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CONGRUENCES OF LOCAL ORIGIN AND AUTOMORPHIC

INDUCTION

NEIL DUMMIGAN AND DAVID SPENCER

Abstract. We explore the possibilities for the Galois representation ρg at-

tached to a weight-one newform g to be residually reducible, i.e. for the Hecke
eigenvalues to be congruent to those of a weight-one Eisenstein series. A special

role is played by Eisenstein series E
1,ηK
1

of level dK , where ηK is the quadratic
character associated with an imaginary quadratic field K, of discriminant dK ,
with respect to which ρg is of dihedral type. We prove congruences, where the
modulus divides either the class number hK or (p−ηK(p)) (for a prime p), and

g is of level dK in the first case, level dKp or dKp2 (according as ηK(p) = 1 or
−1 respectively) in the second. We also prove analogous congruences where 1

and ηK are replaced by a newform f and its twist by ηK , and g is replaced by
a Siegel cusp form of genus 2 and paramodular level, induced in some sense
from a Hilbert modular form.

1. Introduction

Ramanujan’s famous congruence τ(n) ≡ σ11(n) (mod 691) is a congruence be-
tween the Hecke eigenvalues of a cusp form and an Eisenstein series of weight 12,
both of level 1, modulo a prime divisor of ζ(12)/π12. It is easily generalised to other
weights k. Moreover, keeping the Eisenstein series at level 1, we may replace the
cusp form of level 1 by one of level p, and prove a congruence modulo ℓ, where ℓ > 3
divides pk−1. Such congruences “of local origin”, anticipated by Harder [Ha], were
proved by Billerey and Menares [BM1], and independently in [DF]. Ramanujan’s
congruence is also easily generalised to the case that the Eisenstein series and the
cusp form are both of level N , and the modulus divides a certain Dirichlet L-value,
as in [Du1, Proposition 2.1]. The present paper is based on the 2018 Sheffield Ph.D.
thesis of the second-named author [Sp], supervised by the first-named author. The
original problem was to prove congruences of local origin where the Eisenstein series
is of level N and the cusp form is of level Np. The technique involves finding a linear
combination of old Eisenstein series at level Np whose constant term at each cusp
is divisible by ℓ, then using a lemma of Deligne and Serre. Billerey and Menares
independently obtained a somewhat more complete result [BM2]; see Theorem 2.10
below.

This covers weights k ≥ 2, so, following an idea of the second-named author, we
decided to see what happens for weight 1. The main result on this is Theorem 2.8 in
➜2, where we use a cusp form of dihedral type with respect to an imaginary quadratic
field K. In other words, the associated cuspidal automorphic representation of
GL2(A) is automorphically induced from one of GL1(AK). Preceding this we show,
in Propositions 2.2 and 2.5 (summarised in Corollary 2.7), that that is essentially
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2 NEIL DUMMIGAN AND DAVID SPENCER

the only case where we can expect to see a congruence (up to twist–see Remark 2.9
(4)). The congruence is of the form

aq(f) ≡ 1 + ηK(q) (mod λ),

for almost all primes q, where aq(f) is the Hecke eigenvalue at q of a certain weight
1 eigenform f , and λ | ℓ. The condition that ℓ | hK or ℓ | (p− ηK(p)) leads directly
to the construction of a character χ of GL1(AK), the finite part of whose conductor
is trivial or a divisor of p, respectively. The important property of χ is that, taking
values in ℓth roots of unity, it is congruent mod λ to the trivial character (and, unlike
the trivial character, not Galois self-conjugate). This congruence is the essential
one. That the CM form f = fχ should then satisfy the above congruence is an easy
consequence.

In ➜3 we turn to an analogous situation where the cusp form of dihedral type is
replaced by a genus 2 Siegel modular form whose associated cuspidal automorphic
representation of GSp2(A) is automorphically induced from a cuspidal automorphic
representation of GL2(AK), where now K is a real quadratic field. The main result
is Theorem 3.1. The passage from the trivial character to the congruent character
χ is replaced now by the passage from a base-change Hilbert modular form to a
congruent non-base-change Hilbert modular form, possibly of higher level.

This is a short paper, and the theorems are set in context by extended remarks,
which we shall not repeat here, except to refer to Remark 3.2 (5) for the relationship
between the results proved in this paper and a general conjecture on Eisenstein
congruences [BD].

2. Eisenstein congruences for weight one cusp forms

The following is a theorem of Deligne and Serre [DeSe, Théorème 4.1].

