
This is a repository copy of Investigating István Mayer’s “improved” definitions of bond 
orders and free valence for correlated singlet-state wave functions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/170097/

Version: Published Version

Article:

Cooper, David L., Ponec, Robert and Karadakov, Peter Borislavov orcid.org/0000-0002-
2673-6804 (2022) Investigating István Mayer’s “improved” definitions of bond orders and 
free valence for correlated singlet-state wave functions. INTERNATIONAL JOURNAL OF 
QUANTUM CHEMISTRY. e26612. ISSN 0020-7608 

https://doi.org/10.1002/qua.26612

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



F U L L P A P E R

Investigating István Mayer's “improved” definitions

of bond orders and free valence for correlated singlet-state

wave functions

David L. Cooper1 | Robert Ponec2 | Peter B. Karadakov3

1Department of Chemistry, University of

Liverpool, Liverpool, UK

2Institute of Chemical Process Fundamentals,

Czech Academy of Sciences Prague 6, Suchdol,

Czech Republic

3Department of Chemistry, University of York,

York, UK

Correspondence

David L. Cooper, Department of Chemistry,

University of Liverpool, Liverpool L69 7ZD,

UK.

Email: dlc@liverpool.ac.uk

Abstract

Chosen from István Mayer's very impressive canon of important work on bond

orders and related quantities, we explore a paper from 2012 which introduced a

“pseudo spin density matrix” for correlated singlet-state wave functions, leading to

“improved” definitions of bond orders and free valence. Examining such “improved”

bond orders for the singlet ground states of H2, N2 and CH+ we find that all of them

exhibit sensible geometry dependences. Mayer's free valence index works well for

H2 and N2; the asymptotic behavior for CH+ turns out to be slightly more compli-

cated but can easily be explained. Using B2H6 to examine three-center bonding, a

simple generalization of Mayer's approach produces numerical results close to those

based on the “pseudo spin density matrix.” As expected, the various “correction”

terms remain small, albeit some of them are larger for the multicenter indices of

ground and excited singlet states of benzene, S2N2 and square (D4h) cyclobutadiene.

K E YWORD S

“improved” bond order, free valence index, multicenter index, pseudo spin density matrix

1 | INTRODUCTION

As is well known, a central theme of István Mayer's distinguished scientific career was the extraction of useful chemical information from molecu-

lar wave functions. Among his principal requirements for such methodologies were that they should be well-defined and produce results that

make proper chemical sense. He was of course particularly active in the development of successful measures of bond orders and related quanti-

ties. He published an interesting personal account of his work up to 2006 on the development of bond orders [1], with various subsequent

studies, as well as work on energy components, being included in his 2017 book [2]. He identified, in the intervening years, a specific issue with

his usual definition of bond orders for correlated singlet-state wave functions, publishing in 2012 his “improved” definitions of bond orders and

free valence for correlated singlet-state wave functions [3].

The well-chosen specific example in that 2012 paper [3] and subsequently in his 2017 book (on pages 99–100) [2] is the dissociation of the

singlet ground state of ethene into two triplet methylene fragments. Whereas the calculation of bond orders using the two open-shell CH2 sub-

systems does of course involve the spin density associated with the unpaired electrons, the overall singlet state of H2C CH2 has zero spin density

and so there can be no such net contribution to the bond orders. The effect on the calculated values turned out to be marginal in this case but,

characteristically, Mayer did of course note the conceptual inadequacy of being able to obtain different results for two triplets as opposed to one
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overall singlet [3]. Such issues do of course potentially arise whenever an overall singlet state dissociates into fragments with non-zero spin.

Mayer's solution to this general problem required the introduction for correlated singlet-state wave functions of what he termed a “pseudo spin

density matrix” R, leading to so-called “improved” definitions of bond orders [3].

