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Abstract: An approach to the modelling of volatile time series using a class of uniformity-preserving

transforms for uniform random variables is proposed. V-transforms describe the relationship between

quantiles of the stationary distribution of the time series and quantiles of the distribution of a

predictable volatility proxy variable. They can be represented as copulas and permit the formulation

and estimation of models that combine arbitrary marginal distributions with copula processes for the

dynamics of the volatility proxy. The idea is illustrated using a Gaussian ARMA copula process and

the resulting model is shown to replicate many of the stylized facts of financial return series and to

facilitate the calculation of marginal and conditional characteristics of the model including quantile

measures of risk. Estimation is carried out by adapting the exact maximum likelihood approach to

the estimation of ARMA processes, and the model is shown to be competitive with standard GARCH

in an empirical application to Bitcoin return data.

Keywords: time series; volatility; probability-integral transform; ARMA model; copula

1. Introduction

In this paper, we show that a class of uniformity-preserving transformations for
uniform random variables can facilitate the application of copula modelling to time series
exhibiting the serial dependence characteristics that are typical of volatile financial return
data. Our main aims are twofold: to establish the fundamental properties of v-transforms
and show that they are a natural fit to the volatility modelling problem; to develop a class
of processes using the implied copula process of a Gaussian ARMA model that can serve
as an archetype for copula models using v-transforms. Although the existing literature on
volatility modelling in econometrics is vast, the models we propose have some attractive
features. In particular, as copula-based models, they allow the separation of marginal and
serial dependence behaviour in the construction and estimation of models.

A distinction is commonly made between genuine stochastic volatility models, as
investigated by Taylor (1994) and Andersen (1994), and GARCH-type models as developed
in a long series of papers by Engle (1982), Bollerslev (1986), Ding et al. (1993), Glosten et al.
(1993) and Bollerslev et al. (1994), among others. In the former an unobservable process
describes the volatility at any time point while in the latter volatility is modelled as a
function of observable information describing the past behaviour of the process; see also
the review articles by Shephard (1996) and Andersen and Benzoni (2009). The generalized
autoregressive score (GAS) models of Creal et al. (2013) generalize the observation-driven
approach of GARCH models by using the score function of the conditional density to
model time variation in key parameters of the time series model. The models of this paper
have more in common with the observation-driven approach of GARCH and GAS but
have some important differences.

In GARCH-type models, the marginal distribution of a stationary process is inex-
tricably linked to the dynamics of the process as well as the conditional or innovation
distribution; in most cases, it has no simple closed form. For example, the standard GARCH
mechanism serves to create power-law behaviour in the marginal distribution, even when
the innovations come from a lighter-tailed distribution such as Gaussian (Mikosch and
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Stărică 2000). While such models work well for many return series, they may not be
sufficiently flexible to describe all possible combinations of marginal and serial dependence
behaviour encountered in applications. In the empirical example of this paper, which
relates to log-returns on the Bitcoin price series, the data appear to favour a marginal
distribution with sub-exponential tails that are lighter than power tails and this cannot be
well captured by standard GARCH models. Moreover, in contrast to much of the GARCH
literature, the models we propose make no assumptions about the existence of second-order
moments and could also be applied to very heavy-tailed situations where variance-based
methods fail.

Let X1, . . . , Xn be a time series of financial returns sampled at (say) daily frequency
and assume that these are modelled by a strictly stationary stochastic process (Xt) with
marginal distribution function (cdf) FX . To match the stylized facts of financial return data
described, for example, by Campbell et al. (1997) and Cont (2001), it is generally agreed
that (Xt) should have limited serial correlation, but the squared or absolute processes (X2

t )
and (|Xt|) should have significant and persistent positive serial correlation to describe the
effects of volatility clustering.

In this paper, we refer to transformed series like (|Xt|), in which volatility is revealed
through serial correlation, as volatility proxy series. More generally, a volatility proxy series
(T(Xt)) is obtained by applying a transformation T : R 7→ R which (i) depends on a change
point µT that may be zero, (ii) is increasing in Xt − µT for Xt ≥ µT and (iii) is increasing in
µT − Xt for Xt ≤ µT .

Our approach in this paper is to model the probability-integral transform (PIT) series
(Vt) of a volatility proxy series. This is defined by Vt = FT(X)(T(Xt)) for all t, where FT(X)

denotes the cdf of T(Xt). If (Ut) is the PIT series of the original process (Xt), defined by
Ut = FX(Xt) for all t, then a v-transform is a function describing the relationship between the
terms of (Vt) and the terms of (Ut). Equivalently, a v-transform describes the relationship
between quantiles of the distribution of Xt and the distribution of the volatility proxy
T(Xt). Alternatively, it characterizes the dependence structure or copula of the pair of
variables (Xt, T(Xt)). In this paper, we show how to derive flexible, parametric families of
v-transforms for practical modelling purposes.