Theorem 2.1. Let f ∈ S1(Γ0(N), ǫ) be a normalised newform, f =
∑∞
n=1 an(f)q

n,
where ǫ : (Z/NZ)× → C× is a Dirichlet character such that ǫ(−1) = −1 (i.e. ǫ
is odd). Then there exists an irreducible, continuous linear representation ρf :

Gal(Q/Q) → GL2(C) such that for all primes q ∤ N , ρf is unramified at q, with

tr(ρf (Frob
−1
q )) = aq(f) and det(ρf (Frob

−1
q )) = ǫ(q).

We have an associated projective representation ρ′f : Gal(Q/Q) → PGL2(C),
whose image is necessarily either dihedral of order 2n for some n ≥ 2, or isomorphic
to one of the groups A4, S4 or S5. Since ρf factors through a finite group, it may
be defined over a number field, in fact over the field Kf generated over Q by the
an(f). For any prime divisor λ in Kf , dividing a rational prime ℓ, we may choose
an invariant Oλ-lattice then reduce modulo λ to obtain a residual representation
ρf,λ : Gal(Q/Q) → GL2(Fλ), whose composition factors are independent of the
choice of lattice.

Proposition 2.2. (1) For any ℓ, if ρ′f (Gal(Q/Q)) ≃ S4 or A5 then ρf,λ is
irreducible.

(2) Suppose that ℓ > 2. If ρ′f (Gal(Q/Q)) ≃ A4 then ρf,λ is irreducible.

Proof. For background on Schur covers and projective representations, see [HH].
Schur covers of A4, S4 and A5 may be taken as SL2(F3), GL2(F3) and SL2(F5),
respectively. In each case the Schur index is 2, so these are all double covers. The
projective representation ρ′f of Gal(Q/Q), viewed as a projective representation of
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the finite quotient isomorphic to G = A4, S4 or A5, lifts to a linear representation
ρ̃f of the Schur cover C, and it is not difficult to show that if ρf,λ were reducible
then so would be a reduction modulo λ of this irreducible 2-dimensional ρ̃f , and we
would see a congruence between the character of ρ̃f and a sum of two 1-dimensional
characters of C. (Here, as elsewhere, where necessary we replaceKf by a sufficiently
large finite extension, and λ by a divisor of the original λ.) A careful inspection
of the character tables of SL2(F3), GL2(F3) and SL2(F5) establishes that for C =
SL2(F5), for which the only 1-dimensional character is the trivial character, there
are no such congruences whatsoever, and for C = SL2(F3) the only such congruence
is for ℓ = 2. For C = GL2(F3) the only such congruence is for ℓ = 3, but the
corresponding 2-dimensional representation of C factors not only through S4, but
through the quotient of S4 by its Klein-4 subgroup, in which case ρ′f (Gal(Q/Q)) 6≃
S4. �

Remark 2.3. (1) It is possible a priori for ρ̃f to become reducible modulo λ,
only when ℓ divides the order of C, thus excluding right away all ℓ except
{2, 3} (for SL2(F3),GL2(F3)) and {2, 3, 5} (for SL2(F5)).

(2) For ℓ > 2, the composition factors of a 2-dimensional representation, in
characteristic ℓ, of a finite group, are determined by the Brauer character.
Hence reducibility of ρf,λ would not only imply, but be implied by, the
existence of Dirichlet characters ψ, φ, of conductors whose product divides
N , such that

aq(f) ≡ ψ(q) + φ(q) (mod λ) for all primes q ∤ ℓN ,

i.e. a congruence of Hecke eigenvalues between f and the Eisenstein series

denoted Eψ,φ1 in [DiSh, ➜4.8], which belongs to M1(Γ0(N), ψφ).

We turn now to the remaining case, where ρ′f (Gal(Q/Q)) is dihedral.

Proposition 2.4. Let K/Q be a quadratic field, with associated quadratic character
ηK . Let χ : Gal(Q/K) → C× be a character of order n ≥ 2, such that

(1) χ 6= χσ, where σ ∈ Gal(Q/Q) represents the non-trivial element of Gal(K/Q)
and χσ(g) := χ(σgσ−1) ∀g ∈ Gal(Q/Q);

(2) if K is real then χ has signature (+,−) at the infinite places.

Let f be the conductor of χ, and dK the discriminant of K/Q. Using class field
theory to view χ as a Dirichlet character χ : (OK/f)

× → C× (ignoring the com-
ponents at infinite places of an idele class character), let χQ be its restriction to
(Z/(f ∩ Z))×. Then

(1) fχ(z) :=
∑

a∈OK

a integral

χ(a)qN(a) is a newform in S1(Γ0(|dK |NK/Q(f)), ηKχQ).