A key purpose of the present work is to explore further István Mayer's “improved” definitions of bond orders [3] as well as his related R-

based definition of free valence [2, 3]. As diatomic examples we consider first the breaking of the formal single and triple bonds in H2 and N2

before examining the corresponding process for a heteronuclear example, namely the CH+ ion. We then move on to three-center bonding using

as an example the familiar case of B2H6, for which we compare results obtained with the matrix R with those from an alternative scheme. Along

the way, we also examine the characteristics for these various molecular systems of Mayer's proposed R-based definition of free valence; this

leads to a mix of predictable and unexpected outcomes. Finally, we employ ground and excited singlet states of benzene, S2N2 and square (D4h)

cyclobutadiene to investigate analogous “improved” definitions of multicenter indices for such aromatic and antiaromatic systems.

2 | THEORETICAL BACKGROUND

For certain special cases, such as a single determinant closed-shell restricted Hartree–Fock (RHF) N-electron wave function, the product DS of the

usual charge density matrix D and the corresponding overlap matrix S is duodempotent, that is, (DS)2 = 2DS. It thus follows for k = 1, 2, 3, … that:

½ð Þk−1 tr DSð Þk
h i

= tr DSð Þ=N ð1Þ

so that use of Mulliken-like (i.e., Hilbert space) partitioning of tr[(DS)k] leads, for successive values of k, to atomic populations (charges), Wiberg–

Mayer bond orders ( ~WAB), three-center bond indices, and so on.

Focusing first of all on Wiberg–Mayer bond orders, we may write:

~WAB =2
X

μ�A

X

ν�B

P
α
Sð Þμν P

α
Sð Þνμ + P

β
S

� �

μν
P
β
S

� �

νμ

h i

ð2Þ

in which P
σ is the charge density matrix for σ spin, with D = P

α + P
β, and the notation μ�A signifies that the relevant summation is restricted to the

basis functions associated with atom A.

Making use of the definition of the spin density matrix, PS = P
α
− P

β, we may trivially rewrite Equation (2) in the following equivalent form:

~WAB =
X

μ�A

X

ν�B

DSð Þμν DSð Þνμ + P
S
S

� �

μν
P
S
S

� �

νμ

� �

ð3Þ

In practice, of course, DS is rarely duodempotent for more general wavefunctions, but we may still use essentially the same partitioning of tr[(DS)k]

to define Wiberg–Mayer and higher-order bond indices.

A fundamental problem with using Equation (3) for the dissociation of ethene (as mentioned in the Introduction) arises because the spin den-

sity matrix P
S is necessarily null for correlated singlet-state wave functions. István Mayer's solution to this problem required the introduction of a

“pseudo spin density matrix” R, to be used instead of PS [2, 3]. Mayer's definition of R can be traced back to the introduction by Takatsuka et al of

a quantity which may be termed the distribution of effectively unpaired electrons [4, 5]. Generalizing such definitions, we may define a hierarchy

of matrices Q(k) according to the value of k = 1, 2, 3, … such that:

2ð Þk−1 DSð Þ− DSð Þk = Q
kð Þ
S

� �k

ð4Þ

In practice, Q(k) can conveniently be generated as follows:

tS=2k−1
DSð Þ− DSð Þk

t λð Þ = S½ tSð ÞS−½

Q
kð Þ = S−½ t λð Þ

� �1
k

S
−½ ð5Þ

Not only does the resulting matrix Q
(k) for k = 2 coincide with Mayer's matrix R, but our scheme for generating it also matches the procedure that

he presented [3].
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Mayer's “improved” bond order, which is obtained by substituting R for PS in Equation (3), then takes the form [2, 3]:

~W
R
AB =

X

μ�A

X

ν�B

DSð Þμν DSð Þνμ + RSð Þμν RSð Þνμ

h i

ð6Þ

Not only does this new definition solve the problem that Mayer had identified for the dissociation of ethene [2, 3] but it has the added advantage

that the sum of all possible ~W
R
AB values for a system with N electrons is now necessarily equal to 2N, as in the case of a single determinant closed-

shell RHF wave function.

The same matrix R also performs a role analogous to the spin density matrix in Mayer's related definition of a free valence index for correlated

singlet-state wave functions. This quantity, ~FA, which takes the form [2, 3]:

~FA =
X

μ�A

X

ν�A

RSð Þμν RSð Þνμ ð7Þ

is designed to be a measure of the extent to which the electronic structure around a given atom deviates in the correlated case from a situation

with only doubly occupied natural orbitals. (Part of István Mayer's justification [2, 3] for Equation (7) involves an expression [6, 7] for the total

valence, VA; we note that this definition of VA appears in his 2017 book [2] as equation (6.57) but that it was unfortunately misprinted in the

2012 paper [3], with some symbols missing from his equation (14).)

