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Abstract

The normal-normal hierarchical model (NNHM) constitutes a simple and

widely used framework for meta-analysis. In the common case of only few

studies contributing to the meta-analysis, standard approaches to inference

tend to perform poorly, and Bayesian meta-analysis has been suggested as a

potential solution. The Bayesian approach, however, requires the sensible

specification of prior distributions. While noninformative priors are commonly

used for the overall mean effect, the use of weakly informative priors has been

suggested for the heterogeneity parameter, in particular in the setting of (very)

few studies. To date, however, a consensus on how to generally specify a

weakly informative heterogeneity prior is lacking. Here we investigate the

problem more closely and provide some guidance on prior specification.
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1 | INTRODUCTION

In meta-analysis, researchers commonly encounter a cer-
tain amount of variability between experiments, to a
degree going beyond what could be attributed to mea-
surement error alone. Hierarchical models are commonly

used in order to account for such (“between-study”) het-
erogeneity.1,2 In the present paper, we focus on the spe-
cial simple case of meta-analysis within the framework of
the normal-normal hierarchical model (NNHM). The
NNHM approximates estimates from separate sources
and their standard errors via normal distributions, and
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implements heterogeneity at a second level using another
normal variance component. In meta-analysis applica-
tions, the NNHM provides a good approximation for
many types of endpoints or effect measures.3,4 The nor-
mal approximation has its limitations,5 some of which
are less of a problem in a Bayesian context.6 A small
number of studies tends to pose a problem especially for
frequentist methods, in particular regarding the construc-
tion of confidence intervals (CIs) with good coverage
properties.7-10 A common convention is to exercise extra
caution when the number of studies is small.9

Bayesian approaches to meta-analysis have been
advocated for quite a while,11-17 and analyses may techni-
cally be performed using MCMC methods1 or semi-ana-
lytical integration.18 Within the R software, for example,
the bayesmeta

19,20 or bmeta21 packages are available.
Performing a Bayesian analysis is not technically chal-
lenging; computations are straightforward and valid for
any number of studies, although less data will mean that
results are more sensitive to prior specifications (espe-
cially when it comes to variance parameters). A crucial
condition is that the explicitly implemented normal
approximation needs to hold, which may break down, for
example, for meta-analyses of small studies.5,6 While for
large numbers of studies, the choice of prior distributions
usually has little impact, for few studies the exact form of
the prior distributions chosen may become crucial, as
one cannot rely on the prior information being overruled
by the data in that case. At least part of this problem may
be considered “shared” for frequentist and Bayesian
methods as long as one tries to get by without using a
proper, informative prior.22 Some supposedly non-

informative prior distributions can probably be argued to
be less influential than others, but ultimately these are
unlikely to be the best choice in few-study problems.
Beyond meta-analysis, the use of informative priors for
regularization in the estimation of certain parameters is
also common.23 Especially for few studies, this may be a
promising approach.24 The case of “few” studies is hard
to define; there is no obvious threshold, and in fact there
may actually be no need to distinguish: use of an infor-
mative prior will not be harmful for analyses of “many”
studies. Indeed, a proper prior is necessary irrespective of
the number of studies in case the analysis requires the
calculation of marginal likelihoods. In the present manu-
script, we will investigate examples ranging in size
between two and five studies. These are the cases where
the use of an informative prior will make the greatest dif-
ference, and such situations have been discussed in the
context of up to 4,9 3–10,7 or only 2 studies.8

Heterogeneity priors have been investigated previ-
ously from different angles; some discussed general
considerations for variance parameters15,25,26 while
others motivated particular settings for specific example

cases27,28 or investigated commonly used settings in a sys-
tematic literature review.29 The aim of the present inves-
tigation is to provide general guidance for judging and
deriving weakly informative heterogeneity priors, and to
suggest consensus examples for some common types of
effect measures. This may also aid in the design and justi-
fication of prior settings, or the prospective pre-specifica-
tion of Bayesian meta-analyses30 and it may help avoid
(suspicion of) post-hoc tweaking of prior assumptions.

The remainder of this article is structured as follows.
In the next section, the normal-normal hierarchical
model (NNHM) along with its parameters and prior
distributions are formally introduced. Section 3 discusses
prior distributions for the heterogeneity parameter
and some general motivating considerations and implica-
tions. Section 4 motivates heterogeneity priors for a selec-
tion of common types of endpoints and effect measures
based on the previously discussed ideas. In Section 5,
examples of meta-analyses with different endpoints are
introduced, and analyses are performed using the
suggested prior settings. Section 6 closes with conclusions
and recommendations.

2 | THE STATISTICAL MODEL

2.1 | The normal-normal hierarchical
model

The normal-normal hierarchical model (NNHM) repre-
sents measurements yi from k different sources using two
hierarchy levels. Along with the estimates, their associ-
ated standard errors σi need to be available. The σi are
assumed to be fixed and known (which commonly is only
an approximation).5,31 Each estimate yi is assumed to
measure an underlying true value θi, which is not neces-
sarily identical across all k measurements; (“between-
study”) variability among the θi is accounted for by an
additional variance component whose magnitude is given
by the heterogeneity τ ≥ 0:

yi j θi ~N θi,σ2i
� �

, ð1Þ

θi j μ,τ~N μ,τ2
� �

for i=1,…,k, ð2Þ

where the estimates yi (as well as the θi) are modeled as
exchangeable. The overall mean effect μ is often the fig-
ure of primary interest. By marginalizing over the θi

values, the model may be written in simplified form:

yi j μ,τ~N μ,σ2i + τ2
� �

: ð3Þ

This is a random-effects model, which in the special
case of τ = 0 simplifies to the common-effect model (also
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known as the fixed-effect model).3,4,20,32 The NNHM pro-
vides a good approximation for many types of effect mea-
sures where the estimates as well as between-study
variability may be assumed to be (approximately) nor-
mally distributed.5

While often the aim of a meta-analysis is estimation
of the overall mean μ, it is sometimes useful to also infer
the study-specific means θi or a prediction θk + 1. The
amount of information gained on θi or θk + 1 through the
joint meta-analysis depends very much on the amount of
heterogeneity τ. If there was no heterogeneity (τ = 0),
then we would have θ1 = θ2 = … = θk + 1 = μ, and all data
would essentially contribute to the estimation of a single
common parameter. If, on the other hand, τ was very
large, then different parameters θi would only be very
loosely connected (2), and consideration of additional
data would only add very little to the estimation of any
particular θi or to a prediction θk + 1. In between, for
moderate τ values, estimates of θi are somewhat “shrunk”
towards the overall mean μ, and the prediction θk + 1 is
also more tightly constrained. Estimation of the heteroge-
neity τ hence also has distinct effects on the so-called
“shrinkage estimates” θi as well as predictions θk + 1.

20,33

2.2 | Prior distributions

2.2.1 | Effect and heterogeneity priors

In the NNHM, there are two unkowns requiring prior
specification, namely the overall mean effect μ and the
heterogeneity τ. In the following, we will assume that the
prior may be factored into p(μ, τ) = p(μ) × p(τ), implying
prior independence of μ and τ; note though that one may
also argue in favor of a dependent prior.22,34 In a sense,
dependence is often implicitly implemented, for example,
in the case of log-transformed effect scales: on the back-
transformed (exponentiated) scale, the amount of hetero-
geneity then scales with the value of the effect.

The effect prior p(μ) may often, also for technical con-
venience, be taken to be (improper) uniform or normal.20

In case a proper, informative effect prior is used, this may
also have implications for the heterogeneity prior; in par-
ticular the prior variance of μ may be relevant when con-
sidering reasonable τ values (see also Section 3.4.2
below).

Here we are first of all concerned with the prior distri-
bution for the heterogeneity, p(τ). A number of priors
have been proposed that may be considered “non-
informative” in particular senses (e.g., improper uniform
or Jeffreys priors, which may be motivated using invari-
ance or information-theoretic arguments),20 but these
usually cause problems especially when the number of
studies (k) is sufficiently small, or when the computation

of marginal likelihoods (or Bayes factors) is desired. In
the following, we will hence be concerned with proper,
(weakly) informative priors.

2.2.2 | Different views of prior
specification

There may be different perspectives on the role or pur-
pose of prior specification within a Bayesian analysis; we
sketch three aspects here:

1. Epistemic point-of-view: The posterior distribution
depends on the prior via Bayes' theorem; the prior
inevitably needs to enter inference, reflecting the state
of information beyond the data at hand.1,35 Prior
assumptions simply add to the line of other assump-
tions being made, like a normal likelihood, indepen-
dence, known standard errors, etc.

2. Regularization point-of-view: The aim is to intro-
duce “weakly informative priors, which attempt to let

the data speak while being strong enough to exclude

various ‘unphysical’ possibilities which, if not blocked,

can take over a posterior distribution in settings with

sparse data” (Gelman, 2009).36 This perspective is
closely connected to regularization or penalization
approaches in general.37 While in the likelihood
framework it may sometimes be perceived as a rather
ad hoc fix, it constitutes a transparent, readily inter-
pretable model component in the Bayesian case.

3. Pragmatic point-of-view: The resulting estimates
may be judged solely based on their operating charac-
teristics (which may be frequentist or Bayesian1),
without worrying about their exact theoretic
underpinning.

The first viewpoint is probably the most “construc-
tive” one here, in the sense of providing guidance on sen-
sible prior choices. An example of a regularization
approach in the NNHM context is given by the procedure
proposed by Chung et al.,38 where regularization is used
to implement preference for positive τ values. Alterna-
tively, one may also give preference to small τ values, as
these imply a less complex model, which is the idea
behind penalized complexity priors39 (and which here
would lead to an exponential prior). Comparisons of
operating characteristics (also including frequentist
approaches) were done, for example, by Friede et al.7

There are probably more perspectives beyond or between
these three (e.g., Bayarri and Berger40 and Kass41). For
example, meta-analyses may be thought of as constituting
draws from a “population” whose associated heterogene-
ities are reflected in the prior distribution—an “aleatory”

interpretation of (prior) probability, which may lend a
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somewhat frequentist flavor to the analysis. An impor-
tant point to stress is that there is not necessarily a single
“correct” prior: the use of different priors may be seen as
basing inferences on different preconditions, and the
choice of prior depends on which information one is will-
ing to incorporate into the analysis; different analysts
may hence draw different conclusions from the same
data, when these are founded on differing prior beliefs.42

In a sense, the posterior inherits its meaning from the
prior to some extent.43 Other common shortcuts taken or
approximations and asymptotics relied upon may in fact
often be potentially more influential and relevant than
the choice among the (usually limited) set of reasonable
prior distributions (see, e.g., Jackson and White5).

2.2.3 | Implications for interval
estimation

While (frequentist) confidence intervals aim to provide
coverage of the true parameter uniformly, independent of
the actual current parameter value, this is generally not
the case for (Bayesian) credible intervals. In some cases,
it is possible to specify (often improper) priors leading to
posterior distributions that also provide proper
frequentist coverage, but usually such a prior is not avail-
able.44 Credible intervals are calibrated and yield proper
coverage on average across the prior distribution; for the
point-wise coverage this means that there may be over-
coverage in certain regions of parameter space and
undercoverage in others.20,45-47 For example, in the pre-
sent case this may mean that long-run coverage may be
above the nominal level if data were repeatedly generated
based on heterogeneity values from the lower end of the
prior range, and below the nominal level otherwise.

3 | HETEROGENEITY PRIORS

3.1 | Aim

For meta-analyses involving many studies (large k), the
choice of prior distribution often has little impact, and an
(improper) uniform prior for τ may be a good choice, not
least due to its invariance property.20,25 Here we are con-
cerned first of all with the case of few studies (small k); a
uniform prior may not actually be an option here, as it
requires k ≥ 3 studies in order to yield a proper, integra-
ble posterior,25 and it may otherwise generally be consid-
ered overly conservative.7,8,25 Similar problems arise also
with the Jeffreys prior for the NNHM model;20 this kind
of issue is common in Bayesian analysis.23 Another case
where a proper, weakly informative prior may be

required (not only for few studies) is when marginal like-
lihoods or Bayes factors are of interest.

