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Abstract

The Gaussian distribution is usually the default causal SNP effect size prior in Bayesian population-

based fine-mapping association studies, but a recent study showed that the heavier-tailed Laplace

prior distribution provided a better fit to breast cancer top hits identified in genome-wide association

studies. We investigate the utility of the Laplace prior as an effect size prior in univariate fine-

mapping studies. We consider ranking SNPs using Bayes factors and other summaries of the effect

size posterior distribution, the effect of prior choice on credible set size based on the posterior

probability of causality, and on the noteworthiness of SNPs in univariate analyses. Across a wide

range of fine-mapping scenarios the Laplace prior generally leads to larger 90% credible sets than

the Gaussian prior. These larger credible sets for the Laplace prior are due to relatively high prior

mass around zero which can yield many non-causal SNPs with relatively large Bayes factors. If

using conventional credible sets, the Gaussian prior generally yields a better trade off between

including the causal SNP with high probability and keeping the set size reasonable. Interestingly

when using the less well utilised measure of noteworthiness, the Laplace prior performs well, leading

to causal SNPs being declared noteworthy with high probability, whilst generally declaring fewer

than 5% of non-causal SNPs as being noteworthy. In contrast, the Gaussian prior leads to the

causal SNP being declared noteworthy with very low probability.
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Introduction

In Bayesian fine-mapping studies the Gaussian distribution is the default choice of prior for the

effect size, or equivalently, the log-odds ratio (Wakefield [2009]; Spencer et al. [2016]; Benner et al.

[2016]; Chen et al. [2015]). The zero-mean Gaussian distribution is a sensible choice of effect size

prior in that it is symmetric around zero and has reasonably fast decaying tails. However the main

reason for using the Gaussian prior is mostly due to be its computational simplicity. With an

asymptotic Gaussian likelihood [Wakefield, 2009] the Gaussian distribution is a conjugate prior for

the effect size leading to a Gaussian posterior distribution. The Bayes factor is easily calculated

with a zero-centred Gaussian prior, giving the so-called Wakefield Bayes factor (WBF), even with

a hierarchical Bayesian model [Spencer et al., 2015].

Other priors have been utilised in fine-mapping studies including the t distribution [Marchini

and Howie, 2010], the normal-gamma prior (Boggis et al. [2016]; Alenazi et al. [2019]) and the

Laplace prior [Hoggart et al., 2008]. There are also methods starting to become available that

implement methods based on binned empirical effect sizes that do not assume specific parametric

distributions [Vsevolozhskaya and Zaykin, 2019]. These latter approaches require careful choice

of bin number and size but allow flexibility in the prior form and can use available known causal

SNP effect sizes to provide a well-matched summary of the disease-specific effect sizes discovered

to date. Walters et al. [2019] used a Bayesian model selection approach to show that, based on a

large number of breast cancer genome-wide association study (GWAS) top hits, the Laplace prior

showed a much better fit than the Gaussian prior (where the fit was determined by the posterior

probability of the model given the GWAS top hits data). The only consideration given to the

Laplace prior specifically in fine-mapping is in Hoggart et al. [2008] who used a penalised regression

LASSO-type approach which is not truly Bayesian.

The Laplace prior shares many of the advantages of the Gaussian distribution as a prior on the

effect size when used in conjunction with an asymptotic Gaussian likelihood: there is a closed-form

expression for the posterior distribution which does not require MCMC as does the normal-gamma

prior (Boggis et al. [2016]; Alenazi et al. [2019]); and calculating the Bayes factor does not require

a Laplace approximation, as does the t distribution prior implemented in SNPTEST [Marchini and

Howie, 2010]. The zero-mean Laplace prior has more mass close to zero than the Gaussian and
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also has heavier tails. This makes it an excellent choice of prior distribution for complex diseases

where there are likely to be many causal SNPs with small effect sizes but also a small number of

relatively large effect sizes. Walters et al. [2019] demonstrated that for the GWAS breast cancer

top hits, the Gaussian distribution couldn’t simultaneously place a high mass around zero whilst

retaining sufficiently heavy tails to provide a good fit.

A few previous studies have compared the fine-mapping performance of either frequentist or

Bayesian approaches (Spencer et al. [2015]; Van de Bunt et al. [2015]; Spencer et al. [2014]). How-

ever, where Bayesian approaches have been considered, the prior is always assumed to be Gaussian.

To the best of our knowledge no other authors have examined the fine-mapping performance of the

Laplace prior.

The approaches used in this paper can be applied to the situation where there are confounding

variables since a simple reparameterisation trick means they do not affect the Bayes factor or

posterior distribution [Wakefield, 2009]. We only consider the univariate case, which is appropriate

for fine-mapped regions with at most one causal SNP. A multi-SNP approach could readily be taken

but this makes it harder to identify situations under which the choice of prior is important (since

there become many more variables to vary).

The Laplace prior was shown to be a better fit in Walters et al. [2019] but the question of

interest is really whether the choice of prior is important in fine-mapping, and if so, in which

situations. For example in studies with large sample sizes it seems reasonable to hypothesize that

the choice of prior would be less important than in small studies since the likelihood contains more

information as the sample size increases. The Bayes factor (one interpretation of which is the ratio

of the posterior odds of the SNP being causally associated to the prior odds of causal association)

is the most widely used Bayesian statistic in fine-mapping studies because it compares the evidence

under the null and the alternative hypothesis, but there are other statistics that could be used.

We do three things in this paper: we derive and consider alternative common posterior summary

statistics for ranking SNPs in fine-mapping studies and compare their ranking performance with

that of the Laplace Bayes factor (LBF); we compare the ranking performance of the LBF and WBF;

we compare the credible set sizes and noteworthiness (defined using Bayesian decision theory) of

SNPs using the LBF and WBF. We make these comparisons via simulation and via fine-mapping

of the CASP8 region using data from the iCOGS array developed by the Collaborative Oncological
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Gene-Environment Study (COGS) Consortium (Michailidou et al. [2013]; Michailidou et al. [2017]).

The summaries we consider are based on the posterior distribution of the effect size. They do

not have the interpretability of the Bayes factor but could be used if the interest is in ranking a set

of SNPs to take forward for further functional analysis. It should be noted that the Bayes factor

described here are approximate since they assume a Gaussian likelihood for the observed regression

parameters rather than the true logistic likelihood for the binary response.

Rather than focussing solely on capturing the causal SNP, some authors consider whether any

SNP highly correlated with the causal SNP (r2 > 0.99 for example) has been identified as a possible

causal SNP. In this paper, the true positive rates we report are for the causal SNP only and do not

include those SNPs in very high linkage disequilibrium (LD) with it.