The Mulliken-like (Hilbert space) partitioning that is implicit in many of the above equations does of course restrict the types of basis set that

can reasonably be used. In order to produce results which make proper chemical sense, it is typically important to use basis sets with a high

degree of atomic character, as Mayer explains in his 2017 book (on page 14) [2]. Among others he identified the 6-31G** basis set as being suit-

able. On the other hand, contemporary large basis sets, typically including diffuse functions, are less likely to be well-suited and this does of

course also imply that there is no obvious basis set limit for quantities obtained with this type of approach.

As is well described in chapter 9 of István Mayer's 2017 book [2], an appealing alternative which circumvents such basis set issues is to per-

form the analysis in three-dimensional space with suitably defined atomic domains, whether overlapping (“fuzzy”) or disjunct. An obvious example

of the latter is the widespread use of quantum theory of atoms in molecules [8] (QTAIM) domains, ΩA. This is the approach that we have adopted

for almost all the results described here.

When working in the basis of (real) orthonormal natural orbitals ϕK with occupation numbers nK, the matrix D is of course diagonal, with ele-

ments nK, and S is a unit matrix. The matrix Q(k) also turns out to be diagonal, with elements:

Q
kð Þ
JJ = 2k−1nJ−nJ

k
� �1

k

ð8Þ

and we note that such values are clearly zero when nJ is 0 or 2.

The QTAIM-generalized [9] “improved” Wiberg–Mayer index then takes the following relatively simple form [10, 11]:

WR
AB =

X

K

X

L

nKnL +RKKRLLð Þ K Lj i
ΩA

L Kj i
ΩB

D iDh

ð9Þ

in which K Lj i
ΩA

D

denotes a domain-condensed overlap integral:

K Lj i
ΩA

=
ð

ΩA

ϕK rð ÞϕL rð Þdr

*

ð10Þ

The free valence index, ~FA, as defined in Equation (7), also adopts a simple QTAIM-generalized form, namely:

FA =
X

K

X

L

RKKRLL K Lj i
ΩA

L Kj i
ΩA

DD

ð11Þ

Given that RJJ = [nJ (2 − nJ)]
½
, it is of course now rather easy to see from Equation (11) that this index does indeed quantify deviations from double

occupancy.
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We turn now to the definitions of the three-center indices which can be obtained from the partitioning of 1/4 tr((DS)3). Starting with the rele-

vant QTAIM-generalized expressions for the case of non-zero spin and then recognizing again that the spin density identically vanishes every-

where for a correlated singlet-state wave function, it does of course make sense for such singlet states to replace all occurrences of PS with the

matrix R. As has been shown before [11, 12], this strategy leads to the following expression for an “improved” three-center quantity which we

denote XR
ABC:

XR
ABC = 1/4

X

J

X

K

X

L

nJnKnL + nJRKKRLL +RJJnKRLL +RJJRKKnLð Þ ϕJ ϕKj i
ΩA

ϕK ϕLj i
ΩB

ϕL ϕJj i
ΩC

D iDDh

ð12Þ

However, we notice in this case that [11]:

X

A

X

B

X

C

XR
ABC =½

X

J

n2J 3−nJð Þ ð13Þ

so that there is no direct relationship of the sum of all possible XR
ABC values to the total number of electrons, N. This potential drawback has

prompted us to propose the following admittedly ad hoc generalization of Equation (9) to the three-center case [10, 11]:

XQ
ABC =

1/4

X

J

X

K

X

L

nJnKnL +Q
3ð Þ
JJ Q

3ð Þ
KKQ

3ð Þ
LL

� �

ϕJ ϕKj i
ΩA

ϕK ϕLj i
ΩB

ϕL ϕJj i
ΩC

D iDDh

ð14Þ

It is straightforward to show that the sum of all possible XQ
ABC values is equal to N, essentially by construction. Furthermore, this very simple

expression for the three-center quantities XQ
ABC can of course easily be generalized to higher numbers of centers. One could even trivially general-

ize the definition of FA in Equation (11) to k>2, again using the appropriate Q
(k) matrix, but it is not clear whether the resulting quantities would

be of any practical use.

