The proposed ANN has 9 inputs, 2 outputs and one hidden 

layer with 5 neurons. Neurons in the hidden layer use 

hyperbolic tangent sigmoid activation functions while those in 

the output layer use linear activation functions (Fig. 4). Inputs 

are: needle Young’s Modulus (E), area moment of inertia (I), 

total length of the needle (L), needle insertion depth (d), 

reaction forces measured at the base of the needle (Frx, Fry, 

Frz), and reaction torques contributing to needle deflection 

(Trx, Try). Outputs are the vertical, δx, and horizontal, δy, 

needle tip deflections. The network was trained with data 

obtained from multiple needle insertion tests into soft tissue 

phantoms. Training was performed using the ‘Levenberg-

Marquardt’ backpropagation algorithm. A ten-fold cross-

validation was applied to the training process which consists of 

randomly splitting the database into 10 data subsets of equal 

size and train the network 10 times using a different subset as 

the validation data for each training run. From the 10 generated 

network models, the one with the best validation performance 

was selected for further evaluation with test data. Network 

training and validation performances were quantified by the 

mean squared error between the network outputs and the target 

values which are the ground truth deflections. Matlab Neural 

Network Toolbox [10] was used to generate and train the 

ANNs. 

 
TABLE I 

DATA DISTRIBUTION FOR THE 4 ANN MODEL VARIANTS GENERATED IN THE 

STUDY (CHARACTERISTICS AND SAMPLE SIZE OF EACH DATA SUBSET)  

ANN 

Model 

Training Data Validation Data Test Data 

Description 
Data 

points 
Description 

Data 

points 
Description 

Data 

points 

Trial 1 

10% and 

20% Tissue 

Density 

369 

10% and 

20% Tissue 

Density 

41 
5% Tissue 

Density 
80 

Trial 2 

5% and 

10% Tissue 

Density + 

20% 

Density 

with no 

skin 

369 

5% and 

10% Tissue 

Density + 

20% 

Density 

with no 

skin 

41 

20% Tissue 

Density + 

Skin 

80 

Trial 3 

Insertion 

depths ≤ 
75mm 

324 

Insertion 

depths ≤ 
75mm 

36 

Insertion 

depths = 

97mm 

123 

Trial 4 Random 394 Random 49 Random 49 

 

A database of 492 points was created from 123 needle 

insertion tests performed under a variety of conditions 

(described in section II.C). In order to evaluate the 

generalization capability of the proposed ANN, four different 

ANN model variants were obtained by changing the 

distribution of training, validation and test data subsets from the 

original database (Table I). For the first model, selected test data 

were all points from the lowest tissue hardness (density 5%) 

while training and validation data were points obtained from 

harder tissue samples (densities 10% and 20%). For the second 

model trial, selected test data were all points from tissue 

samples with density 20% and additional skin layer, while 

training and validation data were those generated from the rest 

of tested tissue properties. These two first scenarios would 

allow assessing the ANN’s performance for different tissue 

 
 

Fig. 4.  Architecture of the proposed multilayer perceptron feed-forward 
artificial neural network for the data-driven model. The network has one 

hidden layer with 5 neurons using sigmoid functions and one output layer 

with 2 linear neurons. 
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properties to those used for training the network. In the third 

model version, test data were all points for the maximum 

insertion depth from each insertion test whereas training and 

validation data belonged to shorter insertion depths. This would 

allow investigating the applicability of the ANN to insertion 

depths longer than the ones used for training. In the fourth trial, 

test data were 10% of randomly selected points from the 

database. For each tested ANN variant, the test data subset was 

first removed from the original dataset and a ten-fold cross-

validation training was applied to the remaining database. 

Performance of the resultant ANN models was assessed on the 

corresponding test data subsets. Performance of both analytical 

and ANN modelling approaches was compared through two-

sample t-tests between ground truth deflection and each model 

predicted deflections as well as through comparison of their 

respective mean absolute prediction errors (MAE) for the four 

different test data subsets. 
   

C. Data acquisition needle insertion experiments 

A total of 123 needle insertion tests into soft tissue phantoms 

were carried out with the aim to gather data for training the 

ANN as well as for evaluation of the performance of both, the 

analytical and the ANN models.  

A custom mechatronic system was built to perform needle 

insertion and retraction using a linear actuator with a maximum 

stroke of 98 mm (Firgelli L16-100-63-12P). Displacement of 

the needle is controlled by an Arduino Uno Rev.3 board 

combined with an Arduino Motor Shield to control speed and 

direction of the linear actuator. Insertion depth is continuously 

monitored through the linear actuator built-in potentiometer 

while insertion speed can be modified using PWM. A carriage-

rail system allows the displacement of the needle ensuring a 

precise alignment to the insertion axis (Fig. 5). 