Materials and Methods

Summaries of the effect size posterior distribution

We assume that the prior for β (the effect size) is the zero-mean Laplace distribution with rate

parameter λ, β ∼ La(λ), and further assume an asymptotic Gaussian distribution for the likelihood,

β̂ | β ∼ N(β, V ), as was first proposed in Wakefield [2009]. The Gaussian likelihood approximation

is suitable for fine-mapping scenarios of sufficient sample size. Then using the same argument to

that used in the reparameterisation proposed by Wakefield [2009] (which is independent of prior

parametric form), we can ignore the prior on the intercept and any other confounders when deriving

the posterior distribution of the effect size. Bayes theorem gives the posterior distribution on the

effect size as

f(β | β̂) = f(β̂ | β)π(β)
∫

f(β̂ | β)π(β) dβ
. (1)

The posterior distribution can be derived from Equation (1) by substituting in the expression

for the prior and likelihood. Breaking the denominator integral in Equation (1) into positive and
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negatives parts and completing the square gives, after a little algebra, the posterior density as

f(β | β̂) =



















E
−√

2πV
exp

(

− 1

2V
(β −Q−)

2

)

if β < 0

E+√
2πV

exp

(

− 1

2V
(β −Q+)

2

)

if β ≥ 0

(2)

where Q− = β̂ + V λ, Q+ = β̂ − V λ and E− and E+ are normalising constants defined in the Ap-

pendix. We consider six statistics as possible ranking statistics: the posterior mean, median, mode,

credible intervals (CIs), highest density intervals (HDIs) and Laplace Bayes factor. Derivations of

these summary statistics for the Laplace prior are given in the Appendix. Examples of possible

posterior probability density functions are shown in Figure 1. With a Laplace prior and Gaussian

likelihood, the posterior density has a separate and scaled truncated Gaussian density on the nega-

tive and positive effect size support as can be seen in Figure 1 and in Equation (2). It isn’t possible

for the posterior distribution to be bi-modal in this case. A bi-modal posterior distribution requires

that Q− < 0 and Q+ > 0. Both inequalities cannot be satisfied since Q+ > 0 ⇒ β̂ > V λ ⇒ Q− > 0.

Thus the bi-modal requirement cannot be satisfied. Basic algebra shows that the posterior distribu-

tion is continuous at β = 0: limβ→0− = limβ→0+ = exp(−β̂2/2V )/
√
2πV D2 where D is a constant

defined in the Appendix. Note that with a Gaussian prior and Gaussian likelihood, the posterior

distribution is a single non-truncated Gaussian distribution.

For the posterior mean, median, and mode we used the absolute values of the summary as the

ranking statistic. The LBF is strictly non-negative so we used its actual value. For the CIs and

HDIs our ranking statistic was the size of the largest probability interval that did not contain β = 0

(e.g. an 83% or 72% interval). We used receiver operating characteristic (ROC) curves and area

under the ROC curves (AUC) to compare the performance of the ranking statistics. Since we are

really interested in the true positive rates (TPRs) at low false positive rates (FPRs) we report the

partial AUC on FPRs < 0.1 given as an integer percentage. For example, a partial AUC of 70

means that the AUC for FPR < 0.1 was 0.07 (compared to a maximum partial AUC in this region

of 0.10). There are several ways to aggregate results over multiple ROC courves. We chose to use

vertical averaging [Fawcett, 2006] which calculates the average TPR across a range of FPRs and

hence gives an average TPR at each FPR.
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Comparing approximate Bayes factors

We also compared the ranking performance of the LBF with that of the WBF in our simulated

scenarios. The WBF was derived in Wakefield [2009] and we derive the LBF in the Appendix. The

expression for the LBF is not as concise as the WBF but it is just as easily calculated in practice

since it has a closed form expression. To compare the ranks, we plotted ROC curves and report

partial AUCs as we did when comparing the posterior summaries to the LBF.

Noteworthiness of SNPs

The interest in fine-mapping studies is often not simply ranking SNPs but in trying to identify

a set of potentially interesting SNPs to take forward for further investigation. Wakefield [2008]

recommended using a Bayesian decision theory approach to determine which SNPs in the fine-

mapping region are to be declared noteworthy, in the sense that the posterior probability of the

alternative hypothesis exceeded a threshold, determined by the specific costs of making the wrong

decision. Noteworthy here is simply taken to mean worthy of further investigation. Wakefield

showed how to formalise this by specifying the cost of false non-discovery (Cβ) and the costs of

false-discovery (Cα). If H1 is the alternative hypothesis that β 6= 0, then a SNP is declared

noteworthy if

Pr(H1 | data) =
φ(1− π0)

π0 + φ(1− π0)
>

Cα

Cα + Cβ

(3)

where φ is the Bayes factor (here LBF or WBF) for the SNP and π0 is the prior probability that

the SNP is not causally associated. We use the shorthand ‘ratio of costs’ for r = Cβ/Cα. With r

defined in this way, Equation (3) is equivalent to Pr(H1 | data) > 1/(1 + r). In this paper we set

the ratio of costs to be 4, meaning that the cost of false non-discovery is four times that of the cost

of false-discovery. We also set π0 to be 0.99 meaning that we, a priori, expect 99% of SNPs in the

fine-mapping region not to be causally associated. Wakefield [2008] suggested that values or r in

this region might be appropriate for fine-mapping scenarios where it would be considered relatively

costly not to identify causally associated SNPs, relative to the cost of labelling non-causal SNPs

as noteworthy. The higher the ratio of costs, the more SNPs will be identified as noteworthy in

any given analysis. In his simulations, Wakefield [2008] demonstrated quickly diminishing returns
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from increasing the ratio much beyond four. If the ratio of costs is four and the prior probability

of the null is 0.99 then a SNP is declared noteworthy if the posterior probability of the alternative

hypothesis, H1, is greater than 1/5. With π0 = 0.99 and r = 4, noteworthiness requires the SNP

Bayes factor to exceed 25. Using noteworthiness as the statistic of interest, we consider the TPRs

and FPRs derived from using the LBF and WBF in simulated datasets.

Credible set size

Although noteworthiness has the advantage of fitting into a Bayesian decision-theoretic approach,

it is not widely used in practice. Typically posterior probabilities of causality (PPC) are calculated

for each SNP. Under the assumption that there is exactly one causal SNP in the region the PPC

for a given SNP is calculated as the Bayes factor for that SNP divided by the sum of the Bayes

factors for all SNPs under consideration [Maller et al., 2012]. These are then ranked and SNPs are

added to the set until the cumulative probability exceeds some specified threshold, say 0.90 or 0.95.

To form our credible sets we used 0.90 as the cumulative probability threshold. The values of

W and λ used in this study are a subset of the values calculated from GWAS breast cancer top

hits data. To allow more widely applicable comparisons of the effect of Gaussian versus Laplace

priors we also consider W = 0.22 which is a more typical value used in many studies. To allow

comparison with the Laplace prior we equate the prior variances giving λ =
√

2/W , which gives

λ = 7.1. This final pair of prior hyperparameter values are calculated on a different basis to the

preceding two hyperparameter pairs (which were based on maximum likelihood estimates obtained

using the breast cancer GWAS top hits) but fixing the prior variance or assigning it a distribution

is a standard approach in Bayesian variable selection problems [Alenazi et al., 2019].