While the availability of a “noninformative” prior
comes with a certain convenience (one less issue to worry
about), in the present case its failure to provide reason-
able estimates in certain instances will often appear
somewhat contradictory to common sense. The introduc-
tion of an informative prior then may entail a trade-off of
the introduced regularization versus simplicity and
robustness. On the other hand, the explicit consideration
of relevant prior information may also be seen as an
advantage.

From a merely “technical” perspective, a heterogene-
ity prior must (in order to ensure integrability of the pos-
terior) have a shorter-than-uniform upper tail (an
eventually decreasing, integrable density function) and
also an integrable density towards zero. In that spirit, it
may also make sense to consider near-origin- and upper-
tail-behaviors separately. While an (improper) uniform
prior may be considered noninformative for several rea-
sons (e.g., due to its scale-invariance property20), its
overly heavy upper tail may also be considered “anti-con-
servative”.48 On the other hand, it may be possible to
“rescue” some of the desirable behavior and robustness,
for example, by the use of heavy-tailed priors.49 Besides
upper-tail considerations, priors may also behave quite
differently near zero; for example, depending on whether
the prior density approaches zero, a finite value, or infin-
ity. A finite prior density may ensure a near-zero behav-
ior roughly like a uniform prior, while a zero density
may be useful, for example, in bounding maximum-a-
posteriori (MAP) point estimates away from zero;38 in
particular from the regularization perspective, the prior
density's derivative near zero may also be of interest (as it
determines how small τ values may be pushed towards or
away from zero).

While the concept of “weak informativeness” remains
somewhat elusive (just like that of a “noninformative”
prior), the information content (or “vagueness”) of a
prior is commonly related to its variance, its entropy,50 or
its associated effective sample size (ESS).51,52 In many
cases it is also helpful to consider the informativeness of
a prior relative to a reference,53 for example, a unit infor-
mation prior.26,54 Since the posterior draws its interpreta-
tion in part from the prior, it is important to make the
prior specification plausible and transparent. Following
the parsimony principle (Ockham's razor), it may be con-
structive to seek the (in some sense) simplest prior distri-
bution within any relevant constraints.55 Possible
approaches to implement such a notion in practice may
work, for example, via maximization of the entropy,50

pre-specification of an effective sample size,51,52 or
matching of moments.
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Despite the aim of a weakly informative formulation,
one should also anticipate the case where the data have
little information to add, so that the posterior closely
resembles the prior and hence the analysis results are
largely determined by the prior settings. This may hap-
pen especially in cases of few studies and is also
suggested in some of the examples that will be discussed
below (see Figure 8); such cases highlight the importance
of a transparent and convincing prior specification.

In the remainder of this section, we aim to facilitate a
structured approach to interpreting heterogeneity and
specifying heterogeneity prior distributions by pointing
out relevant perspectives and highlighting consequences
of certain heterogeneity settings. Similar ideas are to
some degree also utilized in prior elicitation in gen-
eral.56,57 A set of guiding questions is eventually
suggested in Table 6.

3.2 | General properties of the NNHM

When considering prior distributions for the heterogene-
ity τ, it is useful to recall that τ ≥ 0 is a scale parameter,
and that its square τ

2 denotes a variance component
within the NNHM. Immediate associations of variance
priors useful in a simple normal model however may be
misleading: inverse-gamma (or inverse-χ2) distributions
are usually not recommended, as these arise as conjugate
distributions only in related, yet distinctly different cir-
cumstances. An inverse-gamma distribution is conjugate
in the simple case of estimating the variance of a normal
distribution with known mean.1 In such a case, an
unequal pair of two data points for example implies that
the variance must be positive (a zero variance would
have a zero likelihood); in the present NNHM context,
however, unequal yi values may be consistent with zero
heterogeneity (τ = 0), so that such priors are not a natu-
ral choice here, and their use is generally discour-
aged.2,25,58,59 Supposedly noninformative settings based
on inverse-gamma distributions commonly tend to result
in sensitivity to specification details,25 and often too
much probability is allocated to very large heterogeneity
values.60

For uniform or normal effect prior distributions, the
resulting conditional effect posterior p(μ|τ, y) again is nor-
mal. While for increasing τ the (conditional) posterior
mean of μ shifts from the inverse-variance weighted
mean towards the unweighted average of the estimates yi,
the (conditional) posterior variance of μ is proportional to
τ.20 At the same time, larger heterogeneity values also
imply wider prediction intervals and less shrink-
age16,20,61-63 (see also Section 2.1). Varying τ between zero
and infinity essentially also means varying between the

extremes of pooled and separate analyses of individual
studies. In a sense, overestimation of τ may hence often
be considered a “conservative” or “less harmful” form of
bias. In that spirit, one might argue that—within reason-
able limits—a prior that is stochastically larger than
another is also more conservative.64 A simple way to
implement stochastically ordered distribution families is
by using parameterizations that include a scale parame-
ter.65 Use of a scale parameter does not actually impose a
restriction; if not already included in the parameteriza-
tion, it may easily be introduced. Note that simple re-scal-
ing of a prior distribution p(τ) then also implies a (re)
scaling of the corresponding marginal prior predictive
distributions p(θi|μ) by the same factor. In general, sto-
chastically ordered priors also imply the same ordering
for the resulting posteriors.63,66,67 Consideration of sto-
chastically ordered alternative priors may hence also
offer a framework for sensitivity analyses (see also
Supporting Information Appendix D.4).

3.3 | Reasonable (proper) distributional
families

A simple way to implement the “technical” requirements
(as suggested in Section 3.1) may be to require roughly
uniform behavior near zero (implying indifference
among small heterogeneity values on the τ scale and
ensuring integrability in the lower tail), and a monotoni-
cally decaying tail with increasing heterogeneity values
(implying decreasing probability for increasing τ values
and ensuring integrability in the upper tail). This may be
achieved, for example, by using half-normal, half-Stu-
dent-t, half-Cauchy, half-logistic, exponential or Lomax
distributions. A sample of such distributions is sketched
in Figure 1. Note that for comparability, the distributions
in the figure are all scaled such that they have a common
median of 1; their corresponding parameters are also
listed in Table 4 below. In particular, half-normal, half-
Student-t, or half-Cauchy distributions have been rec-
ommended as appropriate families within the NNHM,
also due to favorable frequentist properties.2,25,58 The
half-Student-t distribution (including the half-Cauchy
as a special case, and the half-normal as a limiting
case) may be derived as conditionally conjugate distri-
butions in an extended parameterization of the
NNHM.2 The exponential distribution might be moti-
vated as the maximum entropy distribution for a pre-
specified prior expectation,50 or as the penalized com-

plexity prior.39 The half-logistic distribution combines a
zero derivative (implying near-uniform behavior) at the
origin with an upper tail behavior close to that of an
exponential distribution.

RÖVER ET AL. 5



Half-Student-t and Lomax distributions here may be
considered as heavy-tailed variants of the half-normal
and exponential distributions, respectively. In the spirit
of a contaminated prior, encompassing priors “close to an
elicited one”,68,69 these may also be motivated as scale
mixtures, where the (exponential or half-normal) scale
parameter is associated with some variability or uncer-
tainty. The scale mixture connection is also derived in
detail in Supporting Information Appendix C. The special
case of a Lomax (α = 1) distribution also coincides with
the form of prior distribution suggested by DuMouchel (a
log-logistic prior for τ).70,71 Similarly, the exponential dis-
tribution may also be motivated as a scale mixture of a
half-normal distribution with Rayleigh-distributed scale.
The use of heavy-tailed prior distributions has the advan-
tage of ensuring some degree of robustness against prior
misspecification (or prior/data conflict)49 at the cost of
sacrificing some of its “regularization” power. Another
simple way of implementing some degree of robustness is
by combining “informative” and “heavy-tailed” elements
in a two-component mixture distribution.72,73

Another simple and common prior distribution is the
(proper) bounded uniform distribution defined on an
interval [0, a]. It inherits certain qualities from the
(improper) uniform distribution, but it introduces a sharp
cutoff at the upper bound a, which may be hard to moti-
vate or justify. Although, if the bound is large enough,
then it may be very reasonable (e.g., for log-ORs).

Among the above examples, the Student-t and Lomax
distributions possess “shape” parameters in addition to
scale parameters, which here essentially regulate the
degree of heavy-tailedness. If considered desirable, more
complex prior assumptions may be implemented using
more complex distributions, for example, using folded

non-central Student-t distributions with a non-zero
mode,2,25,58 however, additional degrees of complexity
would probably require solid justification to be convinc-
ing. In the context of a penalization interpretation of the
prior, a mode at zero also implies a corresponding “pen-
alty term” that is monotonically increasing in τ; this
applies, for example, for a penalized-complexity prior39

that aims to give preference to sparse models. In empiri-
cal investigations based on meta-analyses archived in the
Cochrane Database of Systematic Reviews, log-Normal
and log-Student-t5 distributions have been fitted to
empirical data.74,75 The log-normal and log-t distributions
here were found to fit the predictive distributions best,
however, only few alternatives (log-normal, log-t5 and
inverse-gamma,74 or log-normal, inverse-gamma and
gamma distributions75 for τ2) were considered as candi-
dates in these comparisons. Some properties of the distri-
butions discussed here are also listed in Supporting
Information Appendix B.

In practice, the half-normal distribution is quite com-
monly used; the reasons for its popularity are probably its
simple and familiar form, its near-uniform behavior at
the origin along with a reasonably quickly decaying
upper tail, as well as considerations of numerical stabil-
ity. In the following, we will focus mostly on half-normal
distributions. In our experience, minor differences
between similar prior densities are of rather minor practi-
cal relevance, while it is most important what heteroge-
neity ranges the bulk of prior probability is assigned to.

When eventually formulating prior assumptions in
terms of a parametric prior probability distribution, it is
first of all necessary to be able to judge the meaning and
implications of certain heterogeneity settings; these issues
will be discussed in the following section.

3.4 | Interpreting heterogeneity values

3.4.1 | Units of τ

Informative priors naturally always need to be considered
in the context of the endpoint under consideration. In
order to specify a sensible prior for τ, it is important to
recapitulate its role in the NNHM (see Section 2.1). The
heterogeneity τ is a scale parameter that relates to the
probable size of differences (between-study differences) in
effects (θi and μ; see Equation 2). With that, the units of
measurements (yi), effects (θi, μ) and heterogeneity (τ)
are the same; if the effect is measured, say, in meters,
then so is the heterogeneity. Or both may be dimension-
less, as, for example, in the case of log-transformed ratios
(like log-odds-ratios (log-ORs), log-incidence-rate-ratios
(log-IRRs), log-hazard-ratios (log-HRs), and so on) or

heterogeneity (τ)

d
e

n
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it
y

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

half−normal
half−Student−t (ν = 4)

half−Cauchy
half−logistic

exponential

Lomax(α = 6)

Lomax(α = 1)

FIGURE 1 A selection of potential probability densities for the
heterogeneity. All distributions are scaled so that their prior
median is at unity (τ = 1, dashed line; see also Table 4) [Colour
figure can be viewed at wileyonlinelibrary.com]
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standardized mean differences (SMDs). One may in fact
argue that the nature of the effect scale is the most
important aspect to consider for prior specification.24 In
case the effects yi have been transformed prior to analy-
sis, then it is often useful to consider implications on the
back-transformed scale. Transformations are usually
introduced to achieve a better fit to the normality
assumptions within the NNHM; for example, using loga-
rithmic or arcsine transforms.3,4,76 In such cases, also
considering the back-transformed (exponential or sine)
effect scales is often instructive.

