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Abstract 1 

Circadian behavioral deficits, such as increased daytime naps and reduced night-time sleep, are common in 2 

Alzheimer’s disease and other tauopathies. But it has remained unclear whether these circadian 3 

abnormalities arise from tau pathology in either the master pacemaker or downstream neurons. Here we 4 

study this question by selectively expressing different human tau proteins in specific Drosophila brain circuits 5 

and monitoring locomotor activity under light-dark (LD) and in “free-running” dark-dark (DD) conditions. We 6 

show that expressing human tau proteins in the fly brain recapitulates faithfully several behavioral changes 7 

found in tauopathies. We identify discrete neuronal subpopulations within the clock network as the primary 8 
target of distinct circadian behavioral disturbances in different environmental conditions. Specifically, we 9 

show that the PDF-positive pacemaker neurons are the main site for night-activity gain and -sleep loss, 10 

whereas the non-PDF clock-neurons are the main site of reduced intrinsic behavioral rhythmicity. 11 

Bioluminescence measurements revealed that the molecular clock is intact despite the behavioral 12 

arrhythmia. Our results establish that dysfunction in both the central clock- and afferent clock-neurons jointly 13 

contribute to the circadian locomotor activity rhythm disruption in Drosophila expressing human tau. 14 

 15 

Significance Statement 16 

This study directly links in vivo human tau protein expression in region-specific Drosophila clock-neurons with 17 

the resulting sleep and circadian rhythm deficits to extract new knowledge of how Alzheimer’s disease and 18 

other tauopathies perturb the balance of activity and sleep. We anticipate that this novel approach will 19 

provide a useful general template for other studies of neurodegeneration in model organisms, seeking to 20 

dissect the impact of neurodegenerative disease on circadian behavior, and further deepening our 21 

understanding of how the clock-neuron network works. 22 

23 
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Introduction 1 

Alzheimer’s disease (AD) is a neurodegenerative disease that leads to progressive dementia (Salmon et al., 2 

1999). It is characterized neuropathologically by progressive cortical neurodegeneration and the presence of 3 

extracellular amyloid plaques and intracellular tau tangles (Alzheimer, 1906; Braak and Braak, 1988; Salmon 4 

et al., 1999). The vast majority of AD patients also exhibit circadian disturbances, including increased night-5 

time wakefulness and fragmented sleep, and reduced amplitude rhythms with phase shifts  (Musiek et al., 6 

2015). 7 

 8 

Several animal Aβ42 pathology models, including 3xTG-AD mice expressing disease-linked mutant APP and 9 

tau, exhibit circadian abnormalities (Chen et al., 2014; Long et al., 2014). However, whether animal tau 10 

pathology models also display circadian dysfunction remains elusive. Circadian locomotor activity has been 11 

studied in two tau mouse models with contradictory findings (Koss et al., 2016; Stevanovic et al., 2017). 12 

Whereas, in Drosophila, disruption of the circadian kinase, doubletime, causes endogenous tau cleavage, 13 

resulting in circadian disturbances (Means et al., 2015). 14 

 15 

At a cellular level, circadian rhythms emerge from interlocking ‘clock gene’ (bmal1, clock, period, 16 

cryptochrome) transcription/translation feedback loops, which produce 24-hour gene expression 17 

oscillations. Most mammalian cells exhibit circadian oscillations. However, the hypothalamic suprachiasmatic 18 

nucleus (SCN) (~20,000 neurons) is the master pacemaker as SCN neurons receive direct photic input and 19 

entrain to light-dark (LD) cycles. They then synchronize all the other circadian oscillators through various 20 

neuronal and humoral pathways. These circadian oscillations persist in the absence of external cues (e.g. in 21 

constant darkness) accounting for “free-running” circadian activity rhythms (Buhr and Takahashi, 2013). AD 22 

patient brains show both extensive SCN cell loss (Swaab et al., 1985; Zhou et al., 1995; Swaab et al., 1998) 23 

and rhythmic but phase-shifted clocks (Cermakian et al., 2011). These findings indicate that either central 24 

clock damage, or output failure, may cause circadian dysfunction. 25 

 26 

Drosophila is uniquely accessible to powerful neurogenetics and robust activity/sleep-rhythm monitoring 27 

(Fig. 1), allowing studying how tau affects the evolutionarily conserved circadian system (Bell-Pedersen et al., 28 

2005). Its ~150 clock-expressing neurons, organized in sLNvs, lLNvs, LPNs, LNds, DN1s, DN2s and DN3s 29 

clusters, and output neurons drive circadian locomotor activity (Fig. 1A). The neuropeptide, pigment 30 

dispersing factor (PDF), which is expressed by ~16 lateral neurons within the sLNvs and lLNvs clusters, 31 

synchronizes all the clock-neurons. Specifically, the sLNVs are the master pacemakers, as they control the 32 

speed of “free-running” behavioral and molecular rhythms in a PDF-dependent manner (Dubowy and Sehgal, 33 

2017).  34 

 35 
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Drosophila tauopathy models, in which human wild-type or frontotemporal dementia (FTD)-linked mutant 1 

tau is ectopically expressed in the developing fly brain or visual system reproduce many of the behavioral 2 

and neurophysiological changes seen in human AD patients, including adult-onset progressive 3 

neurodegeneration, a reduced lifespan and learning and memory deficits (Wittmann et al., 2001; Jackson et 4 

al., 2002; Mershin et al., 2004; Nishimura et al., 2004). However, hitherto no studies have compared the 5 

circadian and sleep disturbances in Drosophila expressing different human tau proteins in discrete brain 6 

circuits at various ages. 7 

 8 

In this study, we discovered both isoform- and region-specific differences in tau-induced circadian behavioral 9 

abnormalities in different light conditions. We identified the PDF expressing-neurons as the main site of 10 

activity gain and sleep loss, affecting the LD conditions’ night component. The non-PDF clock-neurons were 11 

found to be the main site of reduced intrinsic behavioral rhythmicity. Through bioluminescence 12 

measurements, we showed that the molecular clock is functional in tau-expressing flies despite the 13 

behavioral arrhythmia. These results suggest that the circadian and sleep phenotypes in human tau-14 

expressing Drosophila emerge from disrupted communication between the central clock and downstream 15 

clock-neurons and the clock-neurons output neurons, rather than from damage to the master pacemaker. 16 

As the tau-expressing flies’ behavioral changes mirror those seen in human AD patients, we suggest that tau-17 

mediated clock neuronal dysfunction drives the sleep and circadian phenotypes in both flies and humans. 18 

We further suggest that both isoform- and region-specific effects contribute to the discrete circadian and 19 

sleep phenotypes in distinct tauopathies. 20 

  21 
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Materials and Methods 1 

 2 

Fly stocks 3 

Flies were raised on standard cornmeal food under a 12 h light:12 h dark (LD) cycle at 25 °C and 70 % humidity. 4 