Simulation details

We used Hapgen2 [Su et al., 2011] to simulate haplotypes in the CASP8 region between base pairs

201666128 and 201866128 of the Hg 19 build of chromosome 2. The reference data we used are

the European haplotypes of the August 2010 release of the 1000 Genomes Project. We simulated

haplotypes containing a single causal SNP. We converted the haplotype data to genotype data and

then calculated the minor allele frequency (MAF) of each SNP identified. Hapgen2 identified 412

SNPs in this region however SNPs with MAF less than 0.01 were removed, which typically left
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180 SNPs in the datasets. We simulated 100 data sets for each of eight scenarios. In all scenarios

we fixed the odds ratio and MAF of the causal SNP and (by specifying equal numbers of cases

and controls) determined the total sample size that gave 60% power to reject the null hypothesis

of no association when the causal SNP had an effect size given by the specified odds ratios. The

scenarios we considered are given in Table 1. In each scenario we selected a different causal SNP to

allow for a variety of LD patterns in which some causal SNPs where in high LD (which we define

as r2 > 0.8) with several SNPs and some where not in high LD with any SNPs. Note that we also

considered an odds ratio of 1.12 but found the results to be in line with those of the other values

of the odds ratios, so omitted them for the sake of brevity.

Based on the 148 available breast cancer GWAS top hits effect sizes [Fachal and Dunning, 2015]

and estimates of the number of yet-to-be-discovered (ytbd) SNPs, Walters et al. [2019] showed how

they could be used to obtain maximum likelihood estimates of the Laplace and Gaussian prior

hyperparameters λ and W . Walters et al. [2019] considered five different numbers of ytbd SNPs,

ranging from zero to 1000 (the number estimated in breast cancer by Michailidou et al. [2013] using

two independent GWAS data sets). We wanted to assess performance across a range of simulation

scenarios and prior parameter settings. To reduce the number of combinations to examine we used

only the extreme numbers of ytbd SNPs: zero and 1000. When no ytbd SNPs were assumed,

Walters et al. [2019] obtained hyperparameter estimates of λ = 18.3 and W = 6.92× 10−3 whereas

when 1000 ytbd SNPs were assumed the authors calculated λ = 60.5 and W = 1.21 × 10−3. We

tested all eight of our scenarios at both pairs of hyperparameter estimates. To indicate how a priori

likely the odds ratios used in this study are, we calculated the two-tailed probabilities of exceeding

the odds ratios used in this study for both the Laplace and Gaussian prior densities for both pairs

of hyperparameter estimates. These two-tailed probabilities are presented in Table 2.

iCOGS analysis

We compared the number of noteworthy SNPs identified when using different priors in fine-mapping

the CASP8 region between base positions 201,500,074 and 202,569,992 on chromosome 2. The data

we used is from a custom-built iCOGS array developed by the Collaborative Oncological Gene-

Environment Study (COGS) Consortium [Michailidou et al., 2013]. The gentotype data consists

of 1733 variants (501 genotyped and 1232 imputed using Impute2 [Marchini and Howie, 2010]) on
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46,450 breast cancer cases and 42,600 controls.

We varied the ratio of costs of false-discovery to false non-discovery, r, between 1 and 4. We

set the prior probability that a given SNP is causally associated to be 1/3000. Assuming that the

prior probability that a given SNP is causally associated is independent of the other 1732 SNPS

in the region, this gives a prior probability of 0, 1, and 2 causally associated SNPs in the region of

0.56 0.32 0.09 respectively. With π0 = 2999/3000, noteworthiness requires the SNP Bayes factor

to exceed 2999, 1500 and 750 when r = 1, 2 and 4 respectively.

Several other authors have fine-mapped the CASP8 region using the iCOGS data (Spencer et al.

[2015], Alenazi et al. [2019]). We compare the results of using the Laplace and Wakefield Bayes

factors, the power prior Bayes factor of Spencer et al. [2015], the normal-gamma prior of Alenazi

et al. [2019] and the normal-gamma prior that incorporates functional information in the prior

Alenazi et al. [2019]. The power prior Bayes factor (PPBF) assumes a N(0,W) prior on the effect

size but allows for uncertainty in W by putting a power prior on it. For the PPBF analysis we

used the exponent hyperparameter k = −1.66 as used in Spencer et al. [2015]. The normal-gamma

prior (NG) is a scale mixture of normals prior that assumes a N(0,W) prior on the effect size but

allows the prior effect size variance, W , to be different for each SNP; the SNP-specific variances

are assumed to follow a gamma distribution with specified shape and rate parameters. Alenazi

et al. [2019] also considered a normal-gamma prior that incorporates functional information in the

prior (NGFS). This approach groups SNPs based on functional significance (FS) scores [Lee and

Shatkay, 2009] and allows the gamma rate and shape parameter to be group-specific. To compare

the performance of the different methods we report the ranks of the top 20 SNPs for each method.

Results

Comparing ranks using Bayesian summaries

The posterior mean, median and mode were all very similar in terms of partial AUC in all cases.

The AUCs for the posterior median and mode were identical (to 2 s.f.) in the eight scenarios

and were always at least as large as the AUC for the posterior mean. In addition, the LBF was

universally better than the posterior CI and HDI in terms of partial AUC in all scenarios. As a

result we only present the results for the posterior median and LBF. Figures 2 and 3 show the ROC
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curves for FPRs less than 0.1 when no further ytbd SNPs are assumed and when 1000 ytbd SNPs

are assumed respectively. The results indicate that the ranking performance of the LBF is mostly

superior to that of the median (and hence the mean and mode) except when the odds ratio is 1.15

and the MAF is 0.09 with no assumed ytbd SNPs, and when the odds ratio is 1.15 or 1.18 and the

MAF is 0.09 with 1000 assumed ytbd SNPs. In the second of these three exceptions, the TPR for

the median is around 0.2 greater than the TPR for the LBF for FPRs less than 0.05, which is a

substantial improvement. In the second exception the partial AUCs are 96 and 83 for the LBF and

posterior median respectively. So it appears that if the aim of a fine-mapping study is simply to

rank SNPs then the posterior median is worth considering along with the LBF.

Comparing ranks using Bayes Factor

Figures 4 and 5 show the ROC curves for FPRs less than 0.1 when no further ytbd SNPs are

assumed and when 1000 are assumed respectively. When comparing the two Bayes factors we

observe a similar pattern as for the median versus LBF ROC curves. Generally the LBF has a

higher partial AUC than the WBF except for the same three cases that showed a higher partial

AUC for the median compared to the LBF, although the advantage of the WBF over the LBF

in these three cases is less than when comparing the median to the LBF. These plots clearly

demonstrate that there could be occasionally meaningful differences in the ranks of causal SNPs

in Bayesian fine-mapping studies when using the LBF compared to the WBF, but that generally

ranking performance using these Bayes factors might be expected to be rather similar.