To gain insight into the typical form of a v-transform, let x1, . . . , xn represent the
realized data values and let u1, . . . , un and v1, . . . , vn be the samples obtained by applying

the transformations vt = F
(|X|)
n (|xt|) and ut = F

(X)
n (xt), where F

(X)
n (x) = 1

n+1 ∑
n
t=1 I{xt≤x}

and F
(|X|)
n (x) = 1

n+1 ∑
n
t=1 I{|xt |≤x} denote scaled versions of the empirical distribution

functions of the xt and |xt| samples, respectively. The graph of (ut, vt) gives an empirical
estimate of the v-transform for the random variables (Xt, |Xt|). In the left-hand plot of
Figure 1 we show the relationship for a sample of n = 1043 daily log-returns of the Bitcoin
price series for the years 2016–2019. Note how the empirical v-transform takes the form of
a slightly asymmetric ‘V’.

The right-hand plot of Figure 1 shows the sample autocorrelation function (acf) of the
data given by zt = Φ−1(vt) where Φ is the standard normal cdf. This reveals a persistent
pattern of positive serial correlation which can be modelled by the implied ARMA copula.
This pattern is not evident in the acf of the raw xt data in the centre plot.

To construct a volatility model for (Xt) using v-transforms, we need to specify a
process for (Vt). In principle, any model for a series of serially dependent uniform variables
can be applied to (Vt). In this paper, we illustrate concepts using the Gaussian copula
model implied by the standard ARMA dependence structure. This model is particularly
tractable and allows us to derive model properties and fit models to data relatively easily.

There is a large literature on copula models for time series; see, for example, the review
papers by Patton (2012) and Fan and Patton (2014). While the main focus of this literature
has been on cross-sectional dependencies between series, there is a growing literature on
models of serial dependence. First-order Markov copula models have been investigated by
Chen and Fan (2006), Chen et al. (2009) and Domma et al. (2009) while higher-order Markov
copula models using D-vines are applied by Smith et al. (2010). These models are based
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on the pair-copula apporoach developed in Joe (1996), Bedford and Cooke (2001, 2002)
and Aas et al. (2009). However, the standard bivariate copulas that enter these models are
not generally effective at describing the typical serial dependencies created by stochastic
volatility, as observed by Loaiza-Maya et al. (2018).
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Figure 1. Scatterplot of vt against ut (left), sample acf of raw data xt (centre) and sample acf of zt = Φ−1(vt) (right). The

transformed data are defined by vt = F
(|X|)
n (|xt|) and ut = F

(X)
n (xt) where F

(X)
n and F

(|X|)
n denote versions of the empirical

distribution function of the xt and |xt| values, respectively. The sample size is n = 1043 and the data are daily log-returns of

the Bitcoin price for the years 2016–2019.

The paper is structured as follows. In Section 2, we provide motivation for the paper
by constructing a symmetric model using the simplest example of a v-transform. The
general theory of v-transforms is developed in Section 3 and is used to construct the
class of VT-ARMA processes and analyse their properties in Section 4. Section 5 treats
estimation and statistical inference for VT-ARMA processes and provides an example of
their application to the Bitcoin return data; Section 6 presents the conclusions. Proofs may
be found in the Appendix A.

2. A Motivating Model

Given a probability space (Ω,F ,P), we construct a symmetric, strictly stationary
process (Xt)t∈N\{0} such that, under the even transformation T(x) = |x|, the serial depen-
dence in the volatility proxy series (T(Xt)) is of ARMA type. We assume that the marginal
cdf FX of (Xt) is absolutely continuous and the density fX satisfies fX(x) = fX(−x) for all
x > 0. Since FX and F|X| are both continuous, the properties of the probability-integral (PIT)
transform imply that the series (Ut) and (Vt) given by Ut = FX(Xt) and Vt = F|X|(|Xt|)
both have standard uniform marginal distributions. Henceforth, we refer to (Vt) as the
volatility PIT process and (Ut) as the series PIT process.