A 6-axis load cell (Interface 6A27) is attached to the base of 

the needle holder and used for real-time measurement of 

reaction forces during the insertion tests. It has a load capacity 

of 200N for traction and compression forces, 50N for shear 

forces, and 1Nm for all torques. It is connected to a dedicated 

data acquisition device including signal conditioning and 

amplifier, with synchronized sampling at 24 bit resolution 

(Interface BX8-HD44 BlueDAQ series). The BlueDAQ data 

logging software reads and saves the load cell data referenced 

to the base of the needle, as well as the position of the linear 

actuator through a shared connection with the Arduino Uno 

board. This way, a synchronised reading between reaction loads 

at the base of the needle and the insertion depth is obtained. 

Data acquisition frequency was set to 100 Hz for the 

experiments in this study, which is considered enough for 

continuous tracking of the needle at the tested insertion speeds. 

Ground truth needle deflections along insertion tests were 

measured using optical tracking with video cameras. This 

method has been previously used in research studies to measure 

needle deflection when tissue samples are transparent [14-15, 

24-25]. The choice of optical tracking combined with 

transparent tissue phantoms is motivated by the simplicity of 

the experimental setup and the straightforward identification of 

the needle profile and tip on the standard images compared to 

US images. Some researchers have alternatively used 

electromagnetic sensors placed inside the needle [1, 23] but as 

mentioned in the paper introduction, the accuracy of this type 

of sensors can be affected by their limited sensing field and 

electromagnetic interferences in the surrounding environment. 

Needle insertion was optically tracked with two video 

cameras (PointGrey –Grasshopper3 GS3-U3-41CEC) fixed to 

a frame structure and with their axes perpendicular to the 

vertical (XZ) and horizontal (YZ) needle insertion planes 

respectively (Fig. 6). This allows measuring needle deflection 

in two orthogonal planes which are also coincident with the 

load-cell coordinate system XZ and YZ planes, enabling direct 

comparison between ground truth measurements and model 

estimations. Position of the cameras relative to the needle 

insertion mechatronic device was fixed, therefore the distance 

between each camera and the associated needle insertion plane 

was kept constant in all experiments. To perform different 

insertions within the same tissue sample we moved the tissue 

phantom up/down or left/right with regard to the needle 

insertion device, resulting in a variable tissue thickness between 

the cameras and the needle insertion plane. Video acquisition 

of both cameras was synchronised at 20 frames per second with 

an image resolution of 1024x1024 pixels using the Matlab 

 

 

Fig 5. Experimental set-up for needle insertion tests. Top image: Mechatronic 

device for needle insertion and retraction using a linear actuator attached to a 

carriage holding the needle. Bottom image: Detail of the needle mounted on the 

insertion device and tissue phantom container. A load-cell is fixed to the base of 

the needle holder and measures reaction forces and torques at the base of the 

needle.  
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Image Acquisition Toolbox [16]. In order to maximize the 

image resolution, each camera field of view was adjusted to the 

region of interest, covering the needle length before insertion 

plus the insertion depth. Before deflection measurements, 

image calibration was performed for each camera to find the 

ratio between the number of pixels and distance in mm 

corresponding to the corresponding needle insertion plane. For 

each deflection plane, an image calibration was performed by 

placing a ruler coincident with the needle plane along the needle 

axis. We recorded an image with the camera using the same 

setting parameters as for the insertion tests. Finally, the ratio 

mm/pixel was obtained by measuring the equivalent distance in 

pixels between 2 points in the ruler at a known distance in mm. 

This image calibration was done using Matlab image 

processing tools and resulted in an average ground truth 

measuring resolution of 0.33mm/pixel for XZ plane (vertical 

deflection δx) and 0.40mm/pixel for YZ plane (horizontal 

deflection δy).  Repeatability of the ground truth method was 

assessed by repeating needle deflection measurements in 20 

tests. Average absolute differences between repeated 

measurements were 0.21 mm for images of plane XZ and 

0.25mm for images of plane YZ, both lower than the 

established resolution of each camera.  

Video recording was not synchronized with load-cell and 

insertion depth data but they were paired later by using 

timestamps on the video files and data files and identifying the 

start of the insertion test with an LED flash captured by both 

cameras.  