Comparing noteworthiness using different priors

Figures 6 and 7 show box plots of the FPR (for both LBF and WBF) using noteworthiness of the

SNP as the classifier for the eight scenarios in Table 1, with 0 and 1000 ytbd SNPs respectively.

The values of the TPRs are also shown on the box plots. The comparison of the noteworthiness

of the SNPs reveals substantial differences when modelling the effect sizes with a zero-centred

Laplace prior compared to using a zero-centred Gaussian prior (LBF versus WBF). The ROC

curves in Figures 4 and 5 show that there were some differences between the ranks of LBF and

WBF. Essentially Figures 4 and 5 compare average ranks of the causal SNP Bayes factors for a

given scenario. However the noteworthiness takes into account the actual size of the Bayes factor,
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so that a causal SNP could have the same rank when ranked using LBF or WBF but be clearly

noteworthy using LBF but not using WBF (because the LBF for the causal SNP is substantially

higher than the WBF). Figures 6 and 7 indicate that, when using the WBF, the causal SNP is

rarely identified as being noteworthy in any of the eight scenarios with either 0 or 1000 ytbd SNPs.

The largest TPR for the WBF in any of the sixteen plots is 0.3 whilst it is 0.91 for the LBF.

There is a concomitant increase in the FPR for the LBF but the values observed are generally

at an acceptable level in most scenarios. The median noteworthiness FPR for the LBF is 0.05 or

less in 14 of the 16 scenarios in Figures 6 and 7. Therefore, in these simulations, using the LBF

declares the true causal SNP to be noteworthy with high probability whilst generally declaring no

more than 5% of the non-causal SNPs to be noteworthy. This is particularly noticeable in Figure 6

where the TPR is 0.78 or more in 7 of the eight scenarios. Using the WBF declares very few SNPs

to be noteworthy when the prior probability of causal association is 0.01 and the ratio of costs is

4. For the WBF the TPR is 0.15 or less in 13 out of the 16 scenarios in Figures 6 and 7.

Rather than fixing the power, it is often of interest in simulation studies to increase the odds

ratio of the causal SNP (and hence the power) for a fixed sample size. We chose to consider the

three sample sizes and MAFs from scenarios 2, 3 and 5 in Table 1. We then chose the odds ratios

to give 40, 60 and 90% power. We essentially have versions of Figures 2 - 7 where the sample size

is fixed in each of three rows and the odds ratio varies in each of three columns. The results are

presented in Supplementary File 1.

Comparing credible set size using different priors

Table 3 shows the median 90% credible set sizes for the eight scenarios in Table 1 for three pairs of

hyperparameter values. Table 3 also shows the percentage of 90% credible sets that contained the

simulated causal SNP and the median posterior probability of causality (PPC) of the causal SNPs

across all 100 datsets.

The results for all three pairs of hyperparameter values exhibit similar patterns. Using the

Laplace prior leads to larger credible sets. The credible set size can be a lot larger for the Laplace

prior than for the Gaussian prior, particularly when the effect size prior variance is extremely

small. The causal SNP PPC are generally higher with a Gaussian prior although this is much less

pronounced when the effect size prior variance is large. As a result of larger sizes, the credible sets
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formed using the Laplace prior are always at least as likely to contain the causal SNP compared to

the sets based on the Gaussian prior. Occasionally this difference is reasonably large, for example

in Scenario 5 when λ = 18.3 the credible set size is 24 for the Laplace prior versus 18 for the

Gaussian prior but 94 versus 87 sets contain the causal SNP for the Laplace and Gaussian priors

respectively.

Noteworthiness and SNP ranks in the iCOGS data

We assessed the effect of using Laplace and Gaussian priors when fine-mapping the CASP 8 region.

We assumed either 0 or 1000 ytbd SNPs and varied the ratio of costs of false non-discovery to

false-discovery between r = 1 and 4. Table 4 shows the number of noteworthy CASP8 SNPs when

the prior probability that a given SNP is causally associated is 1/3000.

The results for the iCOGS data show a similar pattern to the results of the noteworthiness of

SNPs in the simulated data: the Laplace prior identifies a much larger set of noteworthy SNPs.

In some scenarios, the analysis using the Gaussian effect size prior doesn’t identify any SNPs as

being noteworthy, whilst the Laplace prior for the same parameter settings yields between 7 and

9 noteworthy SNPs. This reiterates the message from the analysis of the simulated data, that the

choice of prior parametric form potentially has significant implications on the set of SNPs declared

noteworthy in univariate fine-mapping. It should be noted that the SNP identified as noteworthy

using the Gaussian prior is also identified as being noteworthy in all analyses using the Laplace effect

size prior. The rs numbers of the SNPs identified in Table 4 are given in the second supplementary

file.

We also considered the similarity of the ranks of the SNPs using the posterior median, the LBF

and WBF. When there were assumed to be 1000 ytbd SNPs there was good agreement between the

top 10 ranked SNPs using the posterior median and the top ranking SNPs using WBF and LBF.

The top ten SNPs using the median were all in the top 18 SNPs using either LBF or WBF. When

there were assumed to be no ytbd SNPs the disparity increased. There was still generally good

agreement between the top 10 SNPs using the posterior median and the two Bayes factor but there

were a couple of exceptions. In particular, the top ranking SNP by posterior median was ranked

107th using LBF and 33rd using WBF.

Table 5 reports the SNP ranks for the Laplace and Wakefield Bayes factors with 0 and 1000
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ytbd SNPs and the ranks for the PPBF, the NG and the NGFS. Ranks 1 to 9 using each of the

Bayes factors are identical. The SNPs in the top 20 are mostly the same for all the Bayes factors

methods. The NG and NGFS rank very different SNPs in the top 20 compared to the Bayes factor

methods. SNP 33 which is ranked top by all the Bayes factor methods is in the top 8 of both the

NG and NGFS but otherwise there is little agreement between the Bayes factor methods and the

shrinkage-based methods that try to shrink non-causal SNP effect sizes more than causal SNP effect

sizes. Alenazi et al. [2019] also used FINEMAP [Benner et al., 2016] to finemap the CASP8 region

in the iCOGS data. The only SNP identified in the top 20 by NG, NGFS and FINEMAP was

SNP 31 (rs2540050) which was the top ranking SNP in all the methods using Bayes factors. The

consensus is that the top ranking SNP is SNP31. The difference between the posterior probability

of causal association when using the Laplace Bayes factor compared to the Wakefield Bayes factor

is stark. Assuming, as before, that the prior probability that a given SNP is causally associated

is 1/3000 and that there are 1000 ytbd SNPs, the posterior probability of causal association using

the Gaussian prior is 0.23 whereas it is 0.98 using the Laplace prior. Although the ranks are the

same, the evidence is considerably stronger using the Laplace prior.