In case the effect scale has definite upper and lower
bounds (which is often the case, for example, for end-
points measured as scores), this also provides information
on the plausible (and possible) between-study variability.
In case of bounded scales, it may for example be useful to
consider the extreme cases of a continuous uniform dis-
tribution across the considered range (which would have
standard deviation b−a

ffiffiffiffi

12
p = b−a

3:46, where a and b are the lower
and upper bounds, respectively), or a discrete distribution
with probabilities of 1

2 concentrated at both margins
a and b (which would have standard deviation b−a

2 ). Such
considerations may define absolute “worst-case” settings
for the heterogeneity. Any normal approximation
employed on a bounded parameter space with a standard
deviation of, say, > b−a

4 would inevitably have substantial
overlap with out-of-domain values; any heterogeneity
value that is not � b−a

4 should raise suspicion and might
actually call for a different approach (e.g., transformation
to a different parameter space).

3.4.2 | Magnitudes of other effects

Relevant hints may originate from considering the mag-
nitude of other (known or plausible) effects of interven-
tions or covariates. The reasonable range for the overall
mean effect μ may also have implications for the expected
range of study-specific means θi; in case an informative
prior for μ is used (or is at least plausible), its variance
may help constraining also the between-trial variability.
Heterogeneity may often be attributed to differences in
the composition of the populations underlying each esti-
mate, and the distribution of relevant covariates within
(which may be observed or unobserved). If the observed
heterogeneity is assumed to be due to different constitu-
tions of populations, then the heterogeneity relates to
accumulated effects of associated covariates. With that,
within- and between-study variability in effects are
related to within- and between-study differences among
subjects and the plausible magnitude of covariates'
effects. For example, if a treatment effect is known to dif-
fer between males and females by a certain amount, this

difference between genders may help judging or motivat-
ing plausible magnitudes of effect differences between
studies. In case the variability between centers within the
same study has been investigated, this may also provide a
hint on between-study variability (which will then most
likely be larger).

3.4.3 | Implications of a fixed
heterogeneity value

Specific values of the heterogeneity τ may be judged and
compared based on the implied distribution of true
effects θi, which is given by the (conditional) prior predic-
tive distribution p(θi|μ, τ) (see Equation 2), where τ

defines the distribution's standard deviation. The effects
θi (conditional on μ) then vary within a range of
μ ± 1.96τ with 95% probability. For a randomly picked
pair of effects (θi and θj), their difference (θi − θj) follows
a N(0, 2τ2)-distribution (2), and their absolute difference
|θi − θj| then has a median of 0.95τ. Quite commonly, the
effects θi are transformed prior to analysis, so that it may
be helpful to consider the implications on the back-trans-
formed scale. A very common example is the logarithmic
transformation, which is often used for analyses involv-
ing, for example, odds ratios (ORs), relative risks (RRs) or
hazard ratios (HRs), and where the inverse transform is
the exponential function. Ninety-five percentage predic-
tive intervals and median differences are shown for a
range of τ values in Table 1 along with the corresponding
exponentiated figures.

An extensive discussion of these conditional distribu-
tions is given in Spiegelhalter et al. (Sec. 5.7).15 By work-
ing out what range of θi values is expected, or what
difference between a randomly picked pair of θi values is
expected, corresponding plausible ranges of τ values may
be determined. Based on such considerations,
Spiegelhalter et al.15 categorized ranges of τ values in the

TABLE 1 Implications of certain fixed heterogeneity values τ
on the probable ranges of true effects θi (conditional prior predictive
distributions) and the corresponding exponentiated ranges (the
latter are relevant for log-transformed effect scales)

95% Predictive interval Random pair |θi − θj|

τ θi − μ exp(θi − μ) Median exp(median)

0.1 [−0.20, 0.20] [0.82, 1.22] 0.10 1.10

0.2 [−0.39, 0.39] [0.68, 1.48] 0.19 1.21

0.5 [−0.98, 0.98] [0.38, 2.66] 0.48 1.61

1.0 [−1.96, 1.96] [0.14, 7.10] 0.95 2.60

2.0 [−3.92, 3.92] [0.020, 50.4] 1.91 6.74
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context of log-ORs as “reasonable,” “fairly high” or “fairly
extreme” as shown in Table 2. Such investigations may
help judging what τ values are reasonable or unrealistic
and with that may help specifying e.g. the heterogeneity
prior's tail quantiles.

For example, Prevost et al. (Sec. 4)27 aimed to constrain
the predictive interval (exp(θi − μ)) to a range of [0.5, 2.0],
which is achieved for τ = 0.35. Considering this range as
extreme and unlikely, a half-Normal prior with scale 0.18
(implying P[τ ≤ 0.35] = 0.95) was eventually suggested for
a log-RR. R code to illustrate these arguments using Monte
Carlo sampling and exact calculations is provided in
Supporting Information Appendix D.1.

3.4.4 | Implications of a heterogeneity
distribution

Besides considering the conditional distribution for fixed
τ values (p(θi|μ, τ), see previous subsection), one may also
investigate the marginal prior predictive distribution
p(θi|μ), marginalized over a particular heterogeneity
prior, which technically results as the integral
p θijμð Þ=

Ð

∞

0 p θijμ,τð Þp τð Þdτ . Since p(θi|μ, τ) is normal (2),
the marginal p(θi|μ) is a normal (scale) mixture distri-
bution. Its form may usually either be derived
numerically,18-20 or it may easily be explored using col-

lapsed Gibbs sampling, that is, generating a Monte Carlo
sample by repeatedly sampling from the heterogeneity
prior (p(τ)), and subsequently from the conditional pre-
dictive distribution (p[θi|τ]). Investigating the marginal
prior predictive distribution may help judging the prior
scale or distributional family.

Table 3 illustrates a range of prior predictive distribu-
tions for a set of half-normal priors that differ in their
scale. The implied probabilities for the (log-OR) catego-
ries shown in Table 2 are also given. Note that a simple
re-scaling of the heterogeneity prior implies proportional
scaling of mean and quantiles for τ as well as θi (as can
be seen in Table 3). In this spirit, Dias et al.28 for example
proposed a half-normal(0.32)-prior for a log-OR based on
the implied prediction interval for exp(θi − μ) of [0.5,
2.0]. R code to illustrate these arguments using Monte

Carlo sampling and exact calculations is provided in
Supporting Information Appendix D.2.

Similarly, Table 4 illustrates a range of prior predic-
tive distributions for a set of heterogeneity priors from
different distributional families; what they have in com-
mon is the prior median of 1.0 for τ. Quantiles or mean
of τ or θi for other scalings of p(τ) may be derived by pro-
portional re-scaling (as in Table 3). For example, a half-
Cauchy distribution that has its median heterogeneity
matched to that of a half-normal distribution requires a
scale parameter that is smaller by a factor of ≈2/3. From
the table, one can also read off the ratio of 95% quantile
over the median, which may be a useful indicator of the
heavy-tailedness of the different distribution families.
The distributions from Table 4 are also illustrated in Fig-
ure 1. Some additional properties of these distributions
are provided in Supporting Information Appendix B.

Different distributional families for the prior p(τ)
imply differing marginal prior predictive distributions p

(θi|μ, τ). Concrete prior information on p(θi|μ, τ) then
may help constraining the shape of p(τ), however, the
prior family may also be selected based on considerations
of heavy-tailedness, near-zero behavior, or simplicity.

3.4.5 | The role of the unit information
standard deviation

Consider the simple case of an effect measure that for
each study is determined as an average of independent
identically distributed observations. In such a case, the
associated standard error is simply of the form

σi =
σ1
ffiffiffiffi

ni
p , ð4Þ

where ni is the sample size, and σ1 is the common “popu-
lation” standard deviation of each single observation that
was averaged over. This figure describes the population-,
or within-study-standard deviation,54 which for the
moment we take to be constant across studies. This figure
is also called the unit information standard deviation

(UISD), as it relates to an observational unit's contribu-
tion to a study's likelihood. One may now relate the het-
erogeneity τ to σ1 and ask whether the between-study
variability (τ) is likely to exceed the within-study variabil-
ity (σ1), or what ratios of these two are plausible. Figure 2
illustrates the relationship of within-study and between-
study standard deviations σ1 and τ. Usually, one would
expect τ � σ1, implying that while study means (θi) may
differ to some degree, the distributions of subjects within
studies will still be largely overlapping (see Figure 2, left
panel). In that sense, the UISD σ1 may constitute an

TABLE 2 Categories of heterogeneity and corresponding τ
ranges in the context of log-ORs, according to Spiegelhalter et al.,15

Sec. 5.7

Category Range

“Reasonable” 0.1 < τ < 0.5

“Fairly high” 0.5 < τ < 1.0

“Fairly extreme” τ > 1.0
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TABLE 3 Implications of a range of half-normal heterogeneity priors p(τ) on probable values of heterogeneity τ and predicted effects θi
(marginal prior predictive distributions)

Heterogeneity τ 95% Predictive interval Category probability (%)

p(τ) Median Mean 95% quant. θi − μ exp(θi − μ) Reasonable Fairly high Fairly extreme

Half-normal(0.1) 0.07 0.08 0.20 [−0.22, 0.22] [0.80, 1.24] 32 0 0

Half-normal(0.2) 0.13 0.16 0.39 [−0.44, 0.44] [0.65, 1.55] 60 1 0

Half-normal(0.5) 0.34 0.40 0.98 [−1.09, 1.09] [0.34, 2.98] 52 27 5

Half-normal(1.0) 0.67 0.80 1.96 [−2.18, 2.18] [0.11, 8.89] 30 30 32

Half-normal(2.0) 1.35 1.60 3.92 [−4.37, 4.37] [0.013, 79.0] 16 19 62

Note: The three rightmost columns show the corresponding probabilities for the three categories from Table 2.

TABLE 4 Implications of a range of heterogeneity priors p(τ) from different families on probable values of heterogeneity τ and predicted
effects θi (marginal prior predictive distributions)

Heterogeneity τ 95% Predictive interval

p(τ) Scale Median Mean 95% quant. θi − μ exp(θi − μ)

half-normal(1.48) 1.48 1.00 1.18 2.91 [−3.24, 3.24] [0.039, 25.5]

half-Student-tν = 4(1.35) 1.35 1.00 1.28 3.75 [−3.85, 3.85] [0.021, 46.8]

half-Cauchy(1.00) 1.00 1.00 12.7 [−10.10, 10.10] [0.000041, 24,371]

half-logistic(0.91) 0.91 1.00 1.26 3.33 [−3.55, 3.55] [0.029, 34.7]

exponential(0.69) 1.44 1.00 1.44 4.32 [−4.33, 4.33] [0.013, 75.9]

Lomaxα = 6(8.17) 8.17 1.00 1.63 5.29 [−5.04, 5.04] [0.0065, 155]

Lomaxα = 1(1.00) 1.00 1.00 19.0 [−14.74, 14.74] [0.00000040, 2,520,157]

Note: For comparability, the different priors are all scaled to a common median of 1.0. Except for the exponential distribution, which is commonly
parameterized by its rate (or inverse scale), all distributions have a scale parameter.

(a) 1 (b) 1

σ1l

σ1l

σ1l

τ

θ1 θ2 θ3

μ

distributions of
subjects within studies

distribution of
(true) study means

σ1l

σ1l

σ1l

τ

θ1 θ2 θ3

μ

distributions of
subjects within studies

distribution of
(true) study means

FIGURE 2 Illustration of the relationship of between-study heterogeneity τ and unit information standard deviation (UISD) σ1. The left
panel (a) shows the commonly expected setup, in which the heterogeneity τ is relatively small compared to the within-study standard
deviation (τ � σ1). The right panel (b) shows that a larger τ would imply that the distributions of subjects from different studies were
eventually barely overlapping. Note that the eventual estimates (yi) resulting from the different studies then may have different standard
errors σi = σ1

ffiffiffi

ni
p < σ1 associated, depending on the studies' sample sizes ni [Colour figure can be viewed at wileyonlinelibrary.com]
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important “landmark” on the heterogeneity continuum
and thus may help constraining the range of plausible
heterogeneity values.26

This concept of within-study standard deviation may
be extended to other types of effect scales—for example,
the standard error of a log-OR derived from a 2 × 2-table
is approximately given by σi = 4

ffiffiffi

ni
p , so that, heuristically,

the UISD here equals σ1 = 4 per subject (at least),20

Supporting Information Appendix A.1. Sometimes it
may also make more sense to define UISDs not per

subject but rather per event (see also Supporting
Information Appendix A.3 for an example), but care also
needs to be taken in order not to confuse these two fig-
ures. For a given set of log-OR estimates, the UISD may
alternatively also be investigated by inverting Equation (4)
(see also Equation6 and the examples in Section 5.3
below).