Ground truth needle tip deflection was measured at four 

specific insertion depths for each experiment: 25mm, 50mm, 

75mm and 97mm. For each insertion depth, the corresponding 

frames of each deflection plane were extracted from the 

recorded video-files and processed by a Matlab script to 

measure vertical (δx) and horizontal (δy) deflection values. The 

script uses image processing tools [17] to measure needle 

deflection from two input points on each image: the base of the 

needle and the needle tip. These two points need to be manually 

marked on an image display window and the program calculates 

the deflection value as the perpendicular distance between the 

needle tip and needle insertion axis (Fig. 6). Ground truth 

deflection values for each insertion depth are measured as net 

deflections, relative to the initial position of the needle tip 

before the start of insertion.  

 
TABLE II 

SUMMARY OF NEEDLE INSERTION TESTS PERFORMED IN THE STUDY 

GROUPED PER COMBINATIONS OF NEEDLE TYPE, TISSUE DENSITY AND USE OF 

ADDITIONAL SKIN TISSUE LAYER. FOR EACH GROUP, TESTS WERE EQUALLY 

SPLIT INTO TWO AVERAGE INSERTION SPEEDS OF 10MM/S AND 15MM/S 
Needle  

Type 

Tissue 

Density 

Skin 

Layer 

Number of 

Tests 

Plastic 

5% No 10 

10% 
No 9 

Yes 18 

20% 
No 10 

Yes 10 

Titanium 

5% No 10 

10% 
No 20 

Yes 16 

20% 
No 10 

Yes 10 

 

In order to have a varied sample database that allows testing 

the generalization performance of both needle deflection 

models, different combinations of needle type, tissue properties 

and insertion speeds were considered in the experiments design 

(see Table II). Tissue phantoms were made of porcine gelatine 

at specific concentrations. Three different density grades were 

tested by mixing gelatine and water in concentrations of 5%, 

10% and 20% with phantom tissue hardness increasing with 

gelatine concentration. Tissue samples were built and tested 

inside a transparent plastic container and a plastic plate with an 

array of holes was placed over the insertion face, simulating a 

brachytherapy guiding grid template (see Fig. 5). This ensures 

the needle is always inserted into a different tissue region. To 

emulate the skin layer, we performed some experiments with 

an addition of a 5mm thick layer of silicone (Superflab Plastic 

Bolus Material) on top of the gelatine tissue. 

Two types of symmetric tip brachytherapy needles (Varian 

Medical Systems, Fig. 7) were used in the study: 1) Plastic 

Needles (PEEK material) of 2 mm diameter and 200 mm length 

with conical tip geometry. 2) Titanium needles of 16 G (1.65 

mm outer diameter) with two lengths of 200 mm and 250 mm 

and a sharp trocar tip geometry. Young’s Moduli of tested 

 
 

 
 

Fig. 6. Example of ground truth deflection measurement. Tip deflection 

values in vertical and horizontal planes for a certain insertion depth are 

obtained from image processing of the corresponding video-frames. Top 
image corresponds to the camera for the vertical plane (XZ) and bottom image 

corresponds to the horizontal plane camera (YZ). 

 
 

Fig. 7. Detail of the tip geometry of the brachytherapy needles used in the 
study. Left: Conical tip plastic needle with 2mm diameter. Right: Sharp trocar 

tip titanium needle with 1.65mm diameter.  
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needles were previously obtained experimentally from specific 

needle deflection tests [2] with average values of 27,65 MPa for 

the plastic needles and 107,74 MPa for the titanium needles. 

Tests were performed at two different average linear speed 

values of 10 mm/s and 15mm/s for each needle-tissue type 

combination. 

For each insertion test, measured experimental data were 

model input parameters like insertion depth and reaction loads 

at the base of the needle as well as ground truth deflection 

values at the specified insertion depths. These data were used 

for evaluation of the analytical model performance and in the 

case of the ANN model, to train the network first and test its 

performance later. 

III. RESULTS AND DISCUSSION  

Performance of both analytical and ANN models was 

compared for the test data subsets described in Table I. Results 

for total absolute needle tip deflection (|δr|) are shown in Table 
III, which includes: 1) average and standard deviation values of 

ground truth measurements and model predictions for each data 

subset; 2) MAEs given by both models; 3) results from the two-

sample t-tests between measured and predicted deflections.  