3 | COMPUTATIONAL DETAILS

We employed full configuration interaction wave functions for H2 and full-valence complete active space self-consistent field (CASSCF) calculations

for both of N2 and CH+ to study the variation with nuclear separation, R, of the Wiberg–Mayer bond order and the free valence index FA for each

system. All the required wave functions were calculated in D2h or C2v symmetry, as appropriate, using standard cc-pVTZ basis sets. In practice, the

wave functions for H2 were generated by means of “2 electrons in 28 orbitals” CASSCF calculations, those for N2 involve “10 electrons in 8 orbitals”

[11, 13] and those for CH+ (X1
Σ
+) involve a “5 electrons in 4 orbitals” construction. For each of these three molecular species, CASSCF calculations

were carried out for a range of values of R using the MOLPRO [14–16] quantum chemistry package. We do not expect expansions of the CASSCF

active spaces or extensions of the basis sets to lead to significant differences in any of the R dependences of the quantities we examine here.

For investigating three-center indices we used the same wave function for B2H6 as in previous work [11, 13], namely full-valence CASSCF

(“12 electrons in 14 orbitals”) with a standard cc-pVTZ basis set. An obvious advantage of using the same natural orbital expansion as in a previ-

ous study is that this enables direct comparisons of results. For much the same reason, when investigating multicenter indices (k > 3), the wave

functions for ground and excited singlet states of benzene, S2N2 and square (D4h) cyclobutadiene were taken from a recent study of these various

aromatic and antiaromatic ring systems [17]. This means in practice that the wave functions were calculated at the CASSCF(6,6) and CASSCF(4,4)

levels for C6H6 and square (D4h) C4H4, respectively, using the 6-311++G(2d,2p) basis set, and at the CASSCF(22,16) level for S2N2, using instead

the cc-pVTZ basis set. A few wave functions were also generated for these ring systems with Gaussian 09 [18] using the 6-31G** basis set so that

we could use Mulliken-like (i.e., Hilbert space) partitioning for comparison.

The various bond indices and free valences reported in the present study were calculated using our own programs. Domain-condensed over-

laps required for the QTAIM-generalized approach were generated using the AIMAll program [19].

4 | RESULTS AND DISCUSSION

We compare in Figure 1A the dependence on R for H2 of the QTAIM-generalized “original” and “improved” definitions of the Wiberg–Mayer

bond order. For R = 0.75 Å, near Re, the “improved” value is WR
HH0 =0:961, with the R-based correction term in Equation (9) accounting for only

0.012. Indeed, the curves obtained with the two definitions remain very close to one another over the full range of nuclear separations that we

considered (0.4–20Å). Both values, and thus also the R-based correction term, do of course go to zero at large R. The monotonic decrease of the

4 of 8 COOPER ET AL.



Wiberg–Mayer bond order with increasing R can be seen (Figure 1A) to feature a point of inflection near 1.84Å. Looking instead at the free

valence index, the values increase monotonically from FH = 0.059 at 0.75Å toward unity at large R (see Figure 1A).

The general form of the observed R dependence of WR
HH0 and of FH does of course meet our chemical expectations, with the two curves being

almost mirror images of one another, so that the curves for WR
HH0 and 1− FH run essentially parallel to one another. This does though have the

obvious consequence in the present case that an examination of the R dependence of FH does not provide new information.

The corresponding results for the dissociation of N2 into two N(4S) atoms, as depicted in Figure 1B, tell a somewhat similar story. For

R = 1.1 Å, near Re, the “improved” Wiberg–Mayer bond order is WR
NN0 =2:819, with the R-based correction term in Equation (9) accounting for

only 0.027. As was the case for H2, the values decrease monotonically to zero, with the two curves remaining close to one another. There is again

a single point of inflection, this time near 1.81Å, whereas we might have hoped to see a first one for the breaking of the double π bond and then

a second one at larger R for breaking the σ bond.