Discussion

The results in this paper indicate that the parametric form of the prior could potentially have a

considerable effect on the choice of SNPs selected for further consideration across a wide range of

fine-mapping settings with a single causal SNP if noteworthiness is used as SNP selection method.

The LBF is rarely surpassed by any posterior summaries in terms of causal SNP ranking and there

seems to be relatively small difference in ranking performance between the WBF and the LBF. The

clear difference in this study was found to be in the differences in size of the LBF and WBF which

manifested itself as dramatic differences in the TPRs using the LBF compared to the WBF when

noteworthiness is used as SNP selection method. The WBF rarely identified the causal SNP (or

indeed any non-causal SNPs) as being noteworthy. The credible sets formed using the posterior

probability of causality indicate the Laplace prior leads to larger credible sets that are generally

more likely to contain the causal SNP than the sets formed using the Gaussian prior. The larger

set sizes may be due to the higher Bayes factors for the non-causal SNPs that have estimated
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odds ratios quite close to zero. The Laplace prior has a high probability density near to zero and

so the Bayes factors for these SNPs will be considerably larger than those calculated under the

Gaussian prior. This will tend to make the posterior probabilities of causality more uniform under

the Laplace prior and so lead to larger credible set sizes.

The differences observed in this paper would seem to be purely related to the ratio of the

probability densities of the Laplace versus the Gaussian Prior. The Bayes factor can be thought of

as a sum of weighted likelihoods, where the weights are the prior probability densities. Thus it is to

be expected that alternative effect size priors could also lead to Bayes factor showing strong evidence

of association. There has been relatively little attention paid to the choice of prior in fine-mapping

setting, with the Gaussian effect size prior almostly universally being the prior of choice. This

seems to be an oversight that could potentially reduce the effectiveness of Bayesian fine-mapping in

identifying causally associated disease SNPs. The results in this paper are applicable to univariate

analyses in fine-mapping regions with a single causal SNP which is likely to be a common scenario

but is clearly not true of all fine-mapping regions. It isn’t immediately obvious how applicable the

results in this paper are to regions with multiple causal SNPs however given that the results really

relate to the relative prior densities of the competing priors, there seems little reason to think that

they are not at least indicative of the results that might be obtained in a multi-SNP analysis.

The results presented here will or course be affected by the underlying LD structure in the

genomic region simulated. The region containing the CASP8 region is known to be a region with

moderate LD [Spencer et al., 2014]. We selected different causal SNPs with a range of LD patterns

as described in Table 1. Some causal SNPs where in strong LD with several or a large number

of SNPs, others were not in strong LD with any other SNPs in the region. In univariate analyses

the effect of having multiple SNPs in strong LD with the causal SNP will depend on the sample

size, MAF, causal SNP effect size and the strength of the LD. If V for the causal SNP is low (large

sample size, common causal SNP) it is likely, unless the prior is really inappropriate for the true

effect size, that the posterior probability of causal association will be reasonably high for all SNPs

in LD with the causal SNP. This may mean that the 90% credible sets are small but it may mean

that they don’t contain the causal SNP (especially if the LD with the causal SNP is really strong).

If V is large (small sample size and/or low MAF causal SNP) then the posterior probabilities are

likely to be small for all the SNPs in LD with the causal SNP and the credible sets are likely to be
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larger but the concomitant chance that it contains the causal SNP is likely to be higher.

Deciding on the choice of prior is not straightforward. Walters et al. [2019] showed how this

could be done using the posterior probability of the prior form where GWAS top hits are used as

the data in a Bayesian analysis. This could conceivably be extended relatively easily to take into

account other parametric prior forms beyond the Laplace and Gaussian however the choice of priors

that give closed-form expressions for the Bayes factors is relatively limited. Deriving Monte Carlo

estimates of the Bayes factors in univariate fine-mapping is, however, trivial so this should not be

a barrier to considering a wider range of prior forms.

The data used to inform the effect size prior distribution are likely to be GWAS top hits and

possibly some functionally verified SNPs. It may also be augmented by an estimate of the number

of ytbd disease-specific SNPs. Walters et al. [2019] showed how to use GWAS top hits and estimates

of the number of ytbds breast cancer SNPs to calculate maximum-likelihood estimates of the prior

hyperparameters. The breast cancer data the authors used included 148 SNPs and there are now

an additional 65 breast cancer-associated SNPs [Michailidou et al., 2017]. There may be many

complex diseases which are less well studied and so have fewer GWAS top hits. In such diseases the

estimates of the number of ytbd SNPS will therefore be important as they will carry relatively more

information compared to diseases with many GWAS top hits. In breast cancer the number of ytbd

SNPs was estimated to be around 1000 [Michailidou et al., 2013] but no idea of the uncertainty

on this estimate was provided. Further work is needed to enable some form of uncertainty to be

associated with this point estimate, especially if these estimates are to be used to inform effect size

priors in diseases with relatively few GWAS top hit.
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Tables

scenario odds ratio MAF total sample number of SNPs in high LD
size with causal SNP (r2 > 0.8)

1 1.05 0.3 65000 0
2 1.05 0.09 167000 1
3 1.08 0.3 26000 1
4 1.08 0.09 67000 3
5 1.15 0.3 7900 9
6 1.15 0.09 20300 0
7 1.18 0.3 5660 1
8 1.18 0.09 14500 1

Table 1. Simulation scenarios used in comparing the various Bayesian summary statistics in a
univariate Bayesian fine-mapping analysis.

odds 0 ytbd SNPs 1000 ytbd SNPs
ratio λ = 18.3 W = 6.92× 10−3 λ = 60.5 W = 1.21× 10−3

1.05 0.409 0.558 0.052 0.161
1.08 0.245 0.355 0.010 0.027
1.15 0.077 0.093 2.13× 10−4 5.87× 10−5

1.18 0.048 0.047 4.48× 10−5 1.95× 10−6

Table 2. Two-tailed probabilities of exceeding the given odds ratios for both the Laplace and
Gaussian prior densities with given hyperparameter estimates.
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scenario median percentage median median percentage median
90% of 90% sets PPC of 90% of 90% sets PPC of

credible containing causal credible containing causal
set size causal SNP SNP set size causal SNP SNP

Laplace (λ = 60.5) Gaussian (W = 1.21× 10−3)

1 108 99 0.4488 20 96 0.7032
2 88 92 0.0686 24 88 0.1005
3 90 99 0.0786 20 99 0.1051
4 85 98 0.1232 11 94 0.1812
5 141 99 0.0395 18 87 0.1236
6 123 97 0.0669 17 96 0.5732
7 150 100 0.0290 20 98 0.1376
8 155 99 0.0175 23 94 0.0940

Laplace (λ = 18.3) Gaussian (W = 6.92× 10−3)