 
TABLE III 

COMPARISON OF ANALYTICAL AND ANN MODELS PERFORMANCE FOR 

PREDICTION OF TOTAL ABSOLUTE TIP DEFLECTIONS IN FOUR DIFFERENT TEST 

DATA SUBSETS 

Results for Total Absolute Needle Tip Deflection (|δr|) 
 

Test 

Data 

Subset 

Average Deflection ± STD (mm) MAE ± STD (mm) 

Ground 

Truth 

Analytical 

Model a 

ANN 

Model a 

Analytical 

Model 

ANN  

Model 

Trial 1 0.78 ± 0.61 1.14 ± 0.55 * 1.37 ± 0.57 * 0.50 ± 0.29 0.62 ± 0.41 

Trial 2 1.15 ± 0.93 7.49 ± 4.15 * 1.19 ± 0.88 6.35 ± 3.47 0.32 ± 0.28 

Trial 3 2.00 ± 1.46 6.13 ± 4.65 * 1.84 ± 1.03 4.23 ± 3.82 0.50 ± 0.82 

Trial 4 1.13 ± 0.84 4.13 ± 3.51 * 0.99 ± 0.81 3.03 ± 3.04 0.29 ± 0.22 

a * Hypothesis of equality of means between ground truth and predicted deflections is 

rejected (Two-sample t-tests) 

 

Fig. 8 shows a box-plot comparison of ground truth total 

absolute deflections with analytical and ANN model 

predictions for the same test data subsets. Results have been 

grouped by the type of needle and the tissue hardness 

(proportional to density value), which are those factors with a 

significant effect on the needle deflection behaviour according 

to a previous research work [2]. 

The ANN model has lower prediction errors than the 

analytical model in all test data subsets except for Trial 1, where 

both models have a comparable performance. Results from the 

two-sample t-tests reveal that analytical model predictions are 

significantly different to ground truth deflections in all test 

datasets, whilst ANN model deflection estimations are 

statistically equivalent to ground truth values in all cases except 

for Trial 1.  

The ANN modelling approach shows a consistent 

performance across all tested scenarios with a MAE below 1 

mm. Excluding Trial 4, where test data were randomly selected 

from the overall database, in the rest of trials, data used to test 

the network corresponded to different tissue properties (Trials 

1 and 2) or different insertion depths (Trial 3) from the data 

points used to train the network. The low prediction errors 

obtained in all trials suggest a good generalization performance 

of the proposed ANN approach. 

When looking at how different factors like needle type or 

tissue density may affect both models’ performance, we 
observe a more robust behaviour of the ANN approach 

compared to the beam-type analytical model (see Trials 3 and 4 

box plots in Fig. 8). Whereas ANN predicted deflections have 

very close distributions to ground truth values regardless of the 

type of needle and soft tissue properties, a much less consistent 

behaviour is observed in the analytical model’s performance 
across different groups. The beam-type model produces 

generally larger prediction errors for plastic needles than for 

metal needles, and its predictions get worse with increasing 

tissue hardness with both types of needles. The analytical model 

only has mean prediction errors below 1 mm with test data 

belonging to the lowest tissue density (Trial 1). However, 

needle deflection values for the softest tissue samples are of the 

same order of magnitude as the model prediction errors, both 

for the analytical and ANN approaches. This makes impractical 

any assessment of the models accuracy for those test conditions 

where average actual needle deflections are in the 

submillimetre range. 

The reason why needle deflections measured in this study are 

generally small is because insertion experiments were 

performed with symmetric tip needles. These needles have 

minimal deflections compared to bevel tip steerable needles, 

which can bend over 10 mm for insertion depths of 100 mm 

[19, 24]. Future work will include a verification of the two 

proposed modelling approaches for bevel tip needles. Despite 

this limitation, results from this first comparative study are able 

to discriminate between both modelling approaches and 

indicate a better and more robust performance by the ANN 

model.  

 Apart from needle intrinsic parameters characterizing the 

mechanical behaviour of the needle, input variables in both 

models are the measured reaction loads at the base of the needle. 

Although 2 different insertion speeds were tested in the study, 

this was not considered as input variable. The analytical model 

is based in beam deflection theory which considers a static 

equilibrium of all forces and moments acting on the needle, 

therefore it does not include dynamic parameters. With regards 

to the data-driven ANN model, insertion speed was not 

considered as an input variable because we didn’t find a 
significant influence of this parameter on needle deflection on 