(2) ρfχ ≃ IndK/Q(χ) is irreducible, with ρfχ |Gal(Q/K) ≃ χ⊕χσ and ρ′fχ(Gal(Q/Q)) ≃
Dm, where m | n is the order of χ−1χσ.

For a discussion of this, see [Se, ➜7]. Note that χ 6= χσ ensures that IndK/Q(χ)
is irreducible, while the condition on χ when K is real ensures that ηKχQ is odd.

Proposition 2.5. Suppose that ρ′f (Gal(Q/Q)) is dihedral. Suppose also that there
exist Dirichlet characters ψ, φ such that

aq(f) ≡ ψ(q) + φ(q) (mod λ) for all but finitely many primes q,
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with λ a prime divisor, in a large enough number field, of a rational prime ℓ > 2.
Then f = fχ for some χ as in Proposition 2.4, with

ψ ≡ ηKφ (mod λ).

Furthermore, K is imaginary quadratic.

Proof. By a theorem of Kani [K, Theorem 9(b)], since ρ′f (Gal(Q/Q)) is dihedral,

there exists some Dirichlet character θ such that aq(f) = 0 for any prime q such
that θ(q) 6= 1. For such a q, ψ(q) + φ(q) ≡ 0 (mod λ). Define a Dirichlet character
α by α = ψ/φ (where each of ψ and φ is pulled back from its natural domain to a
suitable (Z/NZ)×). Then α(q) ≡ −1 (mod λ) for any prime q such that θ(q) 6= 1.

Since ℓ > 2, the reduction α with values in F
×
ℓ is non-trivial, so cannot take the

non-identity value −1 for a set of q of Dirichlet density greater than 1/2. It follows
that θ must be a quadratic character. Let’s call it ηK , associated to a quadratic
field K. We see also that α = ηK , so ψ ≡ ηKφ (mod λ), as required. (Though the
various characters may have different conductors, we can view this as a congruence
of pullbacks to a suitable (Z/NZ)×, or of associated characters of Gal(Q/Q).) Now
by [K, Theorem 9(a)], ρf is induced from some character χ : Gal(Q/K) → C×,
forcing f = fχ.

To show that K must be imaginary quadratic, det ρf,λ is odd, but as a Dirichlet

character it is ψφ = ηK(ψ
2
), which implies that ηK is odd, as required. This

observation and its proof are due to T. Berger. �

Remark 2.6. With ℓ > 2, the congruence is equivalent to reducibility of ρf,λ.

Summarising Propositions 2.2 and 2.5 we get the following.

Corollary 2.7. Let f be as in Theorem 2.1. If ρf,λ is reducible, with λ | ℓ and ℓ > 2,

then ρ′f (Gal(Q/Q)) is dihedral, and f = fχ for some character χ : Gal(Q/K) →
C×, with K imaginary quadratic.

Theorem 2.8. Let K be an imaginary quadratic field, with associated quadratic
character ηK , discriminant N = dK . Let hK be the class number of OK , and
w = 2, 4 or 6 the number of units in OK . Let ℓ be a rational prime such that ℓ ∤ w.

(1) If ℓ | hK then (for λ | ℓ in a sufficiently large number field) there exists
a newform f ∈ S1(Γ0(N), η′), for some character η′ ≡ ηK (mod λ), such
that

aq(f) ≡ 1 + ηK(q) (mod λ) for all primes q 6= ℓ.

(2) If ℓ ∤ hK but ℓ | (p − 1), for some prime p split in K, then there exists a
newform f ∈ S1(Γ0(Np), η

′), for some character η′ ≡ ηK (mod λ), such
that

aq(f) ≡ 1 + ηK(q) (mod λ) for all primes q ∤ ℓp.

(3) If ℓ ∤ hK but ℓ | (p + 1), for some prime p inert in K, then there exists a
newform f ∈ S1(Γ0(Np

2), η′), for some character η′ ≡ ηK (mod λ), such
that

aq(f) ≡ 1 + ηK(q) (mod λ) for all primes q 6= ℓ.
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Proof. (1) Since ℓ | hK , there exists a character χ : Gal(Q/K) → C× of order
ℓ, factoring through Gal(H/K), where H is the Hilbert class field of K.
As noted by Serre [Se, ➜7.2], the fact that aσ(a) is always principal implies
that χσ = χ−1. Since ℓ is odd, it follows that χσ 6= χ. Let f = fχ, which
is a newform in S1(Γ0(N), ηKχQ). The values of χ are ℓth roots of unity,
so χ(a) ≡ 1 (mod λ) for any ideal a of OK . In particular, ηKχQ ≡ ηK
(mod λ). If q is inert in K (so ηK(q) = −1) then

aq(f) = 0 = 1 + ηK(q),

while if q = qq is split in K (so ηK(q) = 1) then

aq(f) = χ(q) + χ(q) ≡ 1 + 1 = 1 + ηK(q) (mod λ).