Another link may be drawn between σ1 and τ via
shrinkage estimation (see Section 2.1) and the consider-
ation of prior effective sample sizes.52,77 Consider the case
where a meta-analysis of k studies is available, and a new
(k + 1th) study is conducted. The previous meta-analysis
of course provides (prior) information on the new study's
estimate θk + 1, the exact amount of which is determined
by the number of studies k, their sample sizes ni, the UISD
σ1, but also by the amount of heterogeneity.33,72 If τ is
large, then separate studies are only loosely related and
the previous data add little information. If on the other
hand τ is very small (i.e., studies are almost homoge-
neous), then they may contribute a lot of information.
With that, the amount of heterogeneity is related to
whether studies should rather be pooled or viewed as
essentially independent pieces of information. One may
then consider the idealized limiting case of infinitely many
(k ! ∞) infinitely large (ni ! ∞) studies as the previous
data source, so that the amount of contributed information
solely depends on τ. In that case, the historical data may
be thought of as effectively contributing a number of n?

∞

additional subjects to the k+1th study. This prior maxi-

mum sample size then relates to σ1 and τ as.77

τ

σ1
=

1
ffiffiffiffiffiffiffi

n?
∞

p : ð5Þ

Table 5 illustrates this relationship. For example, if
in the ideal case (i.e., k = ∞, ni = ∞) the additional
data should add information equivalent to at most

16 subjects, then this would correspond to τ

amounting to at most a quarter of σ1. If one has an
idea of how much information a meta-analysis may
(or should) contribute to a single study's shrinkage
estimate (in the idealized case of very many very large
studies), then such considerations may help

constraining probable magnitudes of τ, or associating
probabilities with ranges of τ values.

Note that a number of priors have been proposed
which are defined relative to the magnitude of the σi

values (or their harmonic mean), for example, the Jef-

freys, DuMouchel or uniform shrinkage priors.20 In view
of the above arguments, it might also make sense to
define priors relative to the UISD, or its estimated value.
Inverting (4) yields σ1 =

ffiffiffiffiffiffiffiffiffi

niσ
2
i

p

for a single study, and
based on a given data set we suggest the more general
empirical estimate

s1 =
ffiffiffiffiffiffiffiffiffi

�n �s2h

q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

k

i=1
ni

P

k

i=1
σ−2
i

v

u

u

u

u

u

u

t

ð6Þ

where �n= 1
k

Pk
i=1ni is the average (arithmetic mean)

sample size, and �s2h =
1
k

Pk
i=1σ

−2
i

� �−1
is the harmonic

mean of the squared standard errors (variances). This
estimator is defined so that in the special case of a com-
mon-effect analysis (i.e., assuming τ = 0), the overall
mean estimate's variance (which then is given by
Pk

i=1σ
−2
i

� �−1
) consistently also equals s21

P

i

ni
.

3.4.6 | Empirical information on τ

Empirical data, for example, from earlier investigations
in a related area,78 may also contribute to a-priori infor-
mation. Informative priors based on empirical informa-
tion have been derived for standardized mean differences
(SMDs) and log-ORs in medical applications by investi-
gating large numbers of meta-analyses published in the
Cochrane Database of Systematic Reviews by Rhodes
et al.74 and Turner et al.75 Additional evidence for certain
types of effect scales may be found, for example, in the
works by Pullenayegum,34 Turner et al.,79 Kontopantelis
et al.,80 Steel et al.,81 van Erp et al.,82 Seide et al.,83,84 and
Günhan et al.85 Note that some references provide infor-
mation directly on the heterogeneity parameter, while
others summarize estimates of heterogeneity.

Empirical information often entails the question of
how representative the external information is for the

TABLE 5 Correspondence between prior maximum sample
sizes (n?

∞
) and the magnitude of the heterogeneity (τ) relative to the

unit information standard deviation (UISD) (σ1) (see (5))
77

τ/σ1 0 1/16 1/8 1/4 1/2 1 ∞

n?
∞

∞ 256 64 16 4 1 0
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study at hand, or what may be the relevant data subset,
or what to do if no such sample may be available. In
terms of the epistemic view discussed in Section 2.2.2, the
inclusion of empirical evidence in the prior specification
affects the interpretation of the prior, and with that, of
the posterior. Empirical data may then often be seen as a
somewhat complementary source of evidence. When
there is doubt about the immediate applicability of
empirical information for the problem at hand, this may
also be reflected, for example, in a robustified two-com-
ponent mixture prior.72,73

3.5 | Guiding questions

In order to summarize the above arguments, Table 6 lists
some guiding questions that may aid in structuring the
specification of a prior for the heterogeneity. These are
mostly based on the arguments laid out in Sections 3.3
and 3.4. Firstly, plausible heterogeneity magnitudes (in
terms of τ or θi ranges) need to be determined. These
reflections may then also help choosing a parametric
family for the prior, or the distributional family may also
be selected based on considerations of near-zero behav-
ior, heavy-tailedness or simplicity. Beyond the mere type
of endpoint or effect measure, the context also may deter-
mine whether smaller or larger amounts of heterogeneity

are to be expected, for example, depending on whether
studies' designs and populations were similar. Special
considerations in the context of specific common types of
effect scales are discussed in detail in Section 4. These are
then illustrated using actual data examples in Section 5.

4 | MOTIVATING
HETEROGENEITY PRIORS IN
VARIOUS SETTINGS

4.1 | Means and mean differences

This general case covers endpoints measured on absolute

scales, hence it is not possible to give universally applica-
ble advice on a plausible prior scale. For example, the
same analysis may require different scalings of the prior
depending on whether an endpoint is expressed, say, in
terms of hours or minutes. In particular, in case of effects
that are defined as averages, the UISD (see also Sec-
tion 3.4.5) may provide some guidance; if standard errors
σi scale with sample size (σi≈ σ1

ffiffiffi

ni
p , see also Equation (4)),

then σ1 (or an estimate s1, (6)) may provide some orienta-
tion based on the considered (or other related) data.
Relating effects to “within-population standard devia-
tions” is actually an approach that is also formalized in
the case of standardized mean differences (SMDs); see
the following section.

Mean differences are another very common special
case. These are often used in order to “normalize” out-
comes; for example, in controlled clinical trials, each
study's treatment group is usually related to a control

group in order to express the treatment effect relative to

the unexposed group. In the simplest case, the study's out-
come then is defined as yi = �x2; i−�x1; i , where �x1; i and �x2; i
are the ith study's averages from control and treatment
group, respectively. When considering UISDs, the rele-
vant sample size will then result as the sum of the two
treatment groups' sizes (ni = n1;i+n2;i). In the simple
case of two equally-sized groups (n1; i =n2; i = ni

2 ) and
equal variances within groups (so that
Var �x1; ið Þ=Var �x2; ið Þ= σ2w

ni=2
) the UISD simply results as

σ1 =
ffiffiffiffiffiffiffiffi

2σ2w
p

, where σw
2 is the within-group variance.

Again a special case arises when considering paired

differences.86 In general, analogous considerations apply
for un-paired as well as for paired differences; only for
the latter case the UISD σ1 may be expressed as
σ21 =Var x1; ij

� �

+Var x2; ij
� �

−2Cov x1; ij,x2; ij
� �

where j is the
index identifying the jth pair of observations in the ith
study. We can see how the individual (paired) observa-
tion's variance contribution results as a sum of the two
observations' marginal variances and their covariance.
Now, since any pair of observations (y1;ij and y2;ij) is

TABLE 6 Some guiding questions for judging reasonable prior
distributions for the heterogeneity parameter τ

Prior information:

(i) What is the effect scale, what (between-study) differences
are expected or plausible?

(ii) What is the magnitude of other known (or plausible)
effects? Do these provide guidance?

Is an informative effect prior used? If so, what is its
variance? Does it provide guidance?

(iii) Is a plausible “unit information standard deviation
(UISD)” available? Does it provide guidance?

(iv) Is relevant external empirical information on
heterogeneity available? Should it be considered in
the analysis?

Translation into a prior probability distribution:

(v) Does the prior information help pinpointing prior
quantiles (of τ)?

(vi) Does the prior information help pinpointing prior
predictive quantiles (of θi)?

(vii) Does the prior information suggest particular properties
for the prior (-density)?

(Monotonicity? A non-zero mode? A heavy tail? Certain
near-zero behavior? …)
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usually positively correlated (Cov(y1;ij, y2;ij) > 0), the sum
of individual variances (Var(x1;ij) +Var(x2;ij)), if known,
may provide an upper bound on σ1.

Finally, there are generic cases of parameter estimates
that are reported along with a standard error, but which
do not necessarily have a “sample size” (ni) associated, as
is sometimes the case, for example, for laboratory
experiments.87

4.2 | Standardized mean differences

Standardized mean differences (SMDs) aim to compare
mean differences measured on different scales by normal-
izing them through their population standard deviation.
Effectively, these measure by how many standard devia-

tions the two study groups differ; SMDs are always
dimensionless. Their aim is to estimate δi =

μ2; i−μ1; i
ςi

, where
μ2;i and μ1;i are the two groups' true means and ςi is the
within-group standard deviation (which may be defined
with respect to one or the other or both treatment groups,
or which may also be externally informed). Note that ςi
here bears some similarity to the UISD σ1 (when consid-
ering the latter with respect to the unstandardized differ-
ences). Slightly differing, but essentially similar
approaches are given, for example, by the “Cohen's d,”
“Hedges' g” or “Glass' Δ” estimators, which differ in
details like bias correction or standardization terms.3,4

Essentially, these aim to estimate the mean difference
(μ2;i− μ1;i) by the difference of averages (�x2; i−�x1; i ), and
also the standard deviation by an empirical one. SMDs
(along with the correlations treated below) are somewhat
different here from the “general” mean differences, in
that they are explicitly designed and utilized in order to
compare endpoints measured on different scales, which
are not directly comparable. A heterogeneity of τ = 0 may
hence be considered particularly unlikely. A value of
τ = 1 would mean that the between-study heterogeneity
(among δi values) was equal to the within-group variabil-
ity ςi. Closely related to SMDs are standardized regression

coefficients, which are re-scaled as if both the regressor's
as well as the response's variance were normalized to
unity.88 Similar arguments would apply for analyses
involving standardized regression coefficients, and argu-
ments applicable to correlation coefficients (see Sec-
tion 4.5 below) may also be relevant.

Effects on the SMD scale have been categorized as
0.2 = “small,” 0.5 = “medium,” 0.8 = “large,”89 Sec. 2.2.3,
where an extension has recently been proposed to
include the grades of 0.1 = “very small,” 1.2 = “very
large,” and 2.0 = “huge.”90 Consequently, such a ranking
might be utilized in order to bound between-study effects
to mostly non-extreme values, for example, by

anticipating mostly up to “large” heterogeneity and
hence formulating a bound on P(τ ≤ 1). Neglecting esti-
mation uncertainty for the denominator, and for simplic-
ity assuming equal sample sizes for each of the ith study's
groups, leads to a UISD of σ1 = 2 (see Supporting
Information Appendix A.1).

Empirical evidence on heterogeneities between SMDs
based on an analysis of studies archived in the Cochrane

Database of Systematic Reviews is given by Rhodes
et al.74; for a general healthcare setting (not restricted to
a particular outcome type), a log-Student-t distribution
with parameters μ = −1.72, σ = 1.295, and 5 degrees of
freedom was derived (implying a median and 95% qua-
ntile of 0.18 and 2.43, respectively). Heterogeneity esti-

mates reported in studies published in the Psychological

Bulletin are provided by van Erp et al.82; the 189 τ-esti-
mates for SMDs that were quoted in 32 publications had
a median and 95% quantile of 0.20 and 0.66, respectively.