1 35 96 0.6296 20 96 0.7032
2 28 89 0.0971 24 88 0.1005
3 24 99 0.1057 20 99 0.1051
4 16 96 0.1751 11 94 0.1811
5 24 94 0.0965 18 87 0.1236
6 38 97 0.3632 17 96 0.5731
7 40 99 0.1037 20 98 0.1376
8 83 99 0.0763 23 94 0.0940

Laplace (λ = 7.1) Gaussian (W = 4× 10−2)

1 25 96 0.6761 20 96 0.7032
2 24 88 0.1018 24 88 0.1005
3 20 99 0.1069 20 99 0.1051
4 13 95 0.1758 11 94 0.1811
5 18 88 0.1156 18 87 0.1235
6 23 96 0.5188 17 96 0.5728
7 20 99 0.1274 20 98 0.1375
8 31 97 0.0932 23 94 0.0940

Table 3. 90% credible set sizes for the eight scenarios in Table 1 and for three combinations of λ
and W values. The three combinations correspond to 1000 ytbd SNPs, 0 ytbd SNPs and the
value of W = 0.04 commonly used in fine mapping studies (with λ calculated by equating prior
effect size variances). The table gives the median 90% credible set size; the percentage of 90%
credible sets that contained the simulated causal SNP; the median posterior probability of
causality (PPC) of the causal SNPs across all 100 data sets.
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number of effect size ratio of costs (r)
ytbd SNPs prior 1 2 4

0 La(λ) 9 9 9
0 N(0,W ) 1 1 1

1000 La(λ) 7 9 9
1000 N(0,W ) 0 0 1

Table 4. The number of noteworthy SNPs in the iCOGS data using both a Laplace and
Gaussian effect size prior for three different ratio of costs (1,2, and 4). The prior probability that
a given SNP is causally associated is assumed to be 1/3000.

Rank LBF0 WBF0 LBF1000 WBF1000 PPBF NG NGFS

1 31 31 31 31 31 765 765
2 2 2 2 2 2 342 342
3 1 1 1 1 1 589 589
4 3 3 3 3 3 1101 1177
5 16 16 16 16 16 1177 31
6 24 24 24 24 24 1244 795
7 7 7 7 7 7 1245 33
8 29 29 29 29 29 31 1274
9 27 27 27 27 27 795 897

10 10 602 10 602 602 33 1253
11 602 10 14 10 31 1253 1165
12 23 23 23 23 2 1274 1639
13 14 14 6 14 1 897 1146
14 6 6 9 6 3 1639 1701
15 9 9 8 9 16 916 1101
16 8 8 15 8 24 1701 740
17 15 15 4 15 7 740 920
18 4 1639 602 1639 29 1056 916
19 1639 4 1639 4 27 932 1671
20 681 681 1096 681 602 1671 934

Table 5. The top 20 ranked SNPs by method in the iCOGS data. LBF0 and WBF0 are the
Laplace and Wakefield Bayes factors assuming 0 ytbd SNPs; LBF1000 and WBF10000 are the
Laplace and Wakefield Bayes factors assuming 1000 ytbd SNPs; PPBF is the power prior Bayes
factor of Spencer et al. [2015]; NG is the normal-gamma prior of Alenazi et al. [2019]; NGFS is
the normal-gamma prior of Alenazi et al. [2019] that incorporates functional genomic scores into
the effect size prior.
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Figure Captions

Figure1: Examples of possible posterior probability density functions with a Laplace(λ) prior on

β and a N(β, V ) likelihood. In both plots λ = 60.5 and the posterior density depends on the

estimated effect size, β̂, and the variance of the effect size estimate, V .

Figure 2: ROC curves comparing the ranking performance of the posterior median and Bayes factor

when the prior distribution is the zero-centred Laplace distribution with parameter λ = 18.3 and

the likelihood is an asymptotic Gaussian. This case corresponds to assuming there are no ytbd

SNPs. For each ranking statistic the curve represents the average TPR for a given FPR, averaged

over 100 data sets, simulated from Hapgen2. The simulated odds ratios in rows 1 to 4 are 1.05, 1.08,

1.15 and 1.18 respectively. The causal SNP MAFs in columns 1 and 2 are 0.3 and 0.09 respectively.

The sample sizes are calculated to yield 60% power and are given in Table 1.

Figure 3: ROC curves comparing the ranking performance of the posterior median and Bayes factor

when the prior distribution is the zero-centred Laplace distribution with parameter λ = 60.5 and

the likelihood is an asymptotic Gaussian.This case corresponds to assuming there are 1000 ytbd

SNPs. For each ranking statistic the curve represents the average TPR for a given FPR, averaged

over 100 data sets, simulated from Hapgen2. The simulated odds ratios in rows 1 to 4 are 1.05, 1.08,

1.15 and 1.18 respectively. The causal SNP MAFs in columns 1 and 2 are 0.3 and 0.09 respectively.

The sample sizes are calculated to yield 60% power and are given in Table 1.

Figure 4: ROC curves comparing the ranking performance of the Laplace and Wakefield Bayes fac-

tor. For the Laplace Bayes factor the prior distribution is the zero-centred Laplace distribution with

parameter λ = 18.3 whilst for the Wakefield Bayes factor the prior distribution is the zero-centred

Gaussian distribution with variance W = 692× 10−5. This case corresponds to assuming there are

no ytbd SNPs. In both cases the likelihood is an asymptotic Gaussian. For each ranking statistic

the curve represents the average TPR for a given FPR, averaged over 100 data sets, simulated from

Hapgen2. The simulated odds ratios in rows 1 to 4 are 1.05, 1.08, 1.15 and 1.18 respectively. The

causal SNP MAFs in columns 1 and 2 are 0.3 and 0.09 respectively. The sample sizes are calculated
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to yield 60% power and are given in Table 1.

Figure 5: ROC curves comparing the ranking performance of the Laplace and Wakefield Bayes

factor. For the Laplace Bayes factor the prior distribution is the zero-centred Laplace distribution

with parameter λ = 60.5 whilst for the Wakefield Bayes factor the prior distribution is the zero-

centred Gaussian distribution with variance W = 121 × 10−5. This case corresponds to assuming

there are 1000 ytbd SNPs. In both cases the likelihood is an asymptotic Gaussian. For each rank-

ing statistic the curve represents the average TPR for a given FPR, averaged over 100 data sets,

simulated from Hapgen2. The simulated odds ratios in rows 1 to 4 are 1.05, 1.08, 1.15 and 1.18

respectively. The causal SNP MAFs in columns 1 and 2 are 0.3 and 0.09 respectively. The sample

sizes are calculated to yield 60% power and are given in Table 1.

Figure 6: Boxplots comparing the distribution of the false positive rate, for 100 data sets simulated

from Hapgen2,(FPR) of the noteworthiness of SNPs for the Laplace and Wakefield Bayes factor.