a previous statistical analysis of the data using Analysis of 

Variance (ANOVA) and non-parametric Kruskal-Wallis tests 

[2]. There is some discrepancy among different published 

studies with regard to the effect of needle insertion speed on 

deflection. Some authors did not find a significant effect [15, 

25], while others reported an opposite outcome with a 

significant influence of speed in needle deflection behaviour 

[24]. Discrepancy among different studies is probably due to 

the different range of speed values used across studies as well 

as different types of needles. It could be that the difference 

between average speeds selected for our study (10mm/s and 

15mm/s) is not large enough to produce significant changes on 

the needle deflection. However, it is worth noting that we 

included the compression reaction force (Frz) as one of the 

input parameters of our ANN model and this parameter has a 

strong correlation with the insertion speed. Due to the 
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viscoelastic nature of the soft tissue phantoms, faster needle 

insertions on the same tissue produce an increase of the 

compression force on the needle. We included this compression 

force parameter as one of the inputs of the ANN model because 

we observed that its inclusion resulted in a better prediction 

performance by the network. 

Results from this study reflect a limited capacity of beam-

theory analytical models for prediction of needle deflection 

during insertion into soft tissue. The analytical model proposed 

in this study provides reasonable estimations only for the softest 

monolayer tissue samples (5% density with no skin layer). 

Harder tissue phantoms and the addition of skin layer yield 

more complex needle-tissue interactions which are not properly 

captured by the model. In the same way as other types of 

analytical models, beam-theory models are built on 

assumptions that simplify the behaviour of the needle and 

surrounding tissue. Beam-theory models simplify the definition 

of needle-tissue interaction by defining an arbitrary force 

distribution profile. Identification of which load profile would 

be the best fit for each insertion point in time is a technical 

challenge, since direct measurement of needle-tissue 

interaction forces is not possible. Beam-theory models use 

specific shear force distribution profiles to define needle-tissue 

interaction forces responsible of needle bending. These load 

distribution profiles are generally arbitrary (e.g. uniform force 

distribution, triangular force distribution, point loads, etc.) and 

are normally kept fixed along the insertion process, with only 

the magnitude and sign of the forces changing in real time to 

meet force and moment equilibrium equations. Although this 

simplification of the interaction forces might work well for 

certain needle-tissue combinations, it is quite unlikely that a 

simplified force distribution profile will be representative of all 

possible needle-tissue interactions. Also, even for the same type 

of needle and tissue combination, the shape of the force profile 

will most likely change throughout the insertion due to the 

dynamic nature of the process and the heterogeneous nature of 

biological tissue. The challenge of defining representative 

forces profiles for any particular needle-tissue interaction at any 

time during the needle insertion process results in beam-theory 

needle deflection models being unreliable for clinical 

application.   

In contrast to analytical models, data-driven models like the 

MLP neural network defined in our study have the potential to 

capture the complexity of the heterogeneous and anisotropic 

nature of human soft tissues and organs as long as they are 

trained with a sufficiently large data base of experimental data 

from representative biological tissue. More complex ANN 

architectures could be proposed to predict needle deflection 

from a larger set of inputs and a larger number of hidden layers 

and neurons; however, we do not think that increasing the 

complexity of the neural network would significantly improve 

the accuracy of the model predictions in this case. A simple 

multilayer perceptron (MLP) architecture like the one proposed 

in the study is a typical ANN architecture used in non-linear 

  

(a)                          (b) 

  

(c)                          (d) 

Fig 8. Box-plot distributions of ground truth (GT) and predicted (Analytical & ANN) total absolute needle tip deflection (|δr|) grouped by needle type (Plastic 
/ Titanium) and soft tissue hardness (5, 10 and 20% densities). Individual plots show the absolute deflections for each of the test data subsets defined in Table I 

(Trial 1 (a), Trial 2 (b), Trial 3 (c) and Trial 4 (d)). Box-plots include data between the first and third quartiles, whiskers extend up to ±2.7σ and red crosses 

represent outliers. Box colours are used for better clarity to distinguish GT (Green), Analytical (Red) and ANN (Blue) deflections. 
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regression applications. Feedforward MLP neural networks are 

well-known powerful function approximators because of their 

ability to fit any finite input-output mapping problem. A two-

layer MLP like the one used in the study, with one hidden layer 

of neurons using continuous nonlinear sigmoid transfer 

functions and one output layer with linear function neurons, can 

approximate any continuous function to arbitrary precision, 

provided the network has a sufficiently large number of hidden 

neurons [3]. The number of neurons in the hidden layer is a key 

aspect in the design of MLP since a low number may not be 

enough to learn properly the underlying function whereas a 

large number increases the risk of overfitting the data. In the 

design of our MLP model sizes between five and ten neurons 

for the hidden layer were explored and it was observed that the 

accuracy of network predictions did not significantly increase 

when using more than five neurons. Therefore, five neurons is 

the minimum acceptable size for the hidden layer in our MLP 

model to provide fairly accurate predictions while avoiding 

overfitting, thus achieving a good generalization performance. 