We find that the corresponding value of FN increases monotonically from 0.265 at 1.1 Å toward the expected value of 3 at large R, with the

curve for FN being almost the mirror image of the one for WR
NN0 (Figure 1B). Indeed, the curves for WR

NN0 and 3− FN run almost parallel to one

another so that, just as was the case for H2, the R dependence of FN does not provide new information.

As can be seen from Figure 2A, the R dependence of the Wiberg–Mayer bond order for the formal single bond in the 1
Σ
+ ground state of

CH+ follows the same basic pattern as for H2 and N2. The “improved” Wiberg–Mayer bond order for R = 1.1 Å, near Re, is W
R
CH =0:914 with the

R-based correction term accounting for only 0.009. The correction again turns out to be small over the full range of R that we have considered. It

does though turn out that the corresponding values of FA for the carbon and hydrogen centers do not follow so closely the behavior that was

observed for H2 and N2.

Given that the first ionization energy of the C atom is somewhat lower than that of H, the dissociation limit in cylindrical symmetry is

C+(2s22pz) + H(1s). Such a situation can be realized by natural orbital occupation numbers of 2, for C+(2s2), and then two values of 1, for C+(2pz)

and H(1s), and zero occupancies for both of C+(2px) and C+(2py). As such we could reasonably expect the limiting values of FA for either of the

atomic domains to be unity. As is shown in Figure 2A, this is indeed what is observed for the hydrogen center, for which the value of FH increases

monotonically from 0.030 at 1.1 Å toward unity at large R. The corresponding value for the carbon center at R = 1.1 Å is 0.537 and we again

observe a monotonic increase with increasing R, but clearly toward values which significantly exceed unity (see Figure 2A).

Whereas we find for the analogous σ-only “4 electrons in 3 orbitals” CASSCF active space (i.e., omitting 2px and 2py) that the values of FA at

R = 5.5 Å are 0.99985 and 0.99976 for the carbon and hydrogen centers, our full-valence CASSCF values are instead 1.36871 and 0.99976, respec-

tively. The description of the C+(2s22pz) limit can of course be improved in the full-valence CASSCF wave function by means of excitations from 2s2

into (2px)
2 + (2py)

2. This means that instead of conforming to the simple pattern 2, 1, 1, 0, 0, the actual occupation numbers are 2 − x, 1, 1, x, x. The

value of x is rather small, being on the order of 0.05, but it does in fact turn out that even such small values can significantly affect the value of FC.

F IGURE 1 Geometry dependence of WAB (broken line), WR
AB (filled

circles), and FA (filled triangles): (A) H2, (B) N2

COOPER ET AL. 5 of 8



We constructed a simple model for this full-valence CASSCF description (see Figure 2B) by recognizing that the value of FC is given by the

expression 2x(2 − 2x) + 1 + 2 x(2 − x), so that FC exceeds unity by 8x − 6x2. Clearly there will be a maximum value of FC = 11
3
11/3 when x = 2/3, but

this would of course be a somewhat extreme situation. Even so, the function 8x−6x2 does vary fairly rapidly even for small values of x.

Given that the actual values of x for CH+ from the full-valence CASSCF calculations at large R is on the order of 0.05, our simple model predicts

FC � 1.385. Such values, significantly exceeding unity, are indeed what we have found. Far more straightforward behavior would undoubtedly be

observed when using instead local spin analysis [20], for which the asymptotic values of hŜ
2
iA for the C and H centers would both be 3/4. Even

though it turns out to be entirely straightforward to understand how the observed FC values on the order of 1.4 occur for formally C+(2s22pz),

they certainly diminish somewhat our confidence in using such quantities in comparisons of the bonding situations in different molecules.

Now, using B2H6 as our example, we consider also the three-center analogs of Wiberg–Mayer bond orders which correspond instead to par-

titioning of 1/4 tr[(DS)3]. Before doing so, we look first at the hydrogen atoms in this molecule, for which we find FA values for the bridging (Hb) and

terminal (Ht) domains of 0.061 and 0.044, respectively. We notice that these small values are comparable to the value of 0.059 that we found for

H2 near its equilibrium geometry.