If q = q2 is ramified in K (so ηK(q) = 0) then

aq(f) = χ(q) ≡ 1 = 1 + ηK(q) (mod λ).

(2) Say (p) = pp. Since ℓ | (p− 1), there exists a character χ : (OK/p)
× → C×

of exact order ℓ. Since ℓ ∤ w, χ kills the image of the units in all cases,
and since ℓ ∤ hK it lifts to a character of the ray class group of conductor
p, and may be considered χ : Gal(Q/K) → C×. Since χσ has conductor
p, χσ 6= χ. Letting f = fχ, which is a newform in S1(Γ0(Np), ηKχQ), we
proceed exactly as before, except we must exclude q = p, since χ(p)+χ(p) =
0 + 0 6= 2 = 1 + ηK(p).

(3) Since ℓ | (p2−1) = #(OK/(p))
×, we get a character χ : Gal(Q/K) → C× as

above, of exact order ℓ but this time of conductor (p). The automorphism
σ ∈ Gal(K/Q) maps to the Frobenius element in Gal(Fp2/Fp), so χσ =
χp = χ−1 since ℓ | (p + 1), so again χσ 6= χ because ℓ is odd. Letting
f = fχ, which is a newform in S1(Γ0(Np

2), ηKχQ), we prove the congruence
as above. This time q = p is OK, since 1 + ηK(p) = 0.

�

Remark 2.9. (1) The right hand side of the congruence is the Hecke eigen-

value at q of the Eisenstein series E1,ηK
1 , which lives in M1(Γ0(N), ηK).

(2)

L(1, ηK) =
2πhK

w
√

|dK |
.

If L{p}(s, ηK) is the Dirichlet series with the Euler factor at p omitted, then

L{p}(1, ηK) =







2πhK(1−p)
pw

√
|dK |

if p is split in K;

2πhK(1+p)

pw
√

|dK |
if p is inert in K.

So, given that ℓ ∤ w, the condition on ℓ is














ordℓ

(

L(1,ηK)

2π/
√

|dK |

)

> 0 in case (1);

ordℓ

(

L{p}(1,ηK)

2π/
√

|dK |

)

> 0 but ordℓ

(

L(1,ηK)

2π/
√

|dK |

)

= 0 in cases (2),(3).

(3) In the case that K is real quadratic, L(1, ηK) is not a critical value.
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(4) For a congruence with ψ(q) + φ(q) (the Hecke eigenvalue at q of Eψ,φ1 )
on the right hand side, where ψ = ηKφ, we may just twist fχ by φ, or

equivalently multiply the original χ by the restriction to Gal(Q/K) of the
Galois character associated to φ.

For comparison, we look briefly at the situation for higher weights.

Theorem 2.10. Let ψ, φ be Dirichlet characters of conductors u, v respectively,
and let N = uv. Let k ≥ 2 be an integer. Suppose that p ∤ N is a prime, and that
λ | ℓ with ℓ > k + 1 and ℓ ∤ N . Let ΣN be the set of primes dividing N .

(1) If

ordλ

(

LΣN
(k, ψφ−1)

(2π)k

)

> 0,

and (N, k) 6= (1, 2), there exists a cuspidal eigenform f ∈ Sk(Γ0(N), χ),
with χ ≡ ψφ (mod λ), such that

aq(f) ≡ ψ(q) + qk−1φ(q) (mod λ) for all primes q ∤ ℓN.

(2) If

ordλ

(

LΣNp
(k, ψφ−1)

(2π)k

)

> 0,

and (N, k) 6= (1, 2), there exists a cuspidal eigenform f ∈ Sk(Γ0(Np), χ),
with χ ≡ ψφ (mod λ), such that

aq(f) ≡ ψ(q) + qk−1φ(q) (mod λ) for all primes q ∤ ℓpN.