Any other volatility proxy series that can be obtained by a continuous and strictly
increasing transformation of the terms of (|Xt|), such as (X2

t ), yields exactly the same
volatility PIT process. For example, if Ṽt = FX2(X2

t ), then it follows from the fact that
FX2(x) = F|X|(

+
√

x) for x ≥ 0 that Ṽt = FX2(X2
t ) = F|X|(|Xt|) = Vt. In this sense, we

can think of classes of equivalent volatility proxies, such as (|Xt|), (X2
t ), (exp |Xt|) and

(ln(1 + |Xt|)). In fact, (Vt) is itself an equivalent volatility proxy to (|Xt|) since F|X| is a
continuous and strictly increasing transformation.

The symmetry of fX implies that F|X|(x) = 2FX(x) − 1 = 1 − 2FX(−x) for x ≥ 0.
Hence, we find that

Vt = F|X|(|Xt|) =
{

F|X|(−Xt) = 1 − 2FX(Xt) = 1 − 2Ut, if Xt < 0

F|X|(Xt) = 2FX(Xt)− 1 = 2Ut − 1, if Xt ≥ 0

which implies that the relationship between the volatility PIT process (Vt) and the series
PIT process (Ut) is given by

Vt = V(Ut) = |2Ut − 1| (1)
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where V(u) = |2u − 1| is a perfectly symmetric v-shaped function that maps values of Ut

close to 0 or 1 to values of Vt close to 1, and values close to 0.5 to values close to 0. V is the
canonical example of a v-transform. It is related to the so-called tent-map transformation
T (u) = 2 min(u, 1 − u) by V(u) = 1 − T (u).

Given (Vt), let the process (Zt) be defined by setting Zt = Φ−1(Vt) so that we have
the following chain of transformations:

Xt Ut Vt Zt .
FX V Φ−1

(2)

We refer to (Zt) as a normalized volatility proxy series. Our aim is to construct a process
(Xt) such that, under the chain of transformations in (2), we obtain a Gaussian ARMA
process (Zt) with mean zero and variance one. We do this by working back through
the chain.

The transformation V is not an injection and, for any Vt > 0, there are two possi-
ble inverse values, 1

2 (1 − Vt) and 1
2 (1 + Vt). However, by randomly choosing between

these values, we can ‘stochastically invert’ V to construct a random variable Ut such that
V(Ut) = Vt, This is summarized in Lemma 1, which is a special case of a more general
result in Proposition 4.

Lemma 1. Let V be a standard uniform variable. If V = 0, set U = 1
2 . Otherwise, let U =

1
2 (1 − V) with probability 0.5 and U = 1

2 (1 + V) with probability 0.5. Then, U is uniformly
distributed and V(U) = V.

This simple result suggests Algorithm 1 for constructing a process (Xt) with symmetric
marginal density fX such that the corresponding normalized volatility proxy process (Zt)
under the absolute value transformation (or continuous and strictly increasing functions
thereof) is an ARMA process. We describe the resulting model as a VT-ARMA process.

Algorithm 1:

1. Generate (Zt) as a causal and invertible Gaussian ARMA process of order

(p, q) with mean zero and variance one.

2. Form the volatility PIT process (Vt) where Vt = Φ(Zt) for all t.

3. Generate a process of iid Bernoulli variables (Yt) such that P(Yt = 1) = 0.5.

4. Form the PIT process (Ut) using the transformation

Ut = 0.5(1 − Vt)
I{Yt=0}(1 + Vt)

I{Yt=1} .

5. Form the process (Xt) by setting Xt = F−1
X (Ut).

It is important to state that the use of the Gaussian process (Zt) as the fundamental
building block of the VT-ARMA process in Algorithm 1 has no effect on the marginal
distribution of (Xt), which is FX as specified in the final step of the algorithm. The process
(Zt) is exploited only for its serial dependence structure, which is described by a family of
finite-dimensional Gaussian copulas; this dependence structure is applied to the volatility
proxy process.

Figure 2 shows a symmetric VT-ARMA(1,1) process with ARMA parameters α1 = 0.95
and β1 = −0.85; such a model often works well for financial return data. Some intuition
for this observation can be gained from the fact that the popular GARCH(1,1) model is
known to have the structure of an ARMA(1,1) model for the squared data process; see, for
example, McNeil et al. (2015) (Section 4.2) for more details.
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Figure 2. Realizations of length n = 500 of (Xt) and (Zt) for a VT-ARMA(1,1) process with a

marginal Student t distribution with ν = 3 degrees of freedom and ARMA parameters α = 0.95 and

β = −0.85. ACF plots for (Xt) and (|Xt|) are also shown.