4.3 | Log-transformed odds, rates and
effect scales

Many outcomes are commonly analyzed on a logarithmic
scale, which may be advantageous for several reasons;
firstly, the domain of positive numbers is mapped to the
complete real line, which makes strictly positive scales
tractable for normal models like the NNHM, which is
often convenient. Secondly, additive effects on the log-
scale translate to multiplicative effects on the original
scale. Symmetry of the normal distribution (2) on the log-
scale then implies a “symmetric” treatment of multiplica-
tive factors and their inverses (since exp(μ + x) = exp
(μ) × exp(x) while exp μ−xð Þ=exp μð Þ× 1

exp xð Þ). This is use-
ful, for example, when dealing with outcomes like rates,
odds, rate ratios, odds ratios, relative risks, hazard ratios or
concentration measurements. An offset of, say, 0.1 on the
log-scale translates (approximately) to a change of 10% on
the back-transformed (exponentiated) scale, regardless of
the original value. Thirdly, the normal approximation to
the likelihood that is used in the NNHM (1) may provide a
better fit on the logarithmic scale.

When considering heterogeneity values on the loga-
rithmic scale, a more intuitive approach is usually to
examine the corresponding implications on the back-
transformed scale. Note that a normal model on the log-
scale actually corresponds to a log-normal model on the
original scale. In a sense, an analysis on the logarithmic
scale may also be viewed as an implementation of a
dependent joint prior for effect and heterogeneity22,34 on
the original (exponentiated) scale. The consequences of
certain heterogeneity values or heterogeneity distribu-
tions were already investigated in some detail in
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Sections 3.4.3 and 3.4.4; the important issue to judge is
what relative (multiplicative) difference between studies
is deemed plausible; see also the extensive discussion by
Spiegelhalter et al. (Sec. 5.7).15

A common type of effect are log-transformed odds (or
logits).91,92 For example, in epidemiology or at the design
stage of a clinical trial it may be of interest to infer the
magnitude and variability of the prevalence of a certain
condition, or historical information may be utilized to
support the control group in a clinical trial.72 The preva-
lence may be expressed in terms of the probability p ∈ [0,
1] or the odds p

1−p
∈ 0,∞½ � , while for meta-analysis pur-

poses it then makes sense to move to the log-odds scale
log p

1−p

� �

∈R. Rather than viewing this as a case of a loga-
rithmic transformation of the odds, one might as well
consider this as a logit transformation of probabilities,
mapping the interval [0,1] to the real line via the logit

function f pð Þ= log p
1−p

� �

. Besides considerations of what
ratios the odds may plausibly be spanning, here it may be
helpful to consider a uniform distribution in proportions
as an extreme case; for the log-odds, this implies a logistic
distribution that has a standard deviation of π

ffiffi

3
p =1:81 .

The UISD in this case amounts to (at least) σ1 = 2 (see
Supporting Information Appendix A.2). Similarly, event
rates (based on a Poisson model) are commonly com-
bined in meta-analyses based on a log-transformation.

Similarly to the cases of means and mean differences
discussed earlier, a log-transform is also commonly
applied in the context of two-group comparisons, for
example, for log-OR, log-IRR, log-RR or log-HR effect
measures. Logarithmic ORs are a natural extension of the
log-odds case above, since the logarithmic ratio of odds is
simply a difference of log-odds; other pairwise group com-
parisons generalize similarly from single-group estimates.
UISDs for log-ORs and log-RRs are derived by Röver,20

and for log-IRRs in Supporting Information Appendix A.3;
the corresponding figures for log-HRs are discussed by
Spiegelhalter et al. (Sec. 2.4.2).15 When discussing UISDs
for count outcomes, it is important to clearly indicate
whether these relate to subjects or events (e.g., for ORs the
numbers are four per subject20 and two per event15).

Empirical evidence on the magnitude of heterogene-
ities within meta-analyses published in the Cochrane

Database of Systematic Reviews is given by Turner
et al.75,79 For example, for a log-OR effect in a general
healthcare setting (without restricting to a specific type of
outcome), a log-normal distribution with μ = −1.28 and
σ = 0.87 was derived, implying a median and 95% qua-
ntile of 0.28 and 1.16, respectively (see also Table 3). Sim-
ilarly, Günhan et al.85 in a re-analysis of data from the
Cochrane Database of Systematic Reviews determined a
95% quantile of heterogeneity estimates of 1.05 for ana-
lyses based on binary data and log-ORs.

Consider for example the common case of a meta-
analysis of log-OR estimates. If we want to restrict prior
probabilities mostly to “reasonable” to “fairly high” het-
erogeneity levels (according to Table 2 in Section 3.4.3),
one could use a half-normal prior with scale 0.5, implying
P(τ > 1.0) = 4.6% and assigning 52% and 27% probability
to the “reasonable” and “fairly high” categories, respec-
tively. Figure 3 illustrates the half-normal(0.5) prior
along a half-normal(1.0) prior, and the prior proposed by
Turner et al.75 (log-normal with μ = −1.28 and σ = 0.87).
The heterogeneity categories from Table 2 are marked,
and at the bottom, the probabilities for the categories are
shown. The probabilities assigned by the half-normal(0.5)
prior and the “empirical” prior are roughly in agreement,
while the half-normal(1.0) prior would assign more or
less equal probabilities to the “reasonable,” “fairly high”
and “fairly extreme” categories, and leave only 8% proba-
bility for smaller values. Similar arguments hold also for
other log-transformed effect scales.

4.4 | Regression slopes

Very closely related to mean differences is the more gen-
eral case of meta-analysis of regression parameters (slopes
or interactions) and their standard errors.93 In the special
case of a single binary covariate, the regression effectively
reduces to a two-group comparison, and consideration of
additional covariates then may allow for some “adjust-
ment.” When the covariate is continuous, however, extra
care needs to be taken, since not only the endpoint's scal-
ing is relevant (the regression's “y variable”), but also the
regressor's scaling (the regression's “x variable”). Whether
the regressor is expressed in, say, days or weeks, affects
the resulting slope parameter (and its standard error) by a
corresponding re-scaling by a factor of seven. The regres-
sor's scaling will then similarly also affect the scale of the
anticipated heterogeneity: when combining estimated (lin-
ear) regression coefficients, which are to be interpreted as
“the expected change in y for a one-unit change in x,” the
heterogeneity between estimates depends on the units of
x. For example, the variability expected among temporal
changes that are expressed on a per-week scale rather than
a per-day scale should be seven times as large.

The immediate question then is what increment in the
regressor to base heterogeneity considerations on; what is
eventually needed is a statement of the form “for a change
in the regressor by a difference of Δx, the associated effects
are anticipated to vary by a magnitude of τ,” and that dif-
ference Δx needs to be specified. Sometimes there may be
obvious “natural” units to be used, for example in the
common case of a binary (zero/one) coded covariate
(e.g., for treatment vs. control or males vs. females); the
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obvious difference to consider here is an increment of
Δx = 1. Otherwise the width of the regressor's distribution
may be relevant.94 Consider again the case of a binary
covariate and a balanced setup; the standard deviation of
the binary variable will then be 1

2 , so that twice the stan-

dard deviation might generally be a sensible scale to con-
sider. Note though that this is by no means universally
applicable, as such scales may be affected by many fac-
tors (e.g., inclusion criteria in clinical trials) and might
also be very different between studies. Note that the Δx

value needs to be the same across the considered studies.
Once the “reference” increment Δx has been deter-

mined, a prior for the associated heterogeneity may be
formulated. In case the actual analysis then is done with
respect to a differing scaling, the prior needs to be re-
scaled accordingly. For example, if a prior with scale s

was determined for a per-week increment, but the actual
analysis is based on the per-day regression coefficients,
then their prior should have scale s

7 . The UISD σ1 then
also scales proportionally.

Note that the above arguments extend beyond simple
linear regressions with continuous outcomes, for example,

logistic regressions, Poisson regressions or survival ana-
lyses, in which regression parameters then relate to log-
ORs, log-IRRs or log-HRs. Once a reference increment Δx

has been determined, the arguments regarding log-trans-
formed endpoints discussed earlier in Section 4.3 apply,
and potential re-scaling issues still need to be considered.
A way to circumvent considerations of regressor's or
response's scales may be to move to standardized regres-

sion coefficients instead, which are unitless and are some-
what similar to SMDs (see also Section 4.2) or correlations
(see Section 4.5).88 Depending on the exact type of regres-
sion analysis and the standardization technique (e.g., in
case of a logistic regression, and when standardization is
done based only on the regressor's scale),95-97 arguments
relevant for log-transformed endpoints might also apply.

4.5 | Correlation coefficients

Estimated correlation coefficients (Pearson's r) are com-
monly quoted and summarized for studies dealing with
paired observations.3,4,98 Correlation coefficients are
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FIGURE 3 Comparison of the heterogeneity prior proposed by Turner et al. 75 for log-ORs in a general setting (a log-normal
distribution with μ = −1.28 and σ = 0.87, shown in blue) with half-normal priors (with scales 0.5 and 1.0). The bottom plots especially
contrast the implied prior probabilities for the heterogeneity categories proposed by Spiegelhalter et al. (Sec. 5.7)15 (see also Tables 2 and 3)
[Colour figure can be viewed at wileyonlinelibrary.com]
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restricted to the domain [−1, 1], with values of |r| = 1 indi-
cating perfectly linear (positive or negative) correlation, and
r = 0 indicating uncorrelatedness.99 Due to the problems
with bounded parameter spaces, correlation coefficients are
commonly analyzed after an appropriate transformation
using Fisher's z transform, which is defined as

zi = 1
2 log

1+ ri
1−ri

� �

=arctanh rið Þ . This transformation maps

the original domain to the real line, and in particular, it
is also a variance stabilizing transformation; the (approxi-
mate) standard error of the transformed zi value only
depends on the ith study's sample size ni and is given by

1
ffiffiffiffiffiffiffiffi

ni−3
p . Correlation values within the range −0.5< ri<0.5

are little affected by the transformation, which makes
more of a difference for more extreme values.

An upper limit to the expected heterogeneity may be
specified by considering a uniform distribution of θi

values across the range of correlation coefficients as a
“worst case.” For plain (correlation r) values, this would
imply a variance of 1

3 =0:582 . On the scale of z-trans-
formed values, this implies a distribution with probability
density function p zð Þ= 2

exp −zð Þ+ exp zð Þð Þ2 , that has a zero

mean and a variance of π2

12≈0:91
2 (these moments might

actually motivate a prior for the overall effect μ, too). The
standard error of zi values after transformation (see
above) implies a UISD of approximately σ1 = 1.0. With
that, it should usually be safe to expect heterogeneity
values well below τ = 1.0.

If τ values near unity (or 0.91) already imply rather
extreme heterogeneity, the question remains what consti-
tutes “large,” yet reasonable heterogeneity. For that, we
may consider the somewhat more moderate cases of
r � Uniform(−0.5, 0.5) or r � Uniform(0.0, 0.8). Both
these cases happen to lead to similar variances of
Var(z) = 0.302 on the transformed scale, so that τ = 0.30
may already be considered “large” heterogeneity.

While the use of “plain,” un-transformed correlation
values within the NNHM framework is a bit problematic
due to the bounded parameter space that is not reflected
in the model, it is not uncommon. We have already seen
some hints of what amounts of between-study variance
for plain correlations may be possible or plausible in the
considerations above; a value of τ= 1

ffiffi

3
p =0:58

(corresponding to a uniform distribution in r) would
already be extreme; one would most likely expect values
way less than even half as much.

Van Erp et al.82 collected heterogeneity estimates

reported in studies that were published in the Psychologi-

cal Bulletin. Although the figures were not identified as
being based on Fisher-z transformation or not (appar-
ently a mix of both was encountered), these numbers
may provide some empirical motivation. Among the

observed heterogeneity estimates for correlation end-
points in 539 analyses from 25 studies, a median and 95%
quantile of 0.12 and 0.29, respectively, were found. Simi-
larly, Steel et al.81 quote heterogeneity estimates from 292
management-related meta-analyses in the range of 0.0–
0.4, with a median of 0.16.