 Applicability of any ANN model relies on an adequate 

training which improves with the size and diversity of the 

dataset used for learning. In this study we created a starting 

database of 492 points, from which over 300 points were used 

for training the neural network model on each trial. Although 

more data points could have been extracted from a larger 

number of insertion depth points, we think that 4 data points per 

needle insertion are sufficient data for the purpose of this 

preliminary study and have allowed us to compare the 

performance of both model approaches. The ANN model used 

in the study could be successfully trained with the selected data 

subset size. In all trials, training and validation mean squared 

errors decreased monotonically to reasonably low minimum 

values.  Besides, comparative analysis shows a consistently 

better performance of the data-driven model compared to the 

analytical model. Nevertheless, we acknowledge that 

increasing the size of the dataset with additional experimental 

data using multi-layered and heterogeneous tissue phantoms 

that better approximate biological tissue properties will 

improve the applicability of this model and this is planned as 

the next step in our research. 

The experimental data used in this study were generated from 

insertion tests into transparent homogeneous soft tissue 

phantoms with and without addition of an artificial skin layer. 

The transparency of the material used to build the tissue 

samples allows the use of optical tracking as the ground truth 

method to measure needle deflection. However, this method is 

not applicable to testing with real biological soft tissue. The use 

of transparent phantom tissue and optical tracking with video 

cameras is a valid method to compare the prediction 

performance of the two proposed modelling approaches with 

the advantage that it allows performing multiple needle 

insertion tests in a controlled laboratory environment with a 

simple test setup and straightforward identification of the 

needle tip on the images. Nonetheless, our ultimate goal is to 

investigate the clinical application of the proposed ANN model 

and for that, it is necessary to train and test the model with data 

generated from needle insertion tests into representative 

biological soft tissue. Training and testing of the ANN’s model 
performance for real heterogeneous biological tissue is planned 

as a future research work. To do this, optical tracking shall be 

replaced by US image tracking similarly to reference [13]. 

Ground truth needle deflection would be measured on US 

images after applying image processing algorithms to identify 

the location of the needle tip. 3D tracking of needle insertion 

would require an experimental setup with two US probes 

moving synchronized and parallel to the needle in order to track 

the position of the needle tip on two perpendicular planes. 

IV.  CONCLUSION AND FUTURE WORK 

Comparative performance analysis of the proposed analytical 

model based on beam deflection theory and the data-driven 

model using a feedforward ANN indicates a more reliable 

performance of the data-driven approach, which is also more 

robust to changes in the test conditions like tissue hardness or 

needle stiffness. Evaluation of the models’ performance for 
different test data subsets resulted in accurate predictions of the 

proposed ANN architecture in 3 out of 4 testing scenarios, 

whereas the analytical model had larger estimation errors and 

its deflection predictions were not statistically comparable to 

ground truth data in any of the tested scenarios.  

The findings of this study bring to light the potential of ANN 

data-driven models to be applied in clinical settings for 

imageless tracking of needle insertion procedures, in particular 

for brachytherapy needles. All analytical modelling approaches 

are built on assumptions that simplify the behaviour of the 

needle and surrounding tissue but which make these models 

unsuitable for application to a clinical setting due to the 

complex, anisotropic non-linear nature and huge variability of 

biological tissue properties. The proposed ANN model is 

capable of predicting 3D needle tip deflection with a 

submillimetre accuracy just from 9 input parameters. All 

variable input parameters can be measured in real time with a 

force sensor during needle insertion at small computational 

cost.  

In order to confirm the applicability of the ANN approach to 

a clinical setting, further experimental testing will be carried out 

in order to train and test the ANN model with more 

representative data of biological tissue behaviour. Additional 

testing will be performed in multi-layered and heterogeneous 

tissue phantoms using the same ground truth method used in 

this study. Furthermore, experimental data will be obtained 

from needle insertion tests in more realistic heterogeneous 

biological tissue under controlled laboratory conditions and 

using US scanning as the ground truth method. Finally, a full-

scale clinical testing is planned to obtain needle insertion data 

from multiple brachytherapy surgical procedures using TRUS 

imaging as a final validation step to confirm the suitability of 

the proposed ANN model for needle deflection prediction in the 

clinical setting. 
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Description of the Video files added as supplemental material:

Ground truth needle deflections (x=vertical and y=horizontal) were measured through image 

processing of  video-frames recorded by 2 cameras placed perpendicular to each other. One 

camera recorded the insertion process in the vertical plane (XZ) and the other camera recorded in 

the horizontal plane (YZ). The supplemental video files show examples of the videos recorded 

by both cameras during needle insertion tests. 