All lines were backcrossed at least five generations to the Canton-S wild-type stock. The following lines were 5 

used in the study: Canton-S (#1), Elavc155-Gal4 (#458) and UAS-human 2n4r tauWT1.13 (#51362). These were 6 

obtained from the Bloomington Drosophila Stock Centre. UAS-human 0n4r tauR406W (Wittmann et al., 2001) 7 

was a gift from Dr Mel Feany (Harvard Medical School, USA). Tim-Gal4, Pdf-Gal4 (Kaneko and Hall, 2000) and 8 

BG-luc (Stanewsky et al., 1997) flies were kindly provided by Dr Ralf Stanewsky (University of Münster, 9 

Germany). Pdf-Gal80 (Stoleru et al., 2004) was a gift from Dr Charlotte Forster (University of Würzburg, 10 

Germany). 11 

 12 

Locomotor behavior assay  13 

Adult males were collected within a few hours of eclosion and ≤20 were aged on standard food and tipped 14 

onto new food every two-three days. Individual male flies were placed in 65 x 5 mm glass tubes, containing 15 

a small amount of 5 % sucrose and 2 % agarose dissolved in water. Locomotor activity was recorded with 16 

Drosophila Activity Monitors (DAMs; TriKinetics, USA), which count the number of times the fly breaks an 17 

infrared beam bisecting the tube (Fig. 1B). Monitors were placed in a light- and temperature-controlled (25 18 

oC) incubator (Panasonic Mir c155, Japan). By placing a small beaker of water inside the incubator, humidity 19 

was kept between 50-70 %. 20 

 21 

Locomotor activity of both young (5-day old) and old (25-day old) flies was measured for three-four days in 22 

12 h LD cycles followed by seven-nine days in constant darkness (DD). Locomotor activity and sleep profiles 23 

were produced from three-four consecutive LD days or seven-nine consecutive DD days data. Daytime and 24 

night-time activity is the total number of beam breaks during the 12 h light or dark period, respectively, 25 

averaged across at least three consecutive days. Sleep was defined as a period of at least five minutes of 26 

inactivity (Hendricks et al., 2000; Shaw et al., 2000). Sleep analysis was conducted using a custom-written 27 

Excel macro (Donlea et al., 2014). Daytime and night-time sleep is the total sleep during the 12 h light or dark 28 

period, respectively, averaged across at least three consecutive days. 29 

 30 

The DD activity data were analyzed by Lomb-Scargle periodogram analysis (van Dongen and Chapman, 1999) 31 

with the Actogram J program (Schmid et al., 2001; available at http://imagej.net/ActogramJ) to determine 32 

the rhythmicity and period (i.e. the length of the intrinsic day) of behavioral rhythms. The rhythmicity (power) 33 

was defined as the amplitude of the peak only for flies deemed rhythmic. Flies were determined to be 34 

rhythmic or arrhythmic based upon the presence or absence of a peak as convention above the p<0.05 35 

http://imagej.net/ActogramJ
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significance level. Only rhythmic flies were used to calculate the behavioral period. For more detailed 1 

information, see (Kauranen et al., 2012).  2 

 3 

Luciferase Assay  4 

Both young (5-day-old) and old (25-day-old) flies were placed individually in every other well of a 96-well 5 

white microtiter plate (Perkin Elmer, USA) in which each well contained 200 µl of a 5 % sucrose, 1 % agarose 6 

and 15mM D-luciferin (SynChem, USA) solution. Plates were first exposed to a 12 h LD cycle for three days at 7 

25 oC. Plates were then loaded into a TopCount Scintillation Counter (Packard, USA) and bioluminescence 8 

was measured for four days in continuous darkness (Stanewsky et al., 1997). The TopCount Scintillation 9 

Counter was housed in a 25 oC room and was modified as described (Anwer et al., 2014). Both relative 10 

amplitude error (RAE) and period were calculated using BRASS (Locke et al., 2005). RAE is a measure of 11 

rhythm robustness that ranges from 0 (a perfect fit to the wave) to 1 (no fit). As a convention, flies with ~0.7 12 

≤ RAE ≤ 1 were classed as rhythmic. 13 

 14 

Experimental Design and Statistical Analysis  15 

The experiments were designed to test the hypothesis that circadian abnormalities, as seen in  Alzheimer’s 16 

disease and other tauopathies, arise from tau pathology in the master pacemaker or downstream neurons. 17 

Samples sizes of the test and control groups are reported in Table 1 and figures. Box plots show median with 18 

interquartile range and the 10 and 90 percentiles as whiskers. Flies which did not survive the experiment 19 

were excluded from the analysis. All datasets were tested for normal or lognormal distribution by a 20 

Kolmogorov-Smirnov test. Activity and power datasets were lognormally distributed. Therefore, log-21 

transformed data were analyzed by 1-way ANOVA (single factor, genotype) or 2-way ANOVA (two factors, 22 

genotype and age), followed by post-hoc tests. Multiple comparisons after ANOVA were performed by a 23 

Tukey HSD test.  24 

 25 

Sleep and period datasets were neither normally or lognormally distributed. Therefore, we chose to use non-26 

parametric tests, rather than parametric tests (t-test and ANOVA) that assume normal distribution. Sleep and 27 

period datasets were analyzed by Kruskal Wallis ANOVA (single factor, genotype). Sleep and period datasets 28 

with two factors were analyzed in two ways. First, Kruskal-Wallis ANOVA followed by post-hoc tests were 29 

used to check for differences between different genotypes of the same age. Multiple comparisons after 30 

ANOVA were performed by a Dunn’s test. Second, a Mann-Whitney U-test was used to check for differences 31 

between different ages of the same genotype. 32 

 33 
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Bioluminescence datasets were analyzed by Mann-Whitney U-tests to check for differences between 1 

different genotypes of the same age or different ages of the same genotype, as they did not follow a normal 2 

distribution. 3 

 4 

P levels are indicated as non-significant (ns) p > 0.05, * p < 0.05, ** p < 0.001 or *** p < 0.0001. 5 

 6 

Results 7 

 8 

The R406W tau mutation found in frontotemporal dementia and parkinsonism linked to chromosome 17 9 

(FTDP17) causes a hereditary tauopathy clinically resembling AD, associated with early-onset and rapid 10 

progression (Hutton et al., 1998; Saito et al., 2002). As different tau proteins are associated with distinct 11 

tauopathies with specific clinical symptoms (Josephs, 2017), they may precipitate discrete behavioral 12 

changes when studied in isolation. 13 

 14 

Pan-neuronal tau expression disturbs activity and sleep under LD conditions  15 

To investigate how tau affects circadian behavior, full-length human wild-type (WT) (2n4r isoform) (Jackson 16 

et al., 2002) and mutant (R406W) (0n4r isoform) (Wittmann et al., 2001) tau were expressed in Drosophila 17 

pan-neurally, using the Gal4/UAS system (Elavc155-Gal4 driver) (Brand and Perrimon, 1993). We then recorded 18 

locomotor activity in young (5-day-old) and old (25-day-old) tau-expressing flies under a 12 h LD cycle and in 19 

continuous darkness (Fig. 1B). Examining both young and old flies enabled us to assess whether behavioral 20 

changes were affected by ageing or progressive. As a high mortality rate in the Elav>tau flies beyond 40-days 21 

of age confounded our observations of circadian behavior, we did not monitor activity rhythms in older 22 

individuals.  23 

 24 

Under LD conditions, both the Gal4- and UAS-control flies exhibited wild-type circadian behavior (Fig. 2A, 25 

left). The activity profiles contained morning and evening activity peaks, centered around the light transitions 26 