5 | EXAMPLE APPLICATIONS

5.1 | Mean differences

Grande et al.100 investigated the effect of physical exercise
(vs. no exercise as control) on the duration of acute respi-
ratory infections (ARIs). Four studies were jointly consid-
ered in a meta-analysis, the endpoint of interest was the
mean difference in the number of symptom days per epi-

sode. The relevant data are shown in Table 7.
The outcome here is measured in units of days

(change in symptom duration for treated patients relative
to the control group). For the purpose of the present anal-
ysis, ARIs were defined as “infections of the respiratory
tract that last for less than 30 days,”100 while ARI dura-
tions generally are substantially shorter, lasting of the
order of a week.101,102 With that, the reduction in symp-
tom days cannot be more than (roughly) a week. ARIs
may be caused by bacterial or viral pathogens; the effect
of antibiotic treatment is in a shortening of the order of
1 day.103 From the data (Table 7), we can derive estimates
of the UISD, which here is at an average of s1 = 3.9.

The treatment effect may be expected to be of the
order of days (anything below 1 day would probably not
be considered clinically meaningful), and a similar mag-
nitude may be expected for the heterogeneity. Values
τ > 1 would make the between-study heterogeneity larger
than the effect of antibiotics, which seems implausible.
Variations in treatment effects of the order of several days
would probably imply that the effect was several times
larger in some studies than in others.

A τ value of 1.0 would imply a median difference in
true effects of ≈ 1 day for a random pair of studies (see
Table 1), which might be at the upper end of the plausi-
ble range. A half-normal(0.5) prior would imply P

(τ ≤ 1) ≈ 95%, and considering the corresponding prior
predictive distribution (see Table 3), we can see that this
implies a 95% prior predictive interval of roughly ±1 day
around the overall mean effect.

For the present example, we would hence suggest a
half-normal(0.5) prior. Note that this is a common, well-
researched condition. For more uncertain cases, one
might want to go for a heavier-tailed prior. A meta-analy-
sis based on the half-normal(0.5) prior is illustrated in
Figure 4. Among the four studies considered, one
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suggests a stronger effect than the others, however, due
to its relatively small size and correspondingly large asso-
ciated standard error, it is still consistent with the
remaining three. The estimated heterogeneity (the
median and 95% credible interval [CI] are shown in the
bottom left of the forest plot) here has barely changed
from the a priori anticipated amount (see Table 3). The
heterogeneity's posterior is also illustrated in Figure 8;
prior and posterior are very similar in this case. The
resulting combined estimate then also suggests a more
moderate effect, namely, a reduction of the order of one
symptom day, with an uncertainty of about a factor of
two. The estimated heterogeneity is relatively low com-
pared to the width of the overall mean's CI, and so the
prediction interval is only slightly longer, and the shrink-
age intervals show substantially greater precision than
the original estimates. Sensitivity to other prior choices is
also investigated for this example in Supporting
Information Appendix D.4.

5.2 | Standardized mean differences

Aalbers et al.104 investigated the short-term effect of
music therapy on depression symptoms; four studies

comparing music therapy plus treatment-as-usual (TAU)
versus TAU alone were found. Within these four studies,
differing clinician-rated symptom scores were utilized in
order to quantify depression severity: the Hamilton rating
scale for depression (HAM-D), considering potentially
differing numbers of items between studies, as well as the
Montgomery-Åsberg depression rating scale (MADRS).
In order to facilitate a joint analysis, the meta-analysis
was based on SMDs (here: Hedges' g); the relevant data
are shown in Table 8.

The outcome measured on the SMD scale means that
a unit change in yi corresponds to a one standard devia-

tion change in the symptom severity score. Considering,
for example, the Albornoz (1992) study,105 which was
measuring change in symptom severity using the 17-item

HAM-D scale with a within-group standard deviation of
about 5 (see Table 8), a difference of 1 on the SMD scale
here would roughly correspond to a five-point change in
HAM-D score.106-109 In terms of SMD, this would already
be considered a “large” effect.89,90 The UISD for SMDs is
predicted at σ1 = 2, while from the present data here we
get a very similar empirical average of s1 = 2.2.

For the between-study differences, we would assume
that they would be mostly in the “small” to “medium”

range (�1)—otherwise effects would be differing by a

TABLE 7 Mean difference (MD)
example data due to Grande et al.100 �x, s
and n denote the treatment and control
groups' empirical means, standard
deviations and sample sizes

Treatment group Control group MD

i Study �x1; i s1;i n1;i �x2; i s2;i n2;i yi σi

1 Nieman (1990) 3.60 2.97 18 7.00 5.94 18 −3.40 1.57

2 Çilo�glu (2005) 5.15 1.56 60 6.10 1.00 30 −0.95 0.27

3 Barrett (2012) 9.30 5.13 47 11.40 5.75 51 −2.10 1.10

4 Sloan (2013) 5.30 1.50 16 6.30 2.20 16 −1.00 0.67

Note: The yi are the derived MDs and σi the associated standard errors that eventually go into the analysis
(see Section 2.1). Here, mean differences are on the scale of days (change in disease duration). Negative
estimates yi indicate a beneficial effect.

MD example (Grande, 2015)
quoted estimate shrinkage estimate

study

Nieman (1990)

Ciloglu (2005)

Barrett (2012)

Sloan (2013)

mean

prediction

estimate

−3.40

−0.95

−2.10

−1.00

−1.16

−1.15

95% CI

[−6.47, −0.33]

[−1.48, −0.42]

[−4.25, 0.05]

[−2.30, 0.30]

[−2.03, −0.44]

[−2.50, −0.05]

−5 −4 −3 −2 −1 0
mean differenceHeterogeneity (tau): 0.29 [0.00, 0.87]

SMD example (Aalbers, 2017)
quoted estimate shrinkage estimate

study

Chen (1992)

Radulovic (1996)

Albornoz (2011)

Erkkilä (2011)

mean

prediction

estimate

−2.03

−0.58

−0.75

−0.56

−0.97

−0.97

95% CI

[−2.61, −1.44]

[−1.10, −0.07]

[−1.57, 0.08]

[−1.05, −0.07]

[−1.69, −0.26]

[−2.48, 0.52]

−2.5 −2 −1.5 −1 −0.5 0
standardized mean differenceHeterogeneity (tau): 0.57 [0.18, 1.08]

FIGURE 4 Forest plots for the two examples discussed in Sections 5.1 and 5.2. In both cases, a half-normal(0.5) prior for the
heterogeneity τ was used. Besides the intervals based on the quoted estimates, the shrinkage intervals are shown in gray. At the bottom, the
credible interval for the overall mean (μ) is shown along with the prediction interval for a “new” additional study effect θk + 1. The estimated
heterogeneity (τ) is quoted in terms of the posterior median and shortest 95% credible interval

16 RÖVER ET AL.



standard deviation or more between studies, and also the
studies' confidence intervals (which are roughly of the
size σi≈

σ1
ffiffiffi

ni
p = 2

ffiffiffi

ni
p ) would be unlikely to have any overlap.

Rhodes et al.74 in their empirical investigation based on
the Cochrane Database of Systematic Reviews predicted a
median and 95% quantile of 0.18 and 2.43 for the hetero-
geneity τ (where the large upper quantile appears rather
extreme, based on the above arguments). Similarly, van
Erp et al.82 inferred a median and 95% quantile of 0.20
and 0.66, respectively, based on heterogeneity estimates

within a smaller data base.
A value of τ = 1.0 would imply a median difference of

≈0.95 (“large”) for a random pair of true study means θi
(see Table 1), which already appears like a rather extreme
amount; values of τ = 0.5 (implying mostly “medium”

sized between-study differences) or below seem to be
more plausible. A half-normal(0.5) prior would cover this
range and would imply a prior median (for τ) slightly
above the magnitude suggested the empirical investiga-
tions (see also Table 3).

For the present example, we would then suggest a
half-normal(0.5) prior as a slightly conservative choice, in
order to reflect the potential heavy-tailedness suggested
by Rhodes et al.,74 and to account for the fact that the
empirical data might be of limited relevance for the pre-
sent example data. A meta-analysis based on the half-
normal(0.5) prior is illustrated in Figure 4. Among the
four studies, three consistently indicate estimates in the
range 0.5–0.8, while the first one shows a huge effect esti-
mate of the order of 2.0; a positive amount of heterogene-
ity appears to be present (the CI for τ is in a strictly
positive range; see also Figure 8), and the eventual com-
bined estimate indicates a “small” to “very large” average
effect. Given the pronounced heterogeneity one might
discuss whether the estimation of a pooled effect is mean-
ingful. Nevertheless, we use this example to illustrate the
use of Bayesian methods in heterogeneous situations,
where heterogeneity cannot be explained and good rea-
sons are available to perform a quantitative meta-analysis
despite of large heterogeneity. The large estimated het-
erogeneity here results in a wide CI for the overall effect,

a very wide prediction interval, and also very little
shrinkage for the estimated study-specific effects θi.

5.3 | Log-transformed effect scales

5.3.1 | Log odds ratio

A systematic review was performed by Crins et al.110 to
investigate the effect of Interleukin-2 receptor antagonists
(IL2-RA) on recovery of pediatric patients following liver
transplantation. One aspect of interest was the occur-
rence of acute rejection (AR) reactions as a common
adverse event. Two randomized controlled trials
reporting such data were found, the event counts along
with the corresponding (logarithmic) odds ratios and
standard errors are shown in Table 9. Both studies indi-
cated a reduction in the chances of an AR event for the
treatment group.

The treatment effect is expressed and analyzed on a
logarithmic scale here. A heterogeneity magnitude of
τ = 1.0 would imply that any random pair of studies
would be expected to exhibit effects differing by a factor
of 2.6 (see Table 1), which seems quite extreme already;
values like τ = 0.5 or below seem more plausible. In a
similar investigation involving 14 studies and based on
adult patients (Goralczyk et al.111), a mean treatment
effect (log-OR) of −0.26, corresponding to an OR of 0.77,
was found. The UISD for a log-OR is at σ1 ≈ 4 per sub-
ject, while for the present data here we get an estimate of
s1 = 5.4. An empirical study based on a large number of
meta-analyses predicts a median (95% quantile) of 0.28
(1.16) for the heterogeneity (Turner et al.75), and an
investigation of heterogeneity estimates found a median
(95% quantile) of 0.00 (1.05) (Günhan et al.,85). In the
data from the closely related meta-analysis by Goralczyk
et al.111 the heterogeneity is estimated at 0.12 (0.38).

A half-normal(0.5) prior would mostly cover values
τ < 1.0 (up to “fairly high” heterogeneity according to
Table 2) with an expectation and median below 0.5 (see
also Table 3). The resulting 95% prior predictive interval

TABLE 8 Standardized mean
difference (SMD) example data due to
Aalbers et al.104 �x, s and n denote the
treatment and control groups' empirical
means, standard deviations and sample
sizes

Treatment group Control group SMD

i Study �x1; i s1;i n1;i �x2; i s2;i n2;i yi σi

1 Chen (1992) −98.23 15.19 34 −67.06 15.19 34 −2.03 0.30

2 Radulovic (1996) −16.50 10.00 30 −10.60 10.00 30 −0.58 0.26

3 Albornoz (2011) −8.17 5.89 12 −3.83 5.31 12 −0.75 0.42

4 Erkkilä (2011) −10.70 8.40 30 −6.05 8.06 37 −0.56 0.25

Note: The yi are the derived SMDs and σi the associated standard errors that eventually go into the analysis
(see Section 2.1). The original data are based on different depression symptom scores that are measured on
different scales. Negative estimates yi indicate a reduction in symptom severity.
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would still include effects within a factor of 3 around the
overall mean log-OR μ. For the present investigation, we
would then suggest a half-normal(0.5) prior as a reason-
ably conservative choice, which also agrees roughly with
the empirical evidence (see Figure 3). A meta-analysis
based on this prior is shown in Figure 5. In this example
we have two studies only, demonstrating the somewhat
speculative nature of inferring heterogeneity based on
sparse data, and highlighting the value of considering a-
priori probabilities. In the present case, the two studies
involved are not very large, and their resulting CIs are
overlapping, which makes the data consistent with a
wide range of heterogeneity values, from homogeneity
(τ = 0) up to magnitudes of τ = 10 or τ = 20. Including
the weakly informative heterogeneity prior, and effec-
tively down-weighting unreasonably large heterogeneity
values, then leads to an estimate of −1.81 for the log-OR,
corresponding to a reduction in the odds of an AR event
down to exp(−1.81) = 16%. While the uncertainty still is
large (ranging roughly from 5% up to 50%), the analysis
clearly indicates a substantial reduction in AR events
here. The heterogeneity's posterior density is also shown
in Figure 8; here we can see that for the present example
constellation, the posterior is very similar to the prior.
With the very uncertain original estimates (due to the
small sample sizes), the overall mean's CI is wide, but the
additional width of the prediction interval is limited due
to the (prior and empirical) information on the heteroge-
neity, and a noticeable shrinkage effect is also observable.