This follows from work of Billerey and Menares [BM2, Theorems 1,2]. The right

hand side is the Hecke eigenvalue at q of the Eisenstein series Eψ,φk ∈Mk(Γ0(N), ψφ).
Their proof involves finding an element of Mk(Γ0(Np), ψφ), in the old space for

Eψ,φk , with constant terms at all cusps divisible by ℓ, lifting its reduction modulo ℓ
to a cusp form, then applying the Deligne-Serre lemma [DeSe, Lemme 6.1]. In the
case (N, k) = (1, 2), the corresponding condition, which would be ℓ | (p2 − 1), is
strengthened to ℓ | (p− 1), following a theorem of Mazur [Maz].

3. Congruences between genus one and genus two cusp forms

The paramodular group of level N is given by

Γpara(N) =









Z NZ Z Z
Z Z Z 1

NZ
Z NZ Z Z
NZ NZ NZ Z









∩ Sp2(Q),

where Sp2(Q) := {g ∈ M4(Q) : tgJg = J}, J =

(

02 −I2
I2 02

)

. Let F be a cuspidal

Hecke eigenform of weight ρ = Symj⊗detκ for Γpara(N). Then F : H2 → V , where
H2 = {Z ∈ M2(C) :

tZ = Z, Im(Z) > 0} is Siegel’s upper half space of genus 2, V
is the space of the representation ρ = Symj(C2)⊗ detκ of GL2(C), and

F
(

(AZ +B)(CZ +D)−1
)

= ρ(CZ +D)(f(Z)) for all

(

A B
C D

)

∈ Γpara(N).
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Let the elements T (q), T (q2) of the genus-2 Hecke algebra be as in [vdG, ➜16]
(with the scaling as following Definition 8). Let λF (q), λF (q

2) be the respec-
tive eigenvalues for these operators acting on F . The spinor L-function of F is
L(s, F, Spin) =

∏

q prime Lq(s, F, Spin), where for primes q ∤ N , Lq(s, F, Spin)
−1

= 1−λF (q)q−s+(λF (q)
2−λF (q2)−qj+2κ−4)q−2s−λF (q)qj+2κ−3−3s+q2j+4κ−6−4s.

Theorem 3.1. Let f ∈ Sk(Γ0(N)) be a normalised newform, with k ≥ 2. Let K be
a real quadratic field with discriminant dK , narrow class number h′K and associated
quadratic character ηK . Suppose that (dK , N) = 1, and that f is not monomial
with respect to K (equivalently aq(f) 6= 0 for some prime q inert in K).

(1) Choose a prime p that splits in K, (p) = ppσ. Suppose that p ∤ ℓN , ℓ ∤ (p+1)
and

ap(f)
2 ≡ pk−2(p+ 1)2 (mod λ),

for some λ | ℓ. Further assume that there exists a prime q, split in K,

such that aq(f)
h′
K 6≡

(

q
k
2 + q

k
2
−1

)h′
K

(mod λ), and that ρf,λ|Gal(Q/K) is

irreducible. Let ρ = Symk−2(C2)⊗ det2.
Then there exists a Siegel paramodular cusp form F ∈ Sρ(Γ

para(N2d2Kp))
satisfying

λF (q) ≡ aq(f) (1 + ηK(q)) (mod λ) for all primes q ∤ NdKp.

(2) Choose a prime p that is inert in K. Suppose that p ∤ ℓN , ℓ ∤ (p2 + 1) and

ap(f)
2 ≡ −pk−2(p− 1)2 (mod λ),

for some λ | ℓ. Further assume that there exists a prime q, split in K,

such that aq(f)
h′
K 6≡

(

qk + qk−2
)h′

K (mod λ), and that ρf,λ|Gal(Q/K) is ir-

reducible. Let ρ = Symk−2(C2)⊗ det2.
Then there exists a Siegel paramodular cusp form F ∈ Sρ(Γ

para(N2d2Kp
2))

satisfying

λF (q) ≡ aq(f) (1 + ηK(q)) (mod λ) for all primes q ∤ NdKp.

(3) Suppose that ordλ

(√
dK L(k,Sym2f,ηK)

πk+1Ω+

f
Ω−

f

)

> 0, where the periods Ω±
f are as in

[TiU, ➜3] and λ | ℓ with ℓ > k and ℓ ∤ 6NdK#(OK/N OK)×. Suppose also
that ρf,λ is irreducible, and that for some prime q || N , there is no newform
of level dividing N/q sharing this same residual representation. Then there
exists a Siegel paramodular cusp form F ∈ Sρ(Γ

para(N2d2K)) satisfying

λF (q) ≡ aq(f) (1 + ηK(q)) (mod λ) for all primes q ∤ NdK .