(lights on: zeitgeber time (ZT) = 0; lights off: ZT = 12), separated by a midday siesta and a period of 27 

consolidated sleep during the night  (Dubowy and Sehgal, 2017). The Elav>2n4r tauWT and Elav>0n4r tauR406W 28 

flies, on the other hand, showed normal bimodal activity profiles, but elevated baseline activity, particularly 29 

during the second half of the night (Fig. 2A, middle and right). Overall, daytime activity levels (Fig. 2B) were 30 

indistinguishable in the Elav>tau and control flies, except for a small statistically significant reduction in the 31 

old Elav>0n4r tauR406W flies. However, in clear contrast, the night activity levels (Fig. 2C) of both the young 32 

and old Elav>tau flies were greatly increased, with both tau proteins producing a similar gain in night activity. 33 

Between the young and old age groups, we found no statistically significant age-related differences in the 34 

daytime (Fig. 2B) and night-time (Fig. 2C) activity in either the Elav>tau or control flies. 35 

 36 
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Next, we investigated whether the elevated night activity in the Elav>tau flies coincides with sleep loss by 1 

examining their sleep. The sleep profiles revealed that the Elav>tau flies seem to sleep less throughout the 2 

day and night (Fig. 2D). However, the daytime sleep loss fell just short of significance in all except the old 3 

Elav>0n4r tauR406W flies, which only just reached the significance threshold (Fig. 2E). In contrast, the night-4 

time sleep loss was highly significant with respect to the controls in both young and old flies (Fig. 2F). These 5 

results collectedly showed that broad neuronal human tau expression promotes activity during the night and 6 

suppresses sleep throughout the day and night. 7 

 8 

Pan-neural tau expression disrupts “free-running” circadian behavioral rhythms  9 

Human patients with AD often have circadian rhythm defects, which result in disrupted body temperature 10 

and activity rhythms (Satlin et al., 1995; Harper et al., 2001). Therefore, to assess internal clock function, we 11 

next monitored the locomotor activity of the Elav>tau and control flies in the absence of external cues, in 12 

continuous darkness. In such conditions, the Gal4- and UAS-control flies maintained wild-type daytime 13 

activity and night-time inactivity patterns with a period of nearly 24 h (Fig. 3A, left). Both the Elav>2n4r tauWT 14 

(Fig. 3A, middle) and Elav>0n4r tauR406W (right) flies were similarly more day- than night-active, but the 15 

distinction between day activity and night inactivity was less obvious, as relative night activity seemed to be 16 

elevated. 17 

 18 

The strength of the circadian rhythms was assessed by Lomb-Scargle periodogram analysis (van Dongen and 19 

Chapman, 1999). We found that DD locomotor behavior’s rhythmicity was greatly reduced in both the 20 

Elav>2n4r tauWT and Elav>0n4r tauR406W flies compared to the age-matched controls. In the young flies, we 21 

observed a significantly larger reduction in behavioral rhythmicity in the Elav>0n4r tauR406W flies relative to 22 

the Elav>2n4r tauWT flies. However, we found a statistically significant age-related decline in DD rhythmicity 23 

in both the Elav>2n4r tauWT and control flies, but not in the Elav>0n4r tauR406W flies. Consequently, in the old 24 

flies, Elav>2n4r tauWT and Elav>0n4r tauR406W expression produced a similar reduction in circadian rhythmicity 25 

(Fig. 3B). A subpopulation of the old Elav>tau flies developed arrhythmia, being active around the clock (≤10 26 

%). But in comparison, 100 % of the control flies remained rhythmic (Table. 1). An average activity histogram 27 

and representative double-plotted actogram for a rhythmic and arrhythmic Elav>2n4r tauWT fly is shown in 28 

Fig. 3A (middle). The pan-neuronal expression of tau had no effect on the behavioral period in DD at both 29 

ages analyzed (Fig. 3C). Together, these results indicated that broad neuronal tau expression reduces 30 

circadian rhythmicity without altering the behavioral period in DD. 31 

 32 

Because ubiquitous neuronal human tau expression in Drosophila can cause motor deficits (Ali et al., 2012), 33 

it was possible that the DD arrhythmic phenotype was related to reduced activity levels. However, we found 34 

no statistically significant differences in overall DD activity between the Elav>0n4r tauR406W and control flies, 35 

at both ages analyzed. There was a small statistically significant decline in DD activity between the young and 36 
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old age groups in both the Elav>0n4r tauR406W and control flies. Intriguingly, Elav>2n4r tauWT expression 1 

resulted in age-related DD hyperactivity; activity levels were normal in the young, but greatly increased in 2 

the old, compared to age-matched controls (Fig. 3D). Therefore, the Elav>tau flies’ behavioral arrhythmia 3 

was not an artefact of reduced activity levels. 4 

 5 

Tau expression specifically in the clock network alters activity and sleep under LD conditions 6 

Post-mortem human AD patient brains show extensive SCN cell loss, suggesting central clock damage might 7 

account for the circadian behavioral deficits (van Dongen and Chapman, 1999). Therefore, we next assessed 8 

the consequences of restricting tau expression to the fly clock network. To achieve this, we used tim-Gal4 9 

and Pdf-Gal4 to drive tau expression in all clock cells (~150 neurons) or exclusively in the PDF-positive 10 

pacemaker neurons (~16 neurons), respectively, and recorded locomotor activity under both LD and DD 11 

conditions. 12 

 13 

First, we examined the effects of pan-clock tau expression on locomotor behavior under LD conditions. Both 14 

the tim>2n4r tauWT (Fig. 4Aiii) and tim>0n4r tauR406W (iv) flies showed normal bimodal activity rhythms with 15 

elevated basal activity, particularly during the second half of the night, compared to the Gal4- and UAS-16 

control flies (i-ii). For both young and old, we found significantly increased total night activity in the tim>tau 17 

flies (Fig. 4C). Tim>tau expression also yielded flies, which exhibited dramatically reduced night sleep in both 18 

age groups (Figs. 4Di-ii, F). In the young flies, tim>2n4r tauWT and tim>0n4r tauR406W expression produced a 19 

similar activity gain and sleep loss at night. However, the phenotype was not stable in the tim>2n4r tauWT 20 

flies as they aged. Therefore, in the old flies, the night-activity gain and -sleep loss was significantly smaller 21 

in the tim>2n4r tauWT flies relative to the tim>0n4r tauR406W flies (Figs. 4C, F). 22 