3. V-Transforms

To generalize the class of v-transforms, we admit two forms of asymmetry in the
construction described in Section 2: we allow the density fX to be skewed; we introduce an
asymmetric volatility proxy.

Definition 1 (Volatility proxy transformation and profile). Let T1 and T2 be strictly increasing,
continuous and differentiable functions on R+ = [0, ∞) such that T1(0) = T2(0). Let µT ∈ R.
Any transformation T : R → R of the form

T(x) =

{
T1(µT − x) x ≤ µT

T2(x − µT) x > µT

(3)

is a volatility proxy transformation. The parameter µT is the change point of T and the associated
function gT : R+ → R+, gT(x) = T−1

2 ◦ T1(x) is the profile function of T.

By introducing µT , we allow for the possibility that the natural change point may not
be identical to zero. By introducing different functions T1 and T2 for returns on either side
of the change point, we allow the possibility that one or other may contribute more to the
volatility proxy. This has a similar economic motivation to the leverage effects in GARCH
models (Ding et al. 1993); falls in equity prices increase a firm’s leverage and increase the
volatility of the share price.

Clearly, the profile function of a volatility proxy transformation is a strictly increasing,
continuous and differentiable function on R+ such that gT(x) = 0. In conjunction with
µT , the profile contains all the information about T that is relevant for constructing v-
transforms. In the case of a volatility proxy transformation that is symmetric about µT , the
profile satisfies gT(x) = x.

The following result shows how v-transforms V = V(U) can be obtained by consider-
ing different continuous distributions FX and different volatility proxy transformations T
of type (3).

Proposition 1. Let X be a random variable with absolutely continuous and strictly increasing cdf
FX on R and let T be a volatility proxy transformation. Let U = FX(X) and V = FT(X)(T(X)).
Then, V = V(U) where

V(u) =





FX

(
µT + gT

(
µT − F−1

X (u)
))

− u, u ≤ FX(µT)

u − FX

(
µT − g−1

T

(
F−1

X (u)− µT

))
, u > FX(µT) .

(4)
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The result implies that any two volatility proxy transformations T and T̃ which
have the same change point µT and profile function gT belong to an equivalence class
with respect to the resulting v-transform. This generalizes the idea that T(x) = |x| and
T(x) = x2 give the same v-transform in the symmetric case of Section 2. Note also that the
volatility proxy transformations T(V) and T(Z) defined by

T(V)(x) = FT(X)(T(x)) = V
(

FX(x)
)

T(Z)(x) = Φ−1(T(V)(x)) = Φ−1
(
V
(

FX(x)
))

(5)

are in the same equivalence class as T since they share the same change point and pro-
file function.

Definition 2 (v-transform and fulcrum). Any transformation V that can be obtained from
Equation (4) by choosing an absolutely continuous and strictly increasing cdf FX on R and a
volatility proxy transformation T is a v-transform. The value δ = FX(µT) is the fulcrum of the
v-transform.

3.1. A Flexible Parametric Family

In this section, we derive a family of v-transforms using construction (4) by taking a
tractable asymmetric model for FX using the construction proposed by Fernández and Steel
(1998) and by setting µT = 0 and gT(x) = kxξ for k > 0 and ξ > 0. This profile function
contains the identity profile gT(x) = x (corresponding to the symmetric volatility proxy
transformation) as a special case, but allows cases where negative or positive returns
contribute more to the volatility proxy. The choices we make may at first sight seem
rather arbitrary, but the resulting family can in fact assume many of the shapes that are
permissible for v-transforms, as we will argue.

Let f0 be a density that is symmetric about the origin and let γ > 0 be a scalar
parameter. Fernandez and Steel suggested the model

fX(x; γ) =





2γ
1+γ2 f0(γx) x ≤ 0

2γ
1+γ2 f0

(
x
γ

)
x > 0 .

(6)

This model is often used to obtain skewed normal and skewed Student distributions
for use as innovation distributions in econometric models. A model with γ > 1 is skewed
to the right while a model with γ < 1 is skewed to the left, as might be expected for asset
returns. We consider the particular case of a Laplace or double exponential distribution
f0(x) = 0.5 exp(−|x|) which leads to particularly tractable expressions.

Proposition 2. Let FX(x; γ) be the cdf of the density (6) when f0(x) = 0.5 exp(−|x|). Set
µT = 0 and let gT(x) = kxξ for k, ξ > 0. The v-transform (4) is given by

Vδ,κ,ξ(u) =





1 − u − (1 − δ) exp
(
−κ
(
− ln

(
u
δ

))ξ
)