Instead of examining in turn the Wiberg–Mayer bond orders for each different pair of individual atoms as well as the corresponding three-

center indices for all possible triads, it proves more convenient to assemble the various B and Ht QTAIM domains into two BH2 domains. Accord-

ingly, we report in Table 1 our free valence indices, Wiberg–Mayer bond orders and three-center indices for the two BH2 and two Hb domains.

Given the invariance of any of the various XABC quantities to permutations of the indices it is convenient, when all of three indices are differ-

ent, to quote in each case a (single) value of X(A,B,C) = 3! XABC, as we have done in Table 1. In keeping with our traditional notions of three-center

two-electron bonding across the bridging hydrogen atoms, we observe from Table 1 that the largest three-center index occurs for the BH2, Hb,

B0H2 triad. There is though also a nontrivial value for the BH2, Hb, Hb0 triad. A further observation from these various values is that the correction

terms involving the matrices R and Q(3) are small, with it making hardly any difference whether we use values of XR(A,B,C) or XQ(A,B,C).

F IGURE 2 (A) Geometry dependences for CH+ of WCH (broken
line), WR

CH (filled circles), FC (filled squares) and FH (filled triangles).
(B) Modeled dependence of FC on x, the occupancy of 2px and 2py

TABLE 1 Free valence indices,
Wiberg–Mayer bond orders and three-
center indices for the two BH2 and two
Hb domains in B2H6

F(BH2) 0.164 F(Hb) 0.061

W(BH2,B0H2) 0.174 X(BH2,Hb,B0H2) 0.114

WR(BH2,B0H2) 0.176 XR(BH2,Hb,B0H2) 0.115

W(BH2,Hb) 0.489 XQ(BH2,Hb,B0H2) 0.115

WR(BH2,Hb) 0.502 X(BH2,Hb,Hb0) 0.081

W(Hb,Hb0) 0.207 XR(BH2,Hb,Hb0) 0.085

WR(Hb,Hb0) 0.211 XQ(BH2,Hb,Hb0) 0.085
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The largest of the “improved” Wiberg–Mayer bond orders, WR
AB =0:502 (see Table 1), occurs for the BH2, Hb pair, as might have been

expected, with the R-based correction term accounting for just 0.013. We do though also observe smaller Wiberg–Mayer bond orders, on the

order of 0.2, for the BH2, B0H2 and Hb, Hb0 pairs. It is important not to suppose that these values necessarily indicate a degree of direct chemical

bonding. As was noted, for example, by Ponec and Uhlik [21], the existence of genuine three-center indices for the ABC triad demands nontrivial

indices not only for the AB and BC pairs but also for the AC pair. In his 2017 book [2], István Mayer described (on page 78) such an AC bond order

in the absence of direct chemical bonding as resulting from a sort of interference, potentially enhancing molecular stability via an attractive

exchange contribution.

As our final group of examples, we now use correlated wave functions for ground and excited singlet states of benzene, S2N2 and square

(D4h) cyclobutadiene to investigate “improved” definitions of multicenter indices (k > 3) for such aromatic and antiaromatic systems. Instead of

considering the C4H4 and C6H6 rings in terms of separate C and H atoms, as was done in our recent study [17], we have chosen here to perform

the analysis in terms of merged CH domains. We find that the values of the free valence index FCH for these hydrocarbon rings all lie in the range

2.81–2.98, with no sign of any link to whether a given state is aromatic or antiaromatic.

Our various four- and six-center indices, with and without Q-based corrections, are reported in Table 2. Note that these values include the

terms for all permutations of the indices and, as in our previous study [17], they have been calculated using spin-orbitals instead of orbitals,

enabling direct comparisons with the previous work. The resulting QTAIM-generalized quantities for C6H6 turn out to be slightly larger for six CH

units than for just the six C atoms [17], with the opposite being true for the corresponding states of square (D4h) C4H4. These small differences

do not modify the patterns of values for the various singlet states of either of these molecules.