 23 

We show tim-driven expression of tauWT and tauR406W produced a differential effect on daytime activity and 24 

sleep. As tim>2n4r tauWT expression did not affect the level of activity or sleep during the day with respect to 25 

the controls in either young or old flies (Figs. 4B, Di, E), but tim>0n4r tauR406W expression had an age-specific 26 

effect on daytime activity and sleep levels (Figs. 4B, Dii, E). Specifically, the young tim>0n4r tauR406W flies 27 

exhibited reduced daytime activity and increased daytime sleep. Opposingly, the old tim>0n4r tauR406W flies 28 

were more active and slept less during daytime than the controls (Figs 4B, E). In contrast, we found no 29 

statically significant age-related differences in daytime activity and sleep in either the tim>2n4r tauWT or 30 

control flies (Figs. 4B, E). Hence, we have discovered isoform-specific differences on the clock-specific tau-31 

mediated changes in total activity and sleep through the day, but not at night. 32 

 33 

As the PDF clock-neurons are essential for controlling the timing of activity and sleep (Renn et al., 1999; 34 

Grima et al., 2004; Stoleru et al., 2004; Shang et al., 2008; Sheeba et al., 2008), we next asked whether PDF-35 

positive pacemaker neuron restricted tau expression is sufficient to alter behavioral rhythms under LD 36 
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conditions. The activity profiles revealed the Pdf>2n4r tauWT (Fig. 4Av) and Pdf>0n4r tauR406W (vi) flies 1 

exhibited normal bimodal rhythms with peaks around the light transitions but elevated basal activity. Hence 2 

unsurprisingly, their total night-activity was greatly increased (Fig. 4C) and night sleep-was severely reduced 3 

(Figs. 4Diii-iv, F) with respect to controls. However, the Pdf>tau flies’ daytime activity (Fig. 4B) and sleep levels 4 

(Figs. 4Diii-iv, E) were normal, except for a small daytime sleep gain in the young Pdf>2n4r tauWT flies (Figs. 5 

4Diii, E). These findings collectively show that the extent of tau expression has little effect on the night-6 

activity gain and -sleep loss phenotype, as Elav>, tim> and Pdf> driven tau expression caused a similar night-7 

activity increase and -sleep reduction. Hence, tau expression in the PDF clock-neurons promotes night activity 8 

and suppresses night sleep. And, tau expression in the non-PDF clock-neurons has neither an additive nor 9 

synergistic effect on the night-activity gain and -sleep loss phenotype. 10 

 11 

Tau expression in the PDF-positive pacemaker neurons fails to evoke DD behavioral arrhythmicity  12 

Next, we tested whether pan-clock tau expression perturbs “free-running” circadian locomotor activity 13 

rhythms. Both the Gal4- (Fig. 5Ai) and UAS-control flies (i-ii) maintained a robust rhythm of daytime activity 14 

and night inactivity with a period of just under 24 h, comparable to wild-type flies (i) in DD conditions. 15 

However, in clear contrast, the tim>2n4r tauWT (Fig. 5Aiii) and tim>0n4r tauR406W (iv) flies failed to show any 16 

apparent potentiation between daytime activity and night inactivity, as relative night activity appeared to be 17 

substantially elevated. Instead, both young and old tim>tau flies exhibited similar highly significant 18 

reductions in DD behavioral rhythmicity with respect to their age-matched controls (Fig. 5B). A subpopulation 19 

of the old tim>2n4r tauWT (~30 %) and tim>0n4r tauR406W (<5 %) flies developed arrhythmia, showing similar 20 

activity levels throughout the 24 h period. In comparison, all the old control flies remained rhythmic (Table. 21 

1). Overall, DD rhythmicity declined as the flies aged; but the age-related dysrhythmia was similar in the 22 

tim>tau and control flies (Fig. 5B). We found that Elav>tau and tim>tau expression produced similar 23 

behavioral arrhythmicity, except for a larger arrhythmic tim>tau sub-population (Table. 1), suggesting that 24 

tau expression in the non-clock-neurons has neither an additive nor deleterious effect on the arrhythmic 25 

phenotype. 26 

 27 

Interestingly, tim>tau expression, unlike Elav>tau expression (Figs. 3A, B), significantly increased the period 28 

length of DD rhythms (Fig. 5C and Table. 1), demonstrating a central clock defect. A rightward shift in the 29 

activity peak is visible in the histograms and actograms of the tim>tau flies (Figs. 5Ai-iv). Both tim>2n4r tauWT 30 

and tim>0n4r tauR406W expression produced similar prolongation of the behavioral period in DD. Furthermore, 31 

the tim>tau flies’ period lengths varied widely (Fig. 5C and Table. 1), an increase in variation is associated 32 

with both normal ageing and AD (Musiek et al., 2015). We found tim>tau expression also made the flies DD 33 

hyperactive, but an age-related loss of the hyperactive phenotype was seen in the tim>2n4r tauWT flies (Fig. 34 

5D). These results show that pan-clock tau expression produced very weak long-period rhythms with elevated 35 

activity in DD. 36 
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 1 

As the PDF clock-neurons are important for DD rhythmicity (Grima et al., 2004; Stoleru et al., 2004; Stoleru 2 

et al., 2005; Yao and Shafer, 2014), we asked whether PDF neuron tau expression was sufficient to disturb 3 

intrinsic circadian behavior. Interestingly, Pdf>2n4r tauWT expression exhibited robust circadian behavior, 4 

where DD rhythmicity did not significantly differ from the young and old controls (Figs. 5A, B). Moreover, 5 

Pdf>0n4r tauR406W flies maintained obvious behavioral rhythmicity. Visible inspection of the histograms and 6 

actograms revealed most individuals upheld a discernible pattern of 12 h of activity followed by 12 h of 7 

inactivity, similar to control flies (Fig. 5Avi). However, the Pdf>0n4r tauR406W flies’ behavioral rhythmicity was 8 

reduced, compared to the controls, although the difference failed to reach the significance threshold in old 9 

flies (Fig. 5B). These results indicate that PDF clock-neuron tau expression is insufficient to affect circadian 10 

rhythmicity in DD and identify the non-PDF clock-neurons as the major drivers of tau-related DD behavioral 11 

arrhythmia. 12 

 13 

However, we found that the Pdf>tau flies exhibited behavioral changes despite the normal behavioral 14 

rhythmicity. Specifically, Pdf>tau expression generated long-period DD rhythms. We observed no statistically 15 

significant age-, region- or isoform-specific differences on the period-lengthening effects (Figs. 5A, C and 16 

Table. 1). We found that Pdf>tau expression also produced an overall increase in DD activity, and the 17 

hyperactive phenotype was not significantly affected by either isoform or age (Fig. 5D). These results show 18 

that PDF clock-neuron tau expression is sufficient to prolong the behavioral period and induce hyperactivity. 19 

Varying the extent of clock-restricted tauWT, but not tauR406W, expression significantly affected the DD 20 

hyperactive phenotype, specifically in old flies. This change resulted from the age-related loss of the elevated 21 

overall activity in the tim>2n4r tauWT flies (Figs. 5A, D). These results show that the PDF clock-neurons are 22 

the main site of the tau-mediated period-lengthening and hyperactive phenotypes. 23 