Proof. (1) Let πf be the cuspidal automorphic representation of GL2(A) asso-
ciated to f . Since πf is not monomial with respect to K, the base change
π′ := BCK/Q(πf ) is a cuspidal automorphic representation of GL2(AK)
[L][Ge, ➜6.1], of weight (k, k), level (N) and trivial central character. The
associated λ-adic Galois representation is ρf,λ|Gal(Q/K), of conductor (N).

Since p is split, the congruence may be read as

ap(π
′)2 ≡

(

Nm(p)
k
2 +Nm(p)

k
2
−1

)2

(mod λ).
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By a level-raising theorem of Taylor for Hilbert modular forms [Ta, Theorem
1], there exists an automorphic representation π̃ of GL2(AK), of weight
(k, k), level (N)p and trivial central character, such that

aq(π̃) ≡ aq(π
′) (mod λ) for all primes q 6= p.

Note that the conditions aq(f)
h′
K 6≡

(

q
k
2 + q

k
2
−1

)h′
K

(mod λ) and ℓ ∤ (p+1)

allow us to ignore the “error term” in Taylor’s theorem. Strictly speaking,
Taylor’s theorem gives us π̃ of central character trivial modulo λ, but we
can replace it by one of trivial character using Jarvis’s generalisation of
Carayol’s Lemma to Hilbert modular forms [Ja, Theorem 4.1], which uses
the irreducibility of ρf,λ|Gal(Q/K). In his notation, B = GL2/K , S is the

set of infinite places together with divisors of (N)p, U = U0((N)p), U1 =
U1((N)p), r is essentially the central character, and χ is its inverse.

Since π̃ has level (N)p, (π̃)σ has level (N)pσ, so (π̃)σ 6= π̃. We now em-
ploy a mild generalisation of a special case of a theorem of Johnson-Leung
and Roberts [JR, Main Theorem]. It is likewise an application of a theorem
of Roberts [Ro, Theorem 8.6, Introduction]. The analysis at finite places
(leading to paramodular level) is exactly as in [JR]. The only difference is
at archimedean places. In [JR] they have a cuspidal automorphic represen-
tation of GL2(AK) whose components at the infinite places are isomorphic
to discrete series representations D2 and D2n+2, leading to a scalar-valued
Siegel cusp form of weight n+2. For us it is Dk and Dk, so the case n = 0
for them is the case k = 2 for us. To make the generalisation, we simply
observe that the L-packet Π(φ(π0,∞)) (in the notation of [JR, ➜3]) contains
the limit of discrete series representation denoted πλ[c] in [Mo, p. 207],
with c = 0 and Harish-Chandra parameter λ = (λ1, λ2) = (k − 1, 0). To
cover the fact that λ2 > 0 does not hold, see [Mo, p.210, Remark (ii)]. The
Blattner parameter is (Λ1,Λ2) = (λ1, λ2)+(1, 2) = (k, 2). This is (j+κ, κ),
where the lowest K∞-type is Symj(C2) ⊗ detκ, so we recover j = k − 2,
κ = 2.

As in [JR, Main Theorem (iii)], L(s, F, Spin) is the same as the standard
L-function of π̃. Looking at the coefficient of q−s, we could write

λF (q) =

{

aq(π̃) + aqσ (π̃) q split;

0 q inert.

Since aq(π̃) ≡ aq(π
′) = aq(f) (mod λ) and aqσ (π̃) ≡ aqσ (π′) = aq(f)

(mod λ), the required congruence follows.
(2) This time for Taylor’s level-raising theorem, since Nm(p) = p2 and since

the Hecke eigenvalue for p on π′ is ap(f)2 − 2pk1 , we need λ to divide

(ap(f)
2 − 2pk−1)2 − (pk + pk−2)2.

This factorises as

(ap(f)
2 + pk−2(p− 1)2)(ap(f)

2 − pk−2(p+ 1)2),

and we have assumed that λ divides the first of these factors, so we get π̃
as before. We need to know that (π̃)σ 6= π̃. If (π̃)σ = π̃ then by a theorem
of Langlands [L], π̃ would be in the image of the base change map, say
π̃ = BCK/Q(πg). The level raising congruence implies that ρg,λ|Gal(Q/K) ≃
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ρf,λ|Gal(Q/K). Replacing g by a quadratic twist by η if necessary (which

does not alter its base change), we may assume that ρg,λ ≃ ρf,λ. (We have
used the irreducibility of ρf,λ|Gal(Q/K) again.) Since π̃ = BCK/Q(πg), the

level of g is exactly divisible by p, whereas the level of f is not divisible by
p. The (easier) necessary condition for raising the level of f at p implies
that λ divides the second factor (ap(f)

2 − pk−2(p+1)2). This would imply
that λ divides the difference of the two factors, i.e. 2pk−2(p2 +1), which it
does not. Hence (π̃)σ 6= π̃, and we have everything we need to proceed as
before.