For the sake of comparison, we also calculated multicenter indices and Q-based correction terms for some of these states using Mulliken-like

(i.e., Hilbert space) partitioning with the 6-31G** basis set. In particular, we also report in Table 2 our Q-corrected values, ~X
Q
6 , for the six C atoms

in the S0, S1 and S2 states of benzene.

We observe from Table 2, especially for C6H6 and S2N2, a greater impact of the Q-based correction terms on the QTAIM-generalized indices than

was the case for the diatomic molecules and for B2H6. Even so, the basic patterns of values for the various singlet states of each molecule do still turn

out to be much the same as we have reported previously [17] so that the inability of these multicenter indices to distinguish properly between the aro-

matic and antiaromatic singlet states of a given molecule has not been remedied by the inclusion of the correction terms. Instead, we still observe the

lack of any clear distinction between, for example, the six-center indices for the antiaromatic S1 and aromatic S2 states of benzene [17].

The Q-based correction terms for the six C atoms of benzene from Mulliken-like (Hilbert space) partitioning turn out to be somewhat smaller

than are those from the QTAIM-generalized approach. Indeed, even when expressed to four decimal places, it is only for the S2 state that they

make any difference, increasing the overall value from 0.0037 to 0.0039. Clearly the values of ~X
Q
6 (Table 2) again do not properly distinguish the

S1 and S2 states of this molecule, so that our key conclusion is the same as before.

The underlying problem remains after the inclusion of these correction terms, namely the reliance on one-electron density matrices (and thus

occupation numbers). Such density matrices do of course reflect the multi-reference character but they can, as has been shown previously [17],

nonetheless obscure important details that are apparent in the CASSCF wave functions, such as the degree of partial diradical character.

5 | CONCLUSIONS

We have explored in the present work a paper from 2012 [3], chosen from István Mayer's very impressive canon of important work on bond

orders and related quantities. It is clear that Mayer was not at all content that the numerical consequences of defects in some of his original defi-

nitions were marginal for the dissociation of the singlet ground state of ethene into two triplet methylene fragments [2, 3]: there was nonetheless

a conceptual inadequacy to be resolved. His solution required the introduction for correlated singlet-state wave functions of a “pseudo spin den-

sity matrix” R, which led to “improved” definitions of bond orders and free valence [2, 3].

To explore these newdefinitions, we examined the breakingof the bonds in the singlet ground states of H2, N2 andCH
+. The “improved” bond orders

do show sensible geometry dependence even if, as is to be expected, theR-based correction terms are always small.Mayer's free valence indexworkswell

for H2 andN2; the asymptotic behavior in the case of CH+ turns out to be slightly more complicated, but it can nonetheless easily be explained.

Treating B2H6 as two BH2 units linked by two bridging H atoms, we explored the behavior of three-center indices in this familiar example

which transcends the usual Lewis model through the incorporation of three-center two-electron bonding units. A simple generalization of Mayer's

TABLE 2 Four- and six-center
QTAIM-generalized indices for singlet
states of C6H6, S2N2 and square (D4h)
C4H4, as described in the text, with ~X

Q
6

from Mulliken-like (Hilbert space)
partitioning

C6H6 C4H4 S2N2

X6 X
Q
6

~X
Q
6 X4 X

Q
4 X4 X

Q
4

S0 0.020 0.030 0.028 0.033 0.032 0.052 0.126

S1 0.002 0.011 0.002 0.023 0.016 0.013 0.052

S2 0.003 0.013 0.004 0.045 0.080
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approach, using a matrix which we have denoted Q
(3), was found to produce numerical results close to those from the R-based scheme. As is to

be expected, all of these various correction terms remained small.

Moving on to four- and six-center indices, we examined values for ground and excited singlet states of C6H6, S2N2 and square (D4h) C4H4.

The Q-based correction terms turned out to be larger than for the diatomic molecules and for B2H6. Nevertheless, they did not impact the basic

inability of these multicenter indices to distinguish properly between the aromatic and antiaromatic singlet states of a given molecule.

There are many who might ignore marginal effects on calculated values but, whether it was in the 2012 paper [3] or indeed in many of his

others, science benefitted greatly from István Mayer's dedication to developing well-defined and conceptually valid approaches which lead to

results that make proper chemical sense.
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