 24 

Behavioral arrhythmicity is not due to disruption of the molecular clock  25 

Next, we investigated whether the circadian behavioral arrhythmia in the pan-clock tau-expressing flies 26 

coincides with damage to the molecular clock. To answer this question, we monitored period oscillations in 27 

the clock-neurons by recording bioluminescence from a per luciferase fusion construct (Stanewsky et al., 28 

1997). Comparing tim>2n4r tauWT and control flies, we found similar bioluminescence oscillations (Fig. 6A). 29 

Rhythmicity, as assessed by the relative amplitude error (RAE) that varies from 0 (strong rhythm) to 1 30 

(arrhythmic/no rhythm), was similar among the tim>tau and control flies (Fig. 6B). No statistically significant 31 

age-related decline was seen in the strength of molecular rhythms (Fig. 6B), unlike in behavioral rhythms 32 

(Figs. 5A, B), in either the tim>tau or control flies. The period length of the oscillations in the tim>tau flies did 33 

not differ significantly from age-matched controls, despite increased variation in the tim>tau flies (Fig. 6C). 34 

These results show that the molecular clock remains functional in the tau-expressing flies and suggests that 35 

perturbed clock-neuron output or communication drives the behavioral arrhythmicity. 36 
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 1 

Tau-related behavioral arrhythmia is independent of the PDF-positive pacemaker neurons  2 

We have shown both broad (Fig. 3) and PDF clock-neuron restricted (Fig. 5) tau expression results in flies that 3 

exhibit similar night-activity gains and -sleep loss. To determine whether these behavior changes are 4 

attributable to tau expression within the central clock-neurons, we used a Pdf-Gal80 transgene, which blocks 5 

Gal4 activity in the PDF clock-neurons (Stoleru et al., 2004). The activity profiles of the young Elav, Pdf-6 

Gal80>0n4r tauR406W and control flies were strikingly similar, with greater activity during the day than at night 7 

(Fig. 7A). Unsurprisingly, the daytime and night-time activity and sleep levels did not significantly differ 8 

between the Elav, Pdf-Gal80>0n4r tauR406W and control flies (Figs. 7B-C). Therefore, blocking tau expression 9 

only in the PDF clock-neurons fully rescues the tau-related night-activity gain and -sleep loss phenotype, 10 

indicating these behavioral changes originate from tau within the central clock-neurons. 11 

 12 

As Pdf>tau expression failed to disrupt DD rhythmic behavior (Fig. 5), we next investigated whether 13 

restricting PDF clock-neuron tau expression was sufficient to ameliorate the arrhythmic phenotype. In the 14 

young Elav Pdf-Gal80>0n4r tauR406W flies, activity during the subjective night appeared to be elevated, 15 

resulting in a reduced day/night difference in activity (Fig. 7D). Hence, unsurprisingly their DD behavioral 16 

rhythmicity was severely reduced with respect to the controls (Fig. 7E). Overall, Elav, Pdf-Gal80> and Elav> 17 

driven tau expression produced almost identical changes in circadian behavior; the rhythmicity (Fig. 7E), 18 

period (Fig. 7F) and 24 h activity (Fig. 7G) of locomotor behavior in the Elav, Pdf-Gal80>0n4r tauR406W flies did 19 

not differ statistically from the Elav>0n4r tauR406W flies. Together, these results demonstrate that restricting 20 

PDF clock-neuron tau expression is insufficient to rescue the tau-related dysrhythmia. Hence, tau expression 21 

in the central clock-neurons is not necessary to cause behavioral arrhythmia, further highlighting that 22 

dysfunction in neuronal populations afferent to the PDF-positive pacemaker neurons is the primary driver of 23 

the tau-mediated arrhythmic phenotype.  24 

  25 
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Discussion 1 

Pan-neuronal tau expression disrupts circadian behavior under LD and DD conditions  2 

Whilst circadian dysfunction is widespread in tauopathies, including AD (Satlin et al., 1995; Harper et al., 3 

2001; Volicer et al., 2001), PD (Mantovani et al., 2018) and FTD (Harper et al., 2001; Anderson et al., 2009), 4 

it has been an open question whether tau misexpression can give rise to circadian behavior deficits. To 5 

systematically assess the consequences of human tau expression in specific neuronal populations on 6 

behavioral and molecular rhythms, we first examined the effect on circadian behavior of pan-neurally 7 

expressing human tau in the Drosophila brain. We found that broad neuronal human tau expression affected 8 

circadian locomotor activity rhythms under LD and DD conditions in young (~5-day-old) and old (~25-day-9 

old) flies. 10 

 11 

Firstly, under LD conditions, the Elav>tau flies showed bimodal activity rhythms but exhibited elevated 12 

activity during the night and a reduced day/night difference in activity (Figs. 2A-C). Tg4510 mice, which 13 

express the FTD-associated tau mutant, P301L, driven by the forebrain-specific CaMKIIα promoter, were 14 

more active during the day (i.e. the inactive phase) than control littermates (Stevanovic et al., 2017). Thus, 15 

both models reproduce the shift towards a higher proportion of the total activity occurring during the inactive 16 

phase, often seen in human AD patients (Volicer et al., 2001; Harper et al., 2004). Overall, our Elav>tau flies 17 

also slept less throughout the day and night (daytime sleep loss was statistically insignificant) (Figs. 2D-F). 18 

Adulthood-restricted pan-neuronal expression of Aβ42 yielded flies, which exhibited reduced and fragmented 19 

night sleep (Tabuchi et al., 2015). Similarly, young (2-3-day-old) Elav>Aβ42 flies displayed reduced total sleep 20 

(Gerstner et al., 2017). As such, broad neuronal tau and Aβ42 expression both produced a night-sleep loss. 21 

Hence, in AD, the presence of both tau and amyloid pathology may additively or synergistically disrupt sleep. 22 

In alignment with these data, AD patients' sleep has often been reported to be reduced and fragmented at 23 

night (Prinz et al., 1982; Vitiello et al., 1990). Notably, neither Elav>tau (Figs. 2D-E) nor Elav>Aβ42 flies (Tabuchi 24 

et al., 2015; Gerstner et al., 2017) recapitulated the increased daytime drowsiness often reported in patients 25 

with AD (Volicer et al., 2001; Bliwise, 2004; Anderson et al., 2009). 26 

 27 

Secondly, in “free-running” DD continuous darkness, pan-neuronal expression of tau generated progressive 28 

behavioral arrhythmia, as evidenced by reduced overall rhythmicity (Figs. 3A-B) and an increased arrhythmic 29 

sub-population (Table. 1), indicating an intrinsic circadian rhythm defect. These circadian rhythm 30 

perturbations are already present in young flies (~5-day old). Therefore, they likely precede the onset of 31 

neurodegeneration; first identified in ~10-day old Elav>0n4r tauR406W flies (Wittmann et al., 2001). The 32 

dampening of circadian locomotor activity rhythms seen in our model is similar to that reported in AD (Volicer 33 

et al., 2001), FTD (Harper et al., 2001; Anderson et al., 2009) and PD (van Hilten et al., 1993; Placidi et al., 34 