(3) Note that L(k, Sym2f, ηK) = L(1, ad0(f), ηK), a “twisted adjoint L-value”.
According to a recent preprint of Tilouine and Urban, under the conditions
stated there is a congruence modulo λ of Hecke eigenvalues between the base
change π′ := BCK/Q(πf ) and some non-base change cuspidal automorphic
representation of GL2(AK) [TiU, Theorem 4.5]. We substitute this for π̃
in the above proof. It is crucial for it to be non-base change, to get the
required Gal(K/Q) non-invariance.

�

Remark 3.2. (1) We may view (1) and (2) as analogues of (2) and (3) of
Theorem 2.8. There the ray-class character χ of conductor p is congruent
modulo λ to the trivial character of conductor 1, which may be viewed as
a “base-change” to K of the trivial character of A×/Q×, whose value at q
contributes the 1 to the right-hand-side of the congruence. Here π̃ of level
(N)p is congruent modulo λ to π′ of level (N), which is the base-change
to K of πf , whose Hecke eigenvalue at q contributes to the right-hand-side
of the congruence. Note that it was essential to level-raise, indeed to level-
raise after base-changing rather than before, to ensure the condition of
Gal(K/Q) non-invariance. Just as in Theorem 2.8 the L-function attached

to IndQK(χ) is L(s, fχ), here the L-function attached to ρF,λ := IndQK(ρπ̃,λ)
is L(s, F, Spin).

(2) In (2) of Remark 2.9, we had the L-values L(1, ηK) and L{p}(1, ηK), which
could just as well have been described as LΣN

(1, ηK) and LΣN∪{p}(1, ηK),
since the Euler factors at primes dividing N are trivial. The congruence
there could be interpreted as reducibility of ρf,λ, with composition factors
Fλ, Fλ(ηK). Combining this with the irreducibility of ρf,λ, a construction of
Ribet [Ri] ensures the existence of a non-trivial extension of Fλ by Fλ(ηK),
hence a non-zero element of H1(Q,Hom(Fλ,Fλ(ηK))) = H1(Q,Fλ(ηK)).
Since ρf,λ is crystalline at ℓ (if ℓ > k) and unramified at all q ∤ ℓpN (say
in cases (2) and (3)), this produces a non-zero element in the λ part of
a Bloch-Kato Selmer group appearing in the numerator of a conjectural
formula for LΣN∪{p}(1, ηK), cf. [DF, Propositions 3.1, 4.2]. This accounts
for the involvement of that L-value. Note that the Bloch-Kato conjecture
for Dirichlet characters is actually proved, in work completed by Huber and
Kings [HK, Theorem 5.4.1].

Here, the congruence may be interpreted as reducibility of ρF,λ, with
composition factors ρf,λ, ρf,λ(ηK) (assuming their irreducibility). Now

Hom(ρf,λ, ρf,λ(ηK)) ≃ ad(ρf,λ)(ηK),
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but since the image of ρF,λ acts by symplectic similitudes, in fact we get

a cocycle with values in ad0(ρf,λ(ηK) (trace 0 endomorphisms, twisted by

ηK), cf. [Du2, Lemma 6.5]. Since ad0(ρf,λ) ≃ Sym2ρf,λ(k−1), we are led to

consider LΣN∪{p}(k, Sym
2f, ηK). (Note that L(k, Sym2f, ηK) is paired with

L(k − 1, Sym2f, η−1
K ) = L(k − 1, Sym2f, ηK) by the functional equation.)

Indeed, it is easy to check that

Lp(k, Sym
2(f), ηK)−1 =

1− p

pk+1

(

ap(f)
2 −

(

p
k
2 + p

k
2
−1

)2
)

,

so the level-raising condition (in the case that p is split) implies that
ordλ(Lp(k, Sym

2(f), ηK)−1) > 0, and is analogous to the condition ℓ |
(p− 1) in Theorem 2.8.

(3) When p is inert, the level-raising condition is that λ divides L(p)(1, ad
0(π′))−1,

which naturally arises from Galois deformation theory. This factors as
Lp(1, ad

0(f), ηK)−1Lp(1, ad
0(f))−1, and to get (π̃)σ 6= π̃ we have imposed

the stronger condition that λ divides the first factor. This is analogous
to what happened with p2 − 1 = (p + 1)(p − 1) (i.e. (1 − p−2) = (1 −
ηK(p)p−1)(1− p−1)) in (3) of Theorem 2.8.