5.3.2 | Log incidence rate ratio

Four studies investigating the effect of ferric carboxymaltose
versus placebo in heart-failure patients with iron deficiency
were jointly analyzed by Anker et al.112 The main outcome
was the incidence rate ratio (IRR) with respect to the com-
posite endpoint of recurrent cardiovascular (CV) hospitali-
zations or CV death. The relevant available data are shown
in Table 10. The eventual analysis is based on the logarith-
mic ratio of the event rates (per 100 patient-years of follow-
up) of treatment over placebo group.

As in the previous example, the outcome is analyzed
on the logarithmic scale, so that many arguments apply
essentially analogously here. Regarding empirical evi-
dence on previously encountered amounts of heterogene-
ity, there are no studies available that would be directly
applicable for log-IRRs, however, odds ratios and rate
ratios have quite some similarity, so that these findings
also have some bearing here. The UISD here is at σ1 = 2
per event (see Supporting Information Appendix A.3);
with a total of 114 events observed among a total of 839
patients112 (a rate of ≈0.14 events per patient), this would
correspond to σ1≈

2
ffiffiffiffiffiffi

0:14
p =5:4.

per patient. For the present data, we empirically get
an average of s1 = 6.6.

For this example, we would again suggest a half-nor-
mal(0.5) prior. A meta-analysis based on this prior is
shown in Figure 5. While the data look homogeneous (all
intervals have some overlap, also because some studies

TABLE 9 Log-OR example data110

Treatment group Control group log-OR

i Study Events (ai) Total (n1;i) Events (ci) Total (n2;i) yi σi

1 Heffron (2003) 14 61 15 20 −2.31 0.60

2 Spada (2006) 4 36 11 36 −1.26 0.64

Note: a and n1 as well as c and n2 denote the event counts and total numbers of patients in treatment and control groups, which together summarize the trial
outcome in terms of a 2 × 2 table. The yi are the derived logarithmic odds ratios and σi are the associated standard errors that eventually go into the analysis
(see Section 2.1). Negative values here indicate a reduction of the event odds, that is, a beneficial treatment effect.

Odds ratio example (Crins, 2014)

quoted estimate shrinkage estimate

study

Heffron (2003)

Spada (2006)

mean

prediction

estimate

−2.31

−1.26

−1.81

−1.81

95% CI

[−3.48, −1.13]

[−2.52, −0.00]

[−2.91, −0.71]

[−3.30, −0.31]

−3 −2 −1 0
log−ORHeterogeneity (tau): 0.33 [0.00, 0.94]

Incidence rate ratio example (Anker, 2018)
quoted estimate shrinkage estimate

study

FAIR−HF (2009)

CONFIRM−HF (2015)

EFFICACY−HF (2015)

FER−CARS−01 (2018)

mean

prediction

estimate

−0.82

−0.39

0.09

−0.14

−0.49

−0.49

95% CI

[−1.53, −0.12]

[−0.96, 0.19]

[−1.55, 1.72]

[−2.64, 2.36]

[−1.10, 0.15]

[−1.49, 0.56]

−3 −2 −1 0 1 2
log−IRRHeterogeneity (tau): 0.24 [0.00, 0.75]

FIGURE 5 Forest plots for the two examples discussed in Sections 5.3.1 and 5.3.2. In both cases, a half-normal(0.5) prior for the
heterogeneity τ was used
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are very small and intervals are correspondingly wide),
we would still anticipate the possibility of heterogene-
ity—since from experience we know that heterogeneity is
frequently present, and because we know that heteroge-
neous circumstances are still likely to produce data that
may still “look homogeneous.”7 Compared to our a-priori
expectations of τ values up to 0.98 (see Table 3), the pos-
terior then suggests a slightly lower heterogeneity range
of up to 0.75, but the data do not provide very much evi-
dence in this regard (see also the posterior in Figure 8).
The mean treatment effect eventually is at a log-IRR of
−0.49, corresponding to an IRR of 61% (i.e., a reduction
in the event rate), with a CI ranging from 33% up to
116%. For these somewhat homogeneous estimates, one
can see that the ones with very large associated standard
errors eventually have shrinkage estimates close to the
overall prediction interval. A sensitivity analysis investi-
gating alternative prior choices for this example is also
shown in Supporting Information Appendix D.4.

5.3.3 | Log odds

Neuenschwander et al. investigated the use of historical
data in order to inform the analysis of a new data set.77 A
meta-analysis of several trials in ulcerative colitis was
performed in order to support the analysis of a subse-
quent phase II trial. The figure of interest here was the

probability for clinical remission at week 8 in placebo-
treated patients, and the main interest was in a prediction
for the new study's event probability, to then formally
integrate this in a subsequent analysis using a meta-ana-
lytic-predictive (MAP) approach.72 Four previous ran-
domized controlled trials reporting this endpoint were
available, their data are shown in Table 11. Instead of
working directly on the estimated probabilities p, the
analysis here is done based on the odds p

1−p
, and a subse-

quent log-transformation.92

Homogeneity of placebo rates is not expected—differ-
ences between control rates are among the main reasons
for requiring a control arm for each RCT, and for pursu-
ing a contrast-based analysis.113,114 The studies were
designed aiming for an estimate of the treatment effect,
and the placebo rate originally was mostly a nuisance
parameter here. However, some amount of similarity still
is anticipated, and the aim of this exercise is to carefully
derive the predictive distribution, which of course
depends on the amount of heterogeneity τ.

The earliest of the four studies was planned anticipat-
ing a remission rate of 10% for the placebo group,115 and
hence a UISD of σ1≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
0:1 +

1
0:9

q

=3:33 may be expected.
Empirically, we get an estimate of s1 = 3.2 from the pre-
sent data set.

As the endpoint are logarithmic odds, we may again
apply similar reasoning as in the previous subsections,
regarding the anticipated ratios of odds. However, a

TABLE 10 Log-IRR example
data112

log-IRR

i Study Rate ratio [95% CI] ni yi σi

1 FAIR-HF (2009) 0.44 [0.22, 0.90] 459 −0.82 0.36

2 CONFIRM-HF (2015) 0.68 [0.38, 1.21] 301 −0.39 0.30

3 EFFICACY-HF (2015) 1.09 [0.21, 5.54] 34 0.09 0.83

4 FER-CARS-01 (2018) 0.87 [0.07, 10.4] 45 −0.14 1.28

Note: The incidence rate ratios for the composite endpoint of recurrent cardiovascular (CV) hospitalizations
and CV mortality are given for each study. For the analysis, the logarithmic rate ratio is considered.
Negative values here indicate a reduction of incidence rates, that is, a beneficial treatment effect.

TABLE 11 Log-odds example data due to Neuenschwander et al.77

Remission
Proportion Odds

log-odds

i Study Events (xi) Total (ni) pi =
xi
ni

xi
ni−xi

= pi

1−pi
yi σi

1 Feagan (2005) 9 63 0.143 0.167 −1.79 0.36

2 Rutgeerts (2005a) 18 121 0.149 0.175 −1.74 0.26

3 Rutgeerts (2005b) 7 123 0.057 0.060 −2.81 0.39

4 Van Assche (2006) 6 56 0.107 0.120 −2.12 0.43

Note: The ni and xi here denote total numbers and the numbers of remitting patients among these. Analysis is done based on the derived log-odds yi and their
standard errors σi.
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major difference here is that while clinical trials are usu-
ally carefully designed to provide reliable estimates of
treatment effects (treatment/control contrasts), this is not
necessarily the case for the event rates that we are consid-
ering here; we may expect the log-odds to be more vari-
able than the log-ORs. With this in mind, and
considering conservatism and robustness particularly
desirable in the present context, we would suggest a half-
normal(1.0) prior here. From Table 3, we can see that the
implied 95% prior predictive interval then spans a range
of roughly a factor 9 around the median μ. Given the con-
text, it may be of particular interest to consider the asso-
ciated prior maximum sample size n?

∞
(see Section 3.4.5);

for the prior median of τ = 0.67, we have τ
σ1
= 0:67

3:2 =0:21,
corresponding to a maximum size of n?

∞
=23 (compared

to an original total of 363 subjects included in the analy-
sis). The prior's 95% quantile is (approximately) at τ = 2,
and larger values would effectively imply (with n?

∞
<3 )

an almost noninformative posterior predictive
distribution.

The eventual analysis is illustrated in Figure 6.
Looking at the heterogeneity's posterior (Figure 8), one
can see that heterogeneity here appeared to be less than
anticipated. The prediction interval is relatively wide,
and on the back-transformed scale is centered at a proba-
bility of 0.11 with its 95% posterior predictive interval
ranging from 0.03 to 0.34. The posterior predictive distri-
bution's standard error is 0.70, and relative to the UISD,
this roughly corresponds to an effective sample size of
3:22
0:702 =21 subjects.

5.4 | Regression slopes

Bergau et al.116 investigated predictors of all-cause mor-
tality among patients with an implantable cardioverter-
defibrillator (ICD) device. Several potential covariables
were considered, among these the left ventricular ejection

fraction (LVEF), which is a measure of the efficiency of

heart function that is usually determined via echocardi-
ography. LVEF is commonly expressed in percent, where
52%–72% are normally observed in healthy individuals,
while values below 30% are considered abnormal.117

Criteria for an indicated ICD therapy include various
conditions, including thresholds on the LVEF in the
range 30–40%.118 Five studies were found that had
reported on survival analyses including LVEF as a predic-
tor, and a meta-analysis was performed based on the
coefficients standardized to a 5% point decrease in LVEF;
the data are shown in Table 12. The different studies also
included different sets of additional covariates in their
analyses.116

The regressor, LVEF, here is expressed in percentages
(between 0 and 100), which might just as well have been
expressed as a fraction (between 0 and 1), while for the
analysis a unit of a 5 percentage point decrease was used
— this highlights the importance of clarifying the scale of
the increment Δx that heterogeneity considerations are to
be based on. Table 12 also shows the distributions of
LVEF within studies; these are roughly similar and have
standard deviations of the order of 10 percentage points.
For the “reference” increment Δx for judging plausible
heterogeneity magnitudes, we will then consider a differ-
ence of 20 percentage points, which roughly spans the
bulk of LVEF values encountered in each of the studies.
This also coincides with the range of values considered
“normal” (52%–72%) or the difference between “normal”
and “abnormal” ranges (≥52% vs. <30%) here. The
(empirical) UISD for the present data is at s1 = 1.9 (for
the 5% increments shown in Table 12, corresponding to
s1 = 7.5 for a 20% difference).

Since the regression coefficient is to be interpreted as
a logarithmic HR, we will assume a half-normal(0.5)
prior for the effect corresponding to a Δx = 20 percentage
point increment (analogously to the arguments made in
Sections 5.3.1 and 5.3.2). For the 5% point decreases con-
sidered in the analyses, this then implies a four-fold
smaller heterogeneity, that is, a half-normal(0.125) prior.