2008) patients. 35 
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 1 

Clock-specific tau expression alters activity and sleep under LD conditions 2 

Next, we investigated how clock-restricted tau expression affected circadian behavior. We discovered that 3 

tau expression in either all the clock cells or the PDF clock-neurons similarly made the flies more active and 4 

sleep less during the night (Fig. 4). Additionally, blocking PDF neuron tau expression was sufficient to fully 5 

rescue the behavioral changes, as tau expression in all neurons except the PDF clock-neurons failed to alter 6 

total activity or sleep levels or the day/night difference in activity (Figs. 7A-C). As such, tau expression within 7 

the PDF clock-neurons was sufficient, and necessary, to produce the night-activity gain and -sleep loss 8 

phenotype. Hence, these behavior changes arise from tau expression within the PDF clock-neurons, rather 9 

than the non-PDF clock-neurons or non-clock-neurons. The elevated night activity in the Pdf>tau flies is not 10 

attributable to a loss of PDF signaling, as Pdf null mutants have an advanced evening activity peak, which 11 

increases daytime activity (Renn et al., (1999). 12 

  13 

Targeted tau expression in the clock-network differentially affects circadian rhythms in DD 14 

conditions 15 

We discovered restricting tau expression to the PDF clock-neurons, but not all clock-neurons, rescues the 16 

reduced DD behavioral rhythmicity (Fig. 5). Tau expression in all neurons except the PDF neurons yielded 17 

flies, which exhibited similar reductions in behavioral rhythmicity to the Elav>tau flies (Figs. 7D-E). As such, 18 

tau expression in the PDF clock-neurons is neither necessary nor sufficient to produce reduced DD 19 

rhythmicity. Hence, we have identified the non-PDF clock-neurons as the main site of the tau-related 20 

arrhythmic phenotype. One possible explanation is that tau disrupts the non-PDF clock-neurons’ (i.e. DN1 21 

neurons) communication with non-clock output neurons (i.e. DH44 positive PI cells), which are necessary for 22 

behavioral rhythms (Cavanaugh et al., 2014; King et al., 2017)). In the tim>tau flies, we observed an intact 23 

molecular clock; as Per oscillations were not disturbed (Fig. 6), despite the behavioral arrhythmia (Figs. 5A-24 

B). Similarly, the primary target for behavioral arrhythmia in Aβ42-expressing Drosophila (Chen et al., 2014; 25 

Long et al., 2014), R6/2 HD mice (Pallier et al., 2007) and AD patients (Wu and Swaab, 2007; Cermakian et 26 

al., 2011) is reported to be downstream of the central clock. 27 

 28 

Clock tau expression yielded flies, which exhibited prolongation of the behavior period in DD (Figs. 5A, C). 29 

These long-period rhythms cannot result from abolished PDF signaling, because chemical or genetic ablation 30 

of the PDF clock-neurons results in short-period rhythms (Renn et al. (1999). Furthermore, the long-period 31 

rhythms cannot be related to blocked chemical neurotransmission as Pdf>TNT flies show a similar behavioral 32 

period in DD to control flies (Umezaki et al., 2011). In DD, Tg4510 mice, which express a high level of tauP301L 33 

in the entire forebrain, exhibited a ~1 h longer period than control littermates (Stevanovic et al., 2017). 34 

Whereas we found clock-specific, but not broad neuronal, tau expression produced prolongation of the 35 
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behavioral period. Hence, we showed that tau expression within the non-clock-neurons suppresses the 1 

period-lengthening effect of PDF clock-neurons tau expression. These different findings could be attributable 2 

to the different model organisms' peculiarities or the differential effects of tauP301L and tauWT/tauR406W.  3 

 4 

We found that Pdf> and tim>tau expression similarly increased overall DD activity (Fig. 5D). Hence, tau’s 5 

activity-promoting effect arises from within the PDF clock-neurons, rather than the non-PDF clock-neurons. 6 

Because Pdf>tau (Fig. 5D), but not Elav>tau (Fig. 3D), expression produced DD hyperactivity, tau expression 7 

in the non-clock-neurons attenuates the activity-promoting effect of PDF clock-neuron tau expression. For 8 

example, tau expression might interfere with communication between the central clock and brain regions 9 

involved in locomotion control (e.g. the ellipsoid body). As a result of wandering, most human AD patients 10 

exhibit elevated activity (Logsdon et al., 1998). Other studies have shown electrophysiological PDF clock-11 

neuron abnormalities coincide with gains in activity and loss of sleep in disease models (Sheeba et al., 2008). 12 

Accordingly, in our model, specific behavior changes likely arise from neurophysiological changes in either 13 

the PDF or non-PDF clock-neurons. 14 

 15 

Human tau expression in Drosophila faithfully recapitulates the human AD sleep and circadian 16 

rhythm defects  17 

Here we showed that tau expression in the Drosophila brain causes circadian abnormalities closely matching 18 

those found in human AD and other tauopathy patients. These results validate the use of Drosophila as a 19 

model to study the effects of tau pathology on circadian behavior. We described the clock neuronal 20 

subpopulations that mediate discrete circadian behavioral deficits and specifically identified the PDF clock-21 

neurons as the main site of behavioral changes in the overall amount of activity and sleep (restricted to the 22 

LD night) (Figs 4, 7A-C). We further identified the non-PDF clock-neurons as the main site of activity 23 

distribution changes (Figs. 5, 7D-G) and discovered that the circadian behavioral deficits arise from clock-24 

neuron dysfunction, rather than death; as shown by ongoing Per oscillations (Fig. 6). The fly model we 25 

described in this study provides the opportunity to study the circuitry that mediates tau-related circadian 26 

and sleep deficits. Further understanding will hopefully enable the development of novel therapeutics that 27 

improve well-being and clinical outcome in patients. 28 

  29 
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 4 

Figure 1. (A) Clock system in the Drosophila brain. In the fly brain, ~150 neurons express a molecular clock. 5 

The ~150 clock-neurons form clusters (sLNv, lLNv, LNd, LPN, DN1, DN2 and DN3). Different neurons serve 6 

different functions and respond to different environmental conditions. The PDF-positive clock-neurons 7 

(shown in red) are the master pacemakers as they synchronize all the clock-neurons. (B) Experimental 8 

protocol. Individual male 5- (young) and 25-day old (old) flies were placed in glass tubes in a Drosophila 9 

Activity Monitor (in a light- and temperature-controlled incubator) which counts the number of times a fly 10 

breaks a beam bisecting the tube. Locomotor activity was first recorded in a 12 h light:dark (LD) cycle for 11 

three-four days followed by seven-nine days of continuous darkness (DD). 12 
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Figure 2. Pan-neural tau-expression alters activity and sleep levels under a 12 h light: 12h dark (LD) cycle. 1 