For the Laplace Bayes factor the prior distribution is the zero-centred Laplace distribution with

parameter λ = 18.3 whilst for the Wakefield Bayes factor the prior distribution is the zero-centred

Gaussian distribution with variance W = 692× 10−5. This case corresponds to assuming there are

no ytbd SNPs. In both cases the likelihood is an asymptotic Gaussian. The ratio of costs of false

non-discovery to false-discovery is 4. The simulated odds ratios in rows 1 to 4 are 1.05, 1.08, 1.15

and 1.18 respectively. The causal SNP MAFs in columns 1 and 2 are 0.3 and 0.09 respectively.

The sample sizes are calculated to yield 60% power and are given in Table 1.

Figure 7: Boxplots comparing the distribution of the false positive rate, for 100 data sets simulated

from Hapgen2,(FPR) of the noteworthiness of SNPs for the Laplace and Wakefield Bayes factor.

For the Laplace Bayes factor the prior distribution is the zero-centred Laplace distribution with

parameter λ = 60.5 whilst for the Wakefield Bayes factor the prior distribution is the zero-centred

Gaussian distribution with variance W = 121× 10−5. This case corresponds to assuming there are

1000 ytbd SNPs. In both cases the likelihood is an asymptotic Gaussian. The ratio of costs of false

non-discovery to false-discovery is 4. The simulated odds ratios in rows 1 to 4 are 1.05, 1.08, 1.15

and 1.18 respectively. The causal SNP MAFs in columns 1 and 2 are 0.3 and 0.09 respectively.
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The sample sizes are calculated to yield 60% power and are given in Table 1.

Appendix

Posterior expected value

The posterior expected value is given by

E(β | β̂) =
∫

0

−∞
βf(β | β̂) dβ +

∫ ∞

0

βf(β | β̂) dβ (4)

where f(β | β̂) is defined in Equation (2) in the main text. Basic integration gives

E(β | β̂) = E+

[

√

V

2π

[

exp
(

− Q2
+

2V

)]

+Q+

[

1− Φ

(−Q+√
V

)]

]

− (5)

E−

[

√

V

2π

[

exp
(

− Q2
−

2V

)]

−Q−

[

Φ

(−Q−√
V

)]

]

(6)

where Φ(.) is the cumulative distribution function of the standard Gaussian distribution, Q− and

Q+ are defined in the main text and

E− =
1

D
exp

(

− 1

2V
(β̂2 −Q2

−)

)

; (7)

E+ =
1

D
exp

(

− 1

2V
(β̂2 −Q2

+)

)

; (8)

D = exp

(

− 1

2V
(β̂2 −Q2

−)

)[

Φ

(−Q−√
V

)]

+ exp

(

− 1

2V
(β̂2 −Q2

+)

)[

1− Φ

(−Q+√
V

)]

. (9)

Posterior median

We have to take into consideration whether the median (m) falls in the negative or positive support

of the posterior distribution. Using the definition of the median applied to Equation (2) we see

that the median is positive if 2E+

[

1−Φ
(

−Q+√
V

)

]

> 1 and is negative otherwise. The value of the
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median is

m =



















Φ−1

(

1− 1

2E+

)√
V +Q+ if m > 0

Φ−1

(

1

2E
−

)√
V +Q− if m ≤ 0

(10)

Posterior mode

The value of the posterior mode, argmax
β

f(β | β̂), depends on the signs of the modes of the two

underlying Gaussian distributions defining the posterior distribution. The mode is

argmax
β

f(β | β̂) =































Q− if Q+ < Q− ≤ 0

Q+ if 0 ≤ Q+ < Q−

0 if Q+ ≤ 0 and Q− ≥ 0

(11)

Posterior credible interval

A Bayesian credible interval has equal tail probabilities so the 100(1− α)% credible interval for β,

[βL, βU ] is obtained by solving

∫ βL

−∞
f(β|β̂) dβ =

∫ ∞

βU

f(β|β̂) dβ =
α

2

There are three cases to consider according to whether βL and βU are both positive, both negative

or of different sign. We just have to integrate the relevant part of the posterior density in Equation

(2). For example, consider the case where βL < 0 and βU > 0 which is guaranteed to be true

when both E−

[

Φ
(

−Q
−√
V

)

]

and E+

[

1−Φ
(

−Q+√
V

)

]

are greater than α/2. In this case we equate the

integral of the posterior density on the negative reals between −∞ and βL to α/2 and solve. This

gives

βL = Φ−1

(

α

2E−

)√
V +Q−. (12)

We use a similar approach to find βU and repeat for the other two cases. βL and βU for all three

cases are given in Table 6.
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sign(βL) sign(βU ) Lower limit (βL) Upper limit (βU )

< 0 > 0 Φ−1

(

α
2E

−

)√
V +Q− Φ−1

(

2E+−α

2E+

)√
V +Q+

< 0 < 0 Φ−1

(

α
2E

−

)√
V +Q− Φ−1

(

2−α
2E

−

)√
V +Q−

> 0 > 0 Φ−1

(

2E+−2+α

2E+

)√
V +Q+ Φ−1

(

2E+−α

2E+

)√
V +Q+

Table 6. Upper and lower 95% posterior credible interval limits for the log odds ratio.

Highest density posterior interval

The Highest density posterior interval (HDI) does not have an equal tail probabilities but instead

has equal probability density at the upper and lower limits. A 100(1−α)% HDI therefore satisfies

∫ βU

βL

f(β|β̂) dβ = 1− α and f(βU |β̂) = f(βL|β̂)

As for the credible intervals, the limits depend on whether the signs of βL and βU are the same or

different.

Case 1: We first consider the case where βL < 0 and βU ≤ 0. Clearly in this case Q− < 0 since

Q− =
(

βL + βU
)

/2. Using this, and the result that Φ(x) + Φ(−x) = 1 ∀x ∈ R, we have that

∫ βU

βL

f(β|β̂) dβ = 1− α

E−

[

Φ

(

βU −Q−√
V

)

− Φ

(

βL −Q−√
V

)]

= 1− α

E−

[

2Φ

(−βL +Q−√
V

)

− 1

]

= 1− α

which gives

βL = Q− −
√
V Φ−1

(

1− α+ E−

2E−

)

. (13)

and βU = 2Q− − βL.