1. Video_Plastic needle_Ver Plane.mp4 

Shows a plastic needle insertion viewed from the camera recording in the vertical plane (XZ). 

2. Video_Plastic needle_Hor Plane.mp4 

Shows a plastic needle insertion viewed from the camera recording in the horizontal plane (YZ). 

3. Video_Ti needle_Ver Plane.mp4 

Shows a titanium needle insertion viewed from the camera recording in the vertical plane (XZ). 

4. Video_Ti needle_Hor Plane.mp4 

Shows a titanium needle insertion viewed from the camera recording in the horizontal plane 

(YZ).
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Fig. 1.  Brachytherapy needle insertion procedure for prostate cancer treatment. In LDR brachytherapy 

radioactive seeds are permanently implanted in the prostate gland using needles inserted through a guiding 

grid template. The procedure is image-guided by transrectal ultrasound (TRUS). 

115x86mm (72 x 72 DPI) 
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Fig. 2. Graphical representation of needle deflection. Total needle deflection in our study δr is defined as the 

Euclidean distance of the needle tip from the needle insertion axis; it is the resultant of perpendicular 

deflections δx (vertical) and δy (horizontal). 
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Fig. 3.  Load profiles characterising the proposed beam-theory model. Top: Forces acting on the vertical 

plane (XZ); Bottom: Forces acting on the horizontal plane (YZ). 
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Fig. 4.  Architecture of the proposed multilayer perceptron feed-forward artificial neural network for the 

data-driven model. The network has one hidden layer with 5 neurons using sigmoid functions and one 

output layer with 2 linear neurons. 
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Fig 5.a. Experimental set-up for needle insertion tests. Top image: Mechatronic device for needle insertion 

and retraction using a linear actuator attached to a carriage holding the needle. 
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Fig 5.b. Experimental set-up for needle insertion tests. Bottom image: Detail of the needle mounted on the 

insertion device and tissue phantom container. A load-cell is fixed to the base of the needle holder and 

measures reaction forces and torques at the base of the needle. 
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Fig. 6.a. Example of ground truth deflection measurement. Tip deflection values in vertical and horizontal 

planes for a certain insertion depth are obtained from image processing of the corresponding video-frames. 

Top image corresponds to the camera for the vertical plane (XZ) and bottom image corresponds to the 

horizontal plane camera (YZ). 
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Fig. 6.b. Example of ground truth deflection measurement. Tip deflection values in vertical and horizontal 

planes for a certain insertion depth are obtained from image processing of the corresponding video-frames. 

Top image corresponds to the camera for the vertical plane (XZ) and bottom image corresponds to the 

horizontal plane camera (YZ). 
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Fig. 7. Detail of the tip geometry of the brachytherapy needles used in the study. Left: Conical tip plastic 

needle with 2mm diameter. Right: Sharp trocar tip titanium needle with 1.65mm diameter. 

280x83mm (96 x 96 DPI) 
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Fig 8.a. Box-plot distributions of ground truth (GT) and predicted (Analytical & ANN) total absolute needle 

tip deflection (|δr|) grouped by needle type (Plastic / Titanium) and soft tissue hardness (5, 10 and 20% 

densities). Individual plots show the absolute deflections for each of the test data subsets defined in Table I 

(Trial 1 (a), Trial 2 (b), Trial 3 (c) and Trial 4 (d)). Box-plots include data between the first and third 

quartiles, whiskers extend up to ±2.7σ and red crosses represent outliers. Box colours are used for better 

clarity to distinguish GT (Green), Analytical (Red) and ANN (Blue) deflections. 
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Fig 8.b. Box-plot distributions of ground truth (GT) and predicted (Analytical & ANN) total absolute needle 

tip deflection (|δr|) grouped by needle type (Plastic / Titanium) and soft tissue hardness (5, 10 and 20% 

densities). Individual plots show the absolute deflections for each of the test data subsets defined in Table I 

(Trial 1 (a), Trial 2 (b), Trial 3 (c) and Trial 4 (d)). Box-plots include data between the first and third 

quartiles, whiskers extend up to ±2.7σ and red crosses represent outliers. Box colours are used for better 

clarity to distinguish GT (Green), Analytical (Red) and ANN (Blue) deflections. 