(A) Activity histograms of 5- (young) (top) and 25-day old (old) (bottom, brown shading) control, Elav>2n4r 2 

tauWT and Elav>0n4r tauR406W flies. All genotypes show normal bimodal activity rhythms. Elav>tau flies’ basal 3 

activity level is elevated. Bars/lines show mean ± SEM in 30 min bins (lights-on = white bars, lights-off = dark-4 

grey bars). (B-C) Quantifying daytime and night-time activity, respectively. Elav>tau expression greatly 5 

increases night-time activity relative to controls. Multiple comparisons between different genotypes of the 6 

same age (black asterisks) and different ages of the same genotype (red number symbols) by 2-way ANOVA 7 

and post-hoc Tukey HSD tests with log-transformed data. (D) Sleep profiles of young (top) and old (bottom, 8 

brown shading) Elav>2n4r tauWT and Elav>0n4r tauR406W flies compared to relevant controls. All genotypes 9 

show a normal bimodal profile. Symbols show mean ± SEM. (E-F) Quantifying daytime and night-time sleep, 10 

respectively. Elav>tau expression greatly reduces daytime and night-time sleep relative to controls. Multiple 11 

comparisons between different genotypes of the same age (black asterisks) by Kruskal-Wallis ANOVA and 12 

post-hoc Dunn’s tests. Comparisons between different ages of the same genotype (red number symbols) by 13 

Mann-Whitney U-tests. Materials and Methods describe statistics. Box plots show median with 2nd and 3rd 14 

quartiles and 10 and 90 percentiles as whiskers. n = 62-159 flies from 4-8 independent experiments. 15 
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 1 
Figure 3. Pan-neural tau expression produces arrhythmia in “free-running” DD conditions  2 

(A) Activity histograms and representative double-plotted actograms for 5- (young) (top) and 25-day old (old) 3 

(bottom, brown shading) control, Elav>2n4r tauWT and Elav>0n4r tauR406W flies. Control flies show robust 4 

daytime activity and night-time inactivity rhythms, with a ~24 h period (left). Elav>tau flies show either weak 5 

rhythms with a normal period (middle and right) or are arrhythmic (middle). Table 1 gives the percentage of 6 

rhythmic flies. Bars/lines show mean ± SEM in 30 min bins. (B) Pan-neuronal tau expression greatly reduces 7 

DD behavioral rhythmicity, determined by Lomb-Scarle analysis. (C) Elav>tau expression does not affect the 8 

behavioral period in DD. (D) Elav>2n4r tauWT expression produces age-related DD hyperactivity. But 9 

Elav>0n4r tauR406W expression does not affect overall DD activity. (B, D) Multiple comparisons between 10 

different genotypes of the same age (black asterisks) and different ages of the same genotype (red number 11 

symbols) by 2-way ANOVA and post-hoc Tukey HSD tests with log-transformed data. (C) Multiple 12 
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comparisons between different genotypes of the same age (black asterisks) by Kruskal-Wallis ANOVA and 1 

post-hoc Dunn’s tests. Comparisons between different age of the same genotype (red number symbols) by 2 

Mann-Whitney U-tests (for further details see Materials and Methods). n = 54-115 flies from 4-6 independent 3 

experiments. 4 
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Figure 4. Region- and isoform-specific differences of clock-specific tau expression on activity and sleep 1 

levels under LD conditions. (A) Activity histograms of 5- (young) (top) and 25-day old (old) (bottom, brown 2 

shading) (i-ii) UAS control, (iii) tim>2n4r tauWT, (iv) tim>0n4r tauR406W, (v) Pdf>2n4r tauWT and (vi) Pdf>0n4r 3 

tauR406W flies. All genotypes show a normal bimodal activity profile. Elevated baseline activity in both the 4 

tim>tau and Pdf>tau flies. (B-C) Quantifying daytime and night-time activity, respectively. Tim>tau and 5 

Pdf>tau expression does not affect daytime activity (except for tim>0n4r tauR406W expression), but greatly 6 

increases night-activity, relative to controls. (D) Sleep profile for young (top) and old (bottom, brown shading) 7 

(i) tim>2n4r tauWT, (ii) tim>0n4r tauR460W, (iii) Pdf>2n4r tauWT and (iv) Pdf>0n4r tauR406W flies compared to 8 

relevant controls. All genotypes show a normal bimodal pattern. (E-F) Quantifying daytime and night-time 9 

sleep, respectively. Tim>2n4r tauWT expression does not affect daytime sleep relative to controls. Whereas 10 

tim>0n4r tauR406W expression increases daytime sleep in young flies, but reduces daytime sleep in old flies, 11 

relative to controls. On the other hand, Pdf>tau expression does not affect daytime sleep (except for in young 12 

Pdf>2n4r tauWT flies). But tim>tau and Pdf>tau expression greatly reduces night sleep compared to controls. 13 

Statistics described in Fig. 2 and Materials and Methods. n = 28-115 flies from 2-6 independent experiments.    14 
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 1 
 2 

Figure 5. Pan-clock, but not central clock-neuron restricted, tau expression is sufficient to produce reduced 3 

DD rhythmicity. (A) Activity histograms and representative double-plotted actograms for 5- (young) (top) 4 

and 25-day old (old) (bottom, brown shading) (i-ii) UAS control, (iii) tim>2n4r tauWT, (iv) tim>0n4r tauR406W, 5 

(v) Pdf>2n4r tauWT and (vi) Pdf>0n4r tauR406W flies. Control flies maintain robust daytime activity and night-6 

time inactivity rhythms, with a ~24 h period. Tim>tau flies show weak rhythms with a long period (rightward 7 

shift in the activity peak) or are arrhythmic (for the arrhythmic fly % see Table. 1). Pdf>tau flies exhibit robust 8 

rhythms with a long period. (B) Greatly reduced DD rhythmicity in the tim>tau flies relative to control and 9 

Pdf>tau flies. (C) Prolongation of the behavioral period in DD in the tim>tau and Pdf>tau flies compared to 10 

controls. (D) Greatly increased overall activity in the tim>tau and Pdf>tau flies relative to controls (except for 11 

in young tim>0n4r tauR406W and old tim>2n4r tauWT flies). Statistics described in Fig. 3 and Materials and 12 

Methods. n = 27 – 115 flies from 2-6 independent experiments. 13 

 14 
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Figure 6. Intact molecular clock despite the behavioral arrhythmia in the tim>tau flies. (A) Bioluminescence 3 

profiles for 5- (young) (top) and 25-day old (old) (bottom, brown shading) control and tim>2n4r tauWT flies 4 

during 4 days of DD. Robust Per oscillations are seen in control and tim>tau flies. (B-C) No statistically 5 

significant differences in RAE or period are found between tim>tau and control flies in both age groups. 6 