Case 2: If βL ≥ 0 and βU > 0 (and hence Q+ > 0). The solution is derived in an identical

manner to that of Case 1 so the solutions are the same as in Equation(13) but E− is replaced with

E+ and Q− is replaced with Q+.
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Case 3: The final case is where βL < 0 and βU > 0. We first need to find the relationship

between βL and βU . Equating the posterior probability densities at βL(< 0) and βU (> 0) gives

E−√
2πV

exp

(

− 1

2V
(βL −Q−)

2

)

=
E+√
2πV

exp

(

− 1

2V
(βU −Q+)

2

)

(14)

Substituting our previously derived expressions for E− and E+ into Equation (14), we get, after a

little algebra β2
L − 2Q−βL − (β2

U − 2Q+βU ) = 0. Since βL < Q− it follows that the only solution to

this quadratic is the smaller one and therefore

βL = Q− −
√

Q2
− + β2

U − 2Q+βU . (15)

For a 100(1− α)% HDI for β we have

∫

0

βL

f(β−|β̂) dβ +

∫ βU

0

f(β+|β̂) dβ = 1− α

E−

[

Φ

(−Q−√
V

)

− Φ

(

βL −Q−√
V

)]

+ E+

[

Φ

(

βU −Q+√
V

)

− Φ

(−Q+√
V

)]

= 1− α. (16)

Substituting Equation(15) into Equation (16) gives

E−

[

Φ

(−Q−√
V

)

− Φ

(

−

√

Q2
− + β2

U − 2Q+βU

V

)

]

+ E+

[

Φ

(

βU −Q+√
V

)

− Φ

(−Q+√
V

)

]

= 1− α

(17)

Equation (17) cannot be solved analytically for βU so we use the uniroot function in the R ‘stats’

package. Having found βU , we then solve for βL using Equation (15).

Laplace Bayes factor

The Laplace Bayes factor is given by

Bayes factor =
f(data | H1)

f(data | H0)
=

∫

f(β̂ |β) π(β) dβ
f(β̂ |β = 0)

, (18)
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which, after a little algebra, can be shown to be

λ

√

πV

2

[

exp

(

Q2
+

2V

)

Φ

(

Q+√
V

)

+ exp

(

Q2
−

2V

)

Φ

(−Q−√
V

)

]

(19)



29

Figures

−0.10 −0.05 0.00 0.05 0.10

0
5

1
0

1
5

2
0

2
5

3
0

Log Odds Ratio

P
o

s
te

ri
o

r 
d

e
n

s
it
y

(a) β̂ = 0.06, V = 0.0046

−0.10 −0.05 0.00 0.05
0

5
1

0
1

5

Log Odds Ratio

(b) β̂ = -0.08, V = 0.0009

Figure 1



30

T
P

R
 (

O
R

 =
 1

.0
5

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 78
LBF, 98

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 50
LBF, 78

T
P

R
 (

O
R

 =
 1

.0
8

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 51
LBF, 86

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 65
LBF, 89

T
P

R
 (

O
R

 =
 1

.1
5

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 59
LBF, 78

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 98
LBF, 91

False Positive Rate (MAF = 0.3)

T
P

R
 (

O
R

 =
 1

.1
8

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 79
LBF, 87

False Positive Rate (MAF = 0.09)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 65
LBF, 80

Figure 2



31

T
P

R
 (

O
R

 =
 1

.0
5

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 96
LBF, 99

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 67
LBF, 81

T
P

R
 (

O
R

 =
 1

.0
8

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 81
LBF, 89

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 86
LBF, 91

T
P

R
 (

O
R

 =
 1

.1
5

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 77
LBF, 80

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 96
LBF, 83

False Positive Rate (MAF = 0.3)

T
P

R
 (

O
R

 =
 1

.1
8

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 88
LBF, 88

False Positive Rate (MAF = 0.09)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

Median, 78
LBF, 75

Figure 3



32

T
P

R
 (

O
R

 =
 1

.0
5

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 98
LBF, 98

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 76
LBF, 78

T
P

R
 (

O
R

 =
 1

.0
8

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 83
LBF, 86

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 88
LBF, 89

T
P

R
 (

O
R

 =
 1

.1
5

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 76
LBF, 78

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 93
LBF, 91

False Positive Rate (MAF = 0.3)

T
P

R
 (

O
R

 =
 1

.1
8

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 84
LBF, 87

False Positive Rate (MAF = 0.09)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 76
LBF, 80

Figure 4



33

T
P

R
 (

O
R

 =
 1

.0
5

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 98
LBF, 99

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 76
LBF, 81

T
P

R
 (

O
R

 =
 1

.0
8

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 83
LBF, 89

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 88
LBF, 91

T
P

R
 (

O
R

 =
 1

.1
5

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 76
LBF, 80

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 93
LBF, 83

False Positive Rate (MAF = 0.3)

T
P

R
 (

O
R

 =
 1

.1
8

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 84
LBF, 88

False Positive Rate (MAF = 0.09)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.4

0
.8

WBF, 76
LBF, 75

Figure 5



34

0
.0

0
0
.0

6
0
.1

2

F
P

R
 (

O
R

 =
 1

.0
5

) LBF TPR =  0.91

WBF TPR =  0.12

0
.0

0
0
.1

0
0
.2

0

LBF TPR =  0.78

WBF TPR =  0.02

0
.0

0
0
.1

0
0
.2

0

F
P

R
 (

O
R

 =
 1

.0
8

) LBF TPR =  0.85

WBF TPR =  0.12
0
.0

0
0
.1

0
0
.2

0
LBF TPR =  0.87

WBF TPR =  0.18

0
.0

0
0
.1

0
0
.2

0

F
P

R
 (

O
R

 =
 1

.1
5

) LBF TPR =  0.94

WBF TPR =  0.12

0
.0

0
0
.1

0
0
.2

0
0
.3

0 LBF TPR =  0.91

WBF TPR =  0.3

LBF (MAF = 0.3) WBF (MAF = 0.3)

0
.0

0
0
.1

0
0
.2

0

F
P

R
 (

O
R

 =
 1

.1
8

)

LBF TPR =  0.78

WBF TPR =  0.15

LBF (MAF = 0.09) WBF (MAF = 0.09)

0
.0

0
0
.1

0
0
.2

0

LBF TPR =  0.58

WBF TPR =  0.04

Figure 6



35

0
.0

0
0
.0

4
0
.0

8
0
.1

2

F
P

R
 (

O
R

 =
 1

.0
5

) LBF TPR =  0.89

WBF TPR =  0.03

0
.0

0
0
.1

0

LBF TPR =  0.61

WBF TPR =  0

0
.0

0
0
.1

0
0
.2

0

F
P

R
 (

O
R

 =
 1

.0
8

) LBF TPR =  0.74

WBF TPR =  0.09
0
.0

0
0
.1

0
0
.2

0 LBF TPR =  0.73

WBF TPR =  0.09

0
.0

0
0
.0

5
0
.1

0
0
.1

5

F
P

R
 (

O
R

 =
 1

.1
5

) LBF TPR =  0.34

WBF TPR =  0.07

0
.0

0
0
.1

0
0
.2

0
0
.3

0

LBF TPR =  0.53

WBF TPR =  0.12

LBF (MAF = 0.3) WBF (MAF = 0.3)

0
.0

0
0
.0

4
0
.0

8
0
.1

2

F
P

R
 (

O
R

 =
 1

.1
8

)

LBF TPR =  0.21

WBF TPR =  0.04

LBF (MAF = 0.09) WBF (MAF = 0.09)

0
.0

0
0
.0

4
0
.0

8

LBF TPR =  0.08

WBF TPR =  0.02

Figure 7