Page 22 of 28

AVILA CARRASCO, CAROLINA; RUPPEL, MIRJANA; PERSAD, RAJENDRA; BAHL, AMIT; DOGRAMADZI, SANJA draft

IEEE Transactions on Medical Robotics and Bionics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 

Fig 8.c. Box-plot distributions of ground truth (GT) and predicted (Analytical & ANN) total absolute needle tip 

deflection (|δr|) grouped by needle type (Plastic / Titanium) and soft tissue hardness (5, 10 and 20% 

densities). Individual plots show the absolute deflections for each of the test data subsets defined in Table I 

(Trial 1 (a), Trial 2 (b), Trial 3 (c) and Trial 4 (d)). Box-plots include data between the first and third 

quartiles, whiskers extend up to ±2.7σ and red crosses represent outliers. Box colours are used for better 

clarity to distinguish GT (Green), Analytical (Red) and ANN (Blue) deflections. 
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Fig 8.d. Box-plot distributions of ground truth (GT) and predicted (Analytical & ANN) total absolute needle 

tip deflection (|δr|) grouped by needle type (Plastic / Titanium) and soft tissue hardness (5, 10 and 20% 

densities). Individual plots show the absolute deflections for each of the test data subsets defined in Table I 

(Trial 1 (a), Trial 2 (b), Trial 3 (c) and Trial 4 (d)). Box-plots include data between the first and third 

quartiles, whiskers extend up to ±2.7σ and red crosses represent outliers. Box colours are used for better 

clarity to distinguish GT (Green), Analytical (Red) and ANN (Blue) deflections. 
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TABLE I

DATA DISTRIBUTION FOR THE 4 ANN MODEL VARIANTS GENERATED IN THE STUDY (CHARACTERISTICS AND SAMPLE SIZE OF EACH 

DATA SUBSET) 

Training Data Validation Data Test Data
ANN 

Model Description
Data 

points
Description

Data 

points
Description

Data 

points

Trial 1

10% and 

20% Tissue 

Density

369

10% and 

20% Tissue 

Density

41
5% Tissue 

Density
80

Trial 2

5% and 10% 

Tissue 

Density + 

20% Density 

with no skin

369

5% and 10% 

Tissue 

Density + 

20% Density 

with no skin

41

20% Tissue 

Density + 

Skin

80

Trial 3

Insertion 

depths ≤ 

75mm

324

Insertion 

depths ≤ 

75mm

36

Insertion 

depths = 

97mm

123

Trial 4 Random 394 Random 49 Random 49
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TABLE II

SUMMARY OF NEEDLE INSERTION TESTS PERFORMED IN THE STUDY GROUPED PER COMBINATIONS OF NEEDLE TYPE, TISSUE DENSITY 

AND USE OF ADDITIONAL SKIN TISSUE LAYER. FOR EACH GROUP, TESTS WERE EQUALLY SPLIT INTO TWO AVERAGE INSERTION SPEEDS 

OF 10MM/S AND 15MM/S

Needle 

Type
Tissue Density Skin Layer Number of Tests

5% No 10

No 9
10%

Yes 18

No 10

Plastic

20%
Yes 10

5% No 10

No 20
10%

Yes 16

No 10

Titanium

20%
Yes 10
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TABLE III

COMPARISON OF ANALYTICAL AND ANN MODELS PERFORMANCE FOR PREDICTION OF TOTAL ABSOLUTE TIP DEFLECTIONS IN FOUR 

DIFFERENT TEST DATA SUBSETS

a * Hypothesis of equality of means between ground truth and predicted deflections is rejected (Two-sample t-tests)

Results for Total Absolute Needle Tip Deflection (|δr|)

Average Deflection ± STD (mm) MAE ± STD (mm)

Test Data 

Subset

Ground 

Truth

Analytical 

Model a

ANN

Model a

Analytical 

Model

ANN 

Model

Trial 1 0.78 ± 0.61 1.14 ± 0.55 * 1.37 ± 0.57 * 0.50 ± 0.29 0.62 ± 0.41

Trial 2 1.15 ± 0.93 7.49 ± 4.15 * 1.19 ± 0.88 6.35 ± 3.47 0.32 ± 0.28

Trial 3 2.00 ± 1.46 6.13 ± 4.65 * 1.84 ± 1.03 4.23 ± 3.82 0.50 ± 0.82

Trial 4 1.13 ± 0.84 4.13 ± 3.51 * 0.99 ± 0.81 3.03 ± 3.04 0.29 ± 0.22
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