Comparison between different genotypes of the same age (black asterisks) and different ages of the same 7 

genotype (red number symbols) by Mann-Whitney U-tests. n= 13-35 flies from 2 independent experiments. 8 
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Figure 7. Blocking tau expression in the central clock rescues the altered activity and sleep levels under LD 1 

conditions, but not the reduced rhythmicity in DD conditions. 2 

(A) Activity histograms for 5-day old (young) control and Elav, Pdf-Gal80> 0n4r tauR406W flies under LD 3 

conditions. Both control and Elav, Pdf-Gal80> 0n4r tauR406W flies show normal bimodal activity rhythms. (B) 4 

No change in daytime and night activity in Elav, Pdf-Gal80>0n4r tauR406W flies relative to controls. (C) No 5 

change in daytime and night sleep in Elav, Pdf-Gal80>0n4r tauR406W flies relative to controls. (D) Average 6 

activity histograms and representative actograms for young control and Elav, Pdf-Gal80>0n4r tauR406W flies. 7 

Elav, Pdf-Gal80>0n4r tauR406W flies show very weak rhythms with a normal period. (E) Greatly reduced DD 8 

rhythmicity in the Elav, Pdf-Gal80>0n4r tauR406W flies relative to controls. (F) Elav, Pdf-Gal80>0n4r tauR406W 9 

expression did not alter the behavioral period in DD. (G) Elav, Pdf, Gal80>0n4r tauR406W and control flies show 10 

comparable overall activity levels. (B, E, G) Multiple comparisons between different genotypes by 1-way 11 

ANOVA and post-hoc Tukey HSD tests with log-transformed data. (C, F) Multiple comparisons between 12 

different genotypes by Kruskal-Wallis ANOVA and post-hoc Dunn’s tests. (B-C) 32–106 flies from 2-6 13 

independent experiments. (E-G) 32-91 flies from 2-6 independent experiments. 14 
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Genotype  Age 

(d)  

n Power  Period 

(h)  

  Rhythmic 

%  

Activity 

in DD  

 Survival 

% 

Color 

   median mean 

± SEM 

median mean 

± SEM 

range  median mean 

± SEM 

  

Elav-Gal4  5 60 574 634 ± 

43 

23.7 23.7 ± 

0.04 

1.8 100 0.66 0.69 ± 

0.04 

94  

Elav-Gal4  25 84 330 410 ± 

34 

23.6 23.6 ± 

0.10 

4.7 100 0.46 0.51 ± 

0.03 

93  

UAS-2n4r tauWT  5 11

5 

529 597 ± 

31 

23.7 23.7 ± 

0.03 

1.5 100 0.57 0.60 ± 

0.02 

96  

UAS-2n4r tauWT  25 71 226 293 ± 

28  

23.6 23.6 ± 

0.06 

3.3 100 0.46 0.49 ± 

0.03 

92  

Elav-Gal4/UAS-

2n4r tauWT  

5 71 156 237 ± 

29 

23.5 23.5 ± 

0.05 

2.2 98  0.71 0.74 ± 

0.03 

89  

Elav-Gal4/UAS-

2n4r tauWT 

25 97 58 118 ± 

15 

23.9 24.0 ± 

0.15 

11.9 84 0.61 0.83 ± 

0.06 

88  

UAS-0n4r 

tauR406W  

5 88 454 527 ± 

34 

23.6 23.8 ± 

0.02 

1.0 99 0.66 0.68 ± 

0.04 

95   

UAS-0n4r 

tauR406W  

25 54 346 382 ± 

35 

23.5 23.8 ± 

0.05 

1.5 98 0.41 0.46 ± 

0.04 

89  

Elav-Gal4/UAS-

0n4r tauR406W  

5 96 81 142 ± 

18 

23.6 23.9 ± 

0.09 

8.2 95 0.69 0.71 ± 

0.03 

86  

Elav-Gal4/UAS-

0n4r tauR406W  

25 79 65 81 ± 8 23.4 24.0 ± 

0.12 

6.4 86 0.50 0.59 ± 

0.04 

59  

tim-Gal4 5 92 335 447 ± 

33 

23.8 23.8 ± 

0.03 

1.4 100 0.59 0.66 ± 

0.03 

96  

tim-Gal4  25 67 275 317 ± 

32 

23.6 23.6 ± 

0.06 

2.9 100 0.53 0.59 ± 

0.02 

87  

tim-Gal4/2n4r 

tauWT  

5 46 60 74 ± 7 24.1 24.7 ± 

0.25 

8.4 95 1.15 1.10 ± 

0.06 

100  

tim-Gal4/2n4r 

tauWT  

25 77 24 30 ± 2 24.7 25.1 ± 

0.35 

12.4 70 0.57 0.61 ± 

0.04 

96  

tim-Gal4/UAS-

0n4r tauR406W  

5 88 68 86 ± 7 24.2 24.2 ± 

0.13 

11.7 98 0.81 0.82 ± 

0.03 

97  

tim-Gal4/UAS-

0n4r tauR406W  

25 50 37 50 ± 5  24.7 24.9 ± 

0.29 

12.2 98 0.84 0.93 ± 

0.05 

98  

Pdf-Gal4  5 71 508 560 ± 

25 

23.8 23.8 ± 

0.02 

2.0 100 0.55 0.58 ± 

0.02 

96  

Pdf-Gal4  25 60 228 303 ± 

33 

23.8 23.8 ± 

0.06 

2.6 100 0.42 0.50 ± 

0.04 

89  

Pdf-Gal4/2n4r 

tauWT  

5 55 519 533 ± 

29 

24.5 24.5 ± 

0.05 

1.6 100 1.00 1.07 ± 

0.05 

98  

Pdf-Gal4/2n4r 

tauWT  

25 31 199 230 ± 

25 

24.5 24.5 ± 

0.06 

1.5 100 0.90 0.97 ± 

0.07 

97  

Pdf-Gal4/UAS-

0n4r tauR406W  

5 10

9 

189 233 ± 

16  

24.3 24.3 ± 

0.03 

1.8 100 0.83 0.85 ± 

0.02 

97  

Pdf-Gal4/ UAS-

0n4r tauR406W  

25 27  183 183 ± 

20 

24.3 24.3 ± 

0.06 

1.2 100 0.99 1.03 ± 

0.05 

84  

Elav-Gal4, Pdf-

Gal80  

5 48 556 604 ± 

63 

23.4 23.4 ± 

0.04 

1.3 100 0.90 0.94 ± 

0.07 

100  

Elav-Gal4, Pdf-

Gal80/UAS-0n4r 

tauR406W  

5 32 67 105 ± 

21 

23.7 23.8 ± 

0.14 

4.9 100 0.71 0.85 ± 

0.08 

91  

 1 

 2 

Table 1. Circadian behavior of flies in DD. Power and period were determined by Lomb-Scargle periodogram 3 

analysis. Flies were defined as rhythmic based upon the presence of a peak above the 0.05 significance line. 4 

The rhythmic percentage is the number of rhythmic flies/ numbers of tested flies as a percentage. Survival 5 

percentage is the number of flies that survived to the end of the experiment/ number of flies that started 6 

the experiment as a percentage. 7 
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