Proportion example (Neuenschwander, 2010)
quoted estimate shrinkage estimate

study

Feagan (2005)

Rutgeerts (2005a)

Rutgeerts (2005b)

Van Assche (2006)

mean

prediction

estimate

−1.79

−1.74

−2.81

−2.12

−2.06

−2.05

95% CI

[−2.50, −1.09]

[−2.25, −1.24]

[−3.57, −2.04]

[−2.97, −1.27]

[−2.81, −1.38]

[−3.57, −0.62]

−3.5 −3 −2.5 −2 −1.5 −1 −0.5
log−oddsHeterogeneity (tau): 0.42 [0.00, 1.18]

Regression example (Bergau, 2017)
quoted estimate shrinkage estimate

study

Maciag (2012)

Hage (2013)

Demirel (2014)

Konstantino (2016)

Rodriguez−Manero (2016)

mean

prediction

estimate

0.148

0.207

0.255

0.148

0.207

0.192

0.192

95% CI

[−0.110, 0.407]

[0.077, 0.337]

[0.017, 0.492]

[0.020, 0.277]

[0.101, 0.313]

[0.107, 0.278]

[0.043, 0.342]

0 0.1 0.3
log−HR slope (per 5%)Heterogeneity (tau): 0.034 [0.000, 0.120]

FIGURE 6 Forest plots for the examples discussed in Sections 5.3.3 and 5.4. For the log-odds, a half-normal(1.0) prior was used, and for
the log-HR regression slopes, a half-normal(0.125) prior was used for the heterogeneity τ
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Analysis results for a half-normal(0.125) prior are illus-
trated in Figure 6. The estimates are very homogeneous,
which is evident from the forest plot as well as from the
estimated heterogeneity (see also Figure 8). The overall
log-HR estimate is at 0.19, corresponding to 1.21-fold
increased mortality hazard for a 5% point decrease (wors-
ening) in LVEF.

5.5 | Correlations

Molloy et al.119 investigated the relationship between
conscientiousness and medication adherence. A total of
16 relevant studies reporting correlation coefficients of
the two factors were found, which were also graded
according to their methodological quality. Three of the
studies were rated with the highest quality score; their
data are shown in Table 13. The data are also available as
part of the metafor R package.91 In order to avoid prob-
lems due to the bounded parameter space of correlations
ri (between −1 and +1), we will use the Fisher-z trans-
formed values instead. Note that, since in the present
example the reported correlations (ru) are relatively close
to zero, the corresponding Fisher-z values (yi) are almost
identical here (see Table 13; ri and yi values only differ in
their third decimal place) and the transformation eventu-
ally makes little difference.

As elaborated in Section 4.5, we expect smaller magni-
tudes of heterogeneity for correlation endpoints (say,
mostly τ ≤ 0.3); the UISD is at σ1 = 1.0, which also
matches the figures we see empirically in the present data
set (s1 = 1.004). Van Erp et al.82 report a median and 95%
quantile of 0.12 and 0.29, respectively, for empirically
observed heterogeneity estimates from published studies.
Meta-analyzing the remaining set of 13 studies from the
present data set119 (using a uniform prior), in order to
quantify the evidence “external” to the example data, yields
a heterogeneity estimate of 0.07 with 95% CI [0.00, 0.17].

Heterogeneity values of τ = 0.1 or τ = 0.2 would
imply differences between a random pair of studies of a

similar order of magnitude (see Table 1). A half-normal
(0.2) prior for the heterogeneity would cover values
mostly in the range below 0.4, with a prior median at
τ = 0.13 (see Table 3).

For the present analysis, we would then suggest a half-
normal(0.2) prior for the heterogeneity. A meta-analysis of
the example data based on this prior is illustrated in Fig-
ure 7. The two traits were originally measured using differ-
ing scales, so that complete homogeneity might be
considered especially unlikely. The heterogeneity's
resulting posterior median is at τ = 0.12 (with the 95% CI
ranging up to 0.30), its posterior distribution is also

TABLE 12 Regression example
data116

LVEF (%) log-HR

i Study Mean SD HR [95% CI] ni yi σi

1 Maciąg (2012) 28.0 4.0 1.16 [0.90, 1.51] 121 0.148 0.132

2 Hage (2013) 28.0 15.0 1.23 [1.08, 1.40] 696 0.207 0.066

3 Demirel (2014) 31.9 9.3 1.29 [1.02, 1.64] 99 0.255 0.121

4 Konstantino (2016) 31.6 11.1 1.16 [1.02, 1.32] 1125 0.148 0.066

5 Rodríguez-Mañero (2016) 26.2 7.6 1.23 [1.10, 1.36] 1174 0.207 0.054

Note: Regression slopes result from survival analyses and are expressed in terms of hazard ratios (HRs) and
with reference to a 5% point decrease in LVEF. The baseline means and standard deviations of LVEF values
are also shown.

TABLE 13 Correlation example data91,119

Fisher's z

i Study Correlation ri ni yi σi

1 Stilley (2004) 0.24 158 0.245 0.080

2 Ediger (2007) 0.05 326 0.050 0.056

3 Jerant (2011) 0.01 771 0.010 0.036

Note: ri and ni here denote the empirical correlation coefficients and the
underlying sample sizes. The yi are the Fisher-z transformed correlations
and σi the associated standard errors that eventually go into the analysis (see
Section 2.1). A positive effect size yi here indicates a positive correlation.

Correlation example (Molloy, 2014)

quoted estimate shrinkage estimate

study

Stilley (2004)

Ediger (2007)

Jerant (2011)

mean

prediction

estimate

0.245

0.050

0.010

0.079

0.076

95% CI

[0.087, 0.402]

[−0.059, 0.159]

[−0.061, 0.081]

[−0.110, 0.299]

[−0.302, 0.492]

−0.1 0 0.1 0.2 0.3 0.4
Fisher−z transformed correlationHeterogeneity (tau): 0.12 [0.00, 0.30]

FIGURE 7 Forest plot for the example discussed in
Section 5.5. For the (Fisher-z transformed) correlations, a half-
normal(0.2) prior was used for the heterogeneity τ
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illustrated in Figure 8. The three studies are of differing
size and suggest neutral to slightly positive correlation
between conscientiousness and medication adherence.
The resulting mean estimate is positive at about 0.08,
while the CI ranges from negative to positive (−0.1
to +0.3).

6 | DISCUSSION

While executing a Bayesian meta-analysis is not techni-
cally difficult, specifying a widely acceptable prior
remains a challenge, especially when it comes to the het-
erogeneity parameter τ. Although the problem may
appear complex at first, it is usually possible to break
down the specification into a number of more specific
questions that are easier to approach one-by-one. These
steps are summarized in Table 6 and may be outlined as
follows: (i) what is the effect's scale? (ii) what is the prob-
able magnitude of other effects? (iii) how large is the unit
information standard deviation (UISD)? (iv) is relevant
empirical information available? The information may
then be related to more concrete prior specifications by
constraining (v) prior quantiles (of τ) (vi) prior predictive
quantiles (of θi), and (vii) other prior properties. We have
demonstrated the prior specification in seven applications
involving few studies and covering a range of common
effect scales and application areas, leading to sensible
prior distributions and results in all examples. Besides
the case of few studies, another context in which
(weakly) informative priors are useful is whenever

marginal likelihoods (or Bayes factors) need to be com-
puted.73 Calculation of marginal likelihoods requires
proper prior distributions, and special care must be taken
in their selection in order to avoid (seemingly) paradoxi-
cal results.1,120

In many applications, the results will be robust to var-
iations of the prior, which may also be checked in sensi-
tivity analyses. The prior specification will usually not be
the most crucial or influential among the line of assump-
tions being made, which include normality,5 exchange-
ability, the selection of estimates to be pooled, or the
choice between effect measures.121 Different prior specifi-
cations will of course leave their imprint on the posterior
distribution, for example, results based on short- or
heavy-tailed priors will reflect the differing assumptions,
which may be based on emphasizing regularization or
robustness aspects. There usually is no unique “correct”
prior, and “skeptical” or “enthusiastic” results may be
derived by implementing corresponding prior assump-
tions.42 Even uncertainty in the prior distribution itself
(or its scale) may be accommodated by using mixture
priors. Consideration of the stochastic ordering of hetero-
geneity priors may help assessing more or less conserva-
tive settings, which may be useful for the definition of
sensitivity analyses. However, we would also like to warn
against inflationary default specification and execution of
multiple analyses here, as the resulting alternative esti-
mates may lead to unnecessary ambiguity or inconsistent
(flip-flopping) conclusions. In Supporting Infor-
mation Appendix D.4, sensitivity analyses are discussed
in the context of the two examples from Sections 5.1 and
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Proportion example (Neuenschwander, 2010)
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Regression example (Bergau, 2017)
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Correlation example (Molloy, 2014)
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FIGURE 8 Marginal prior and posterior densities for the heterogeneity parameter τ in the seven examples discussed in Section 5. The
dashed lines show the prior densities, the solid lines show the posteriors. The area shaded in dark gray indicates the 95% credible interval,
the vertical line is the posterior median
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5.3.2. Pre-specification of analyses (and their intended
consequences) may help here. In case there is genuine a-
priori uncertainty about the heterogeneity's magnitude,
this might better be reflected in a single prior (e.g., in
terms of a mixture distribution). Either way, one needs to
be prepared and willing to base the eventual analysis
results on the posterior also when the data have little
information on heterogeneity to add to the weakly infor-
mative prior, as was the case for some of the examples
discussed here (see Figure 8). If it is not possible to spec-
ify a suitable (weakly) informative prior for the expected
heterogeneity, then one might have to resort to a more
conservative approach using uninformative priors
(or possibly even to a qualitative synthesis only).

Another central assumption crucial to the validity of
inference is the exchangeability (see Section 2.1). This
might be compromised by selection effects, for example,
publication bias122 or reporting bias.123 Especially in the
case of only few studies, such effects might be hard to
detect from the data, and information on the presence of
selection effects may need to come from considerations
of the context.

Choice of heterogeneity priors has consequences for
estimation of the overall mean parameter, but in particu-
lar also in prediction and shrinkage applications, as the
inferred heterogeneity directly impacts on the amount of
borrowing-of-strength20,33,72; smaller heterogeneity will
lead to stronger pooling of estimates, and larger heteroge-
neity will imply that individual estimates are only loosely
connected through the model.

Especially in regulatory settings such as drug
approval or health technology assessment (HTA) the defi-
nition of a standard prior distribution for the heterogene-
ity parameter is important to avoid post hoc discussions
in case the use of different prior distributions leads to
results suggesting conflicting interpretations. The Insti-
tute for Quality and Efficiency in Health Care (IQWiG)
in Germany is currently looking into determining the
empirical distribution for the between-study heterogene-
ity parameter from all published IQWiG reports with the
goal to motivate a suitable prior distribution for HTA
applications.

While in the present manuscript we focused on the
NNHM, some of the arguments laid out here are analo-
gously transferable to other models for pairwise meta-
analysis, for example, a Binomial-Normal model. Addi-
tional parameters and their priors may need to be speci-
fied in regard to baselines (which are often nuisance
parameters and assigned vague priors).85,113,114,124 More
complex applications in evidence synthesis such as meta-
regression or network-meta-analysis would again require
similar prior specifications regarding between-study het-
erogeneity in the effects, but would then entail additional

model components, for example, in order to accommo-
date individual-patient data (IPD).125-127 Analogous argu-
ments also extend more generally to hierarchical or
multilevel models, such as generalized linear mixed
models (GLMMs).2,128 The sensitivity analyses shown in
Supporting Information Appendix D.4 suggest that (for a
given prior median) the prior distribution's shape has lit-
tle impact on the results, as compared to the scaling of
the prior. As it might simplify prior specification further,
it will be interesting to investigate whether or to what
extent this feature holds more generally. In summary, the
application of Bayesian methods with weakly informative
prior distribution for the heterogeneity parameter can be
recommended for meta-analyses with random effects
especially in the common case of only few studies. This
paper provides guidance on the choice of useful prior dis-
tributions for various effect measures and data situations.
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