(4) We see now that (3) is the analogue of (1) of Theorem 2.8. At least in
the case N = 1, the existence of congruences between base-change and non
base-change Hilbert modular forms, modulo divisors of twisted adjoint L-
values, was originally a conjecture of Doi, Hida, and Ishii [DHI],[Gh1, ➜7,
Conjecture 2], who provided numerical evidence. Subject to a conjectured
compatibility of periods (of the kind now proved by Tilouine and Urban),
it was supported by a theorem of Ghate [Gh2, Theorem 5, Corollary 2]
(which did not restrict to level 1).

(5) In [BD] we give a general conjecture on congruences of Hecke eigenvalues
between cuspidal automorphic representations of split connected reductive
groups G and representations induced from cuspidal automorphic repre-
sentations of Levi subgroups M of maximal parabolic subgroups P . In ➜6
we work out the example where G = GSp2, P is the Klingen parabolic
and M ≃ GL2 × GL1. There we start with the representation πf × 1 of
M(A). If instead we start with πf × ηK , we arrive at a conjecture that if
j + κ = k, with j ≥ 0 even and κ ≥ 4, and if λ (for ℓ > 2k − 1) divides
LΣNdK

(k−2+κ, Sym2f, ηK)/Ω (for a suitable Deligne period Ω) then there

exists a genus 2 cuspidal Hecke eigenform F of weight Symj(C2)⊗detκ, as-
sociated automorphic representation πF of GSp2(A) unramified away from
ΣNdK , and

λF (q) ≡ aq(f)
(

qκ−2 + ηK(q)
)

(mod λ) for all primes q ∤ NdK .

(Likewise with all three occurrences of NdK replaced by NdKp.) Theorem
3.1 proves a degenerate case of such a congruence, with κ = 2, which is
smaller than what is allowed by the conjecture in [BD]. (For κ = 2 we have
s = 0 in the notation of [BD], rather than the required s > 1.) Similarly
Theorem 2.8 is related to the case G = GL2,M ≃ GL1 × GL1 [BD, ➜5],
with k = 1 rather than the required k ≥ 3. Theorem 2.10 supports the
conjecture for G = GL2,M ≃ GL1 × GL1, while Propositions 2.2 and 2.5
show that it does not extend to k = 1 without severe restrictions.
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(6) We have used a form F of weight Symk−2(C2)⊗det2 and level Γpara(N2d2Kp),
following Johnson-Leung and Roberts. We might have tried to use instead a

form of level Γ
(2)
0 (Ndkp) =

{(

A B
C D

)

∈ Sp2(Z) : C ≡ 02 (mod Ndkp)

}

,

with the same spinor L-function. Such a function was constructed by
Yoshida [Y] for k = 2, and by Hsieh and Namikawa [HN] in general, as
a theta lift from the multiplicative group D× of a definite quaternion alge-
bra. However, they require N to be square-free, and there is also a strong
restriction on Atkin-Lehner eigenvalues to ensure that the theta lift does
not vanish. The construction of Roberts uses a theta lift from GO(2, 2)
instead, and avoids these restrictions.

Acknowledgements. We thank Frazer Jarvis for the reference to [Ja], and
Tobias Berger and Kris Klosin for finding errors in earlier versions of the paper,
and for the reference to [K].
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Fields, (A. Fröhlich, ed.), 193–268, Acad. Press, 1977.

[Sp] D. Spencer, Congruences of local origin for higher levels, Ph.D. thesis, University of Sheffield,
August 2018.

[Ta] R. Taylor, On Galois Representations Attached to Hilbert Modular Forms, Invent. math.

98 (1989), 265–280.
[TiU] J. Tilouine, E. Urban, Integral Period Relations and Congruences, preprint 2018, http:

//www.math.columbia.edu/~urban/EURP.html.
[vdG] G. van der Geer, Siegel Modular Forms and Their Applications, in The 1-2-3 of Modular

Forms (K. Ranestad, ed.), 181–245, Springer-Verlag, Berlin Heidelberg, 2008.
[Y] H. Yoshida, Siegel’s modular forms and the arithmetic of quadratic forms, Invent. math. 60

(1980), 193–248.

University of Sheffield, School of Mathematics and Statistics, Hicks Building, Hounsfield

Road, Sheffield, S3 7RH, U.K.

Email address: n.p.dummigan@shef.ac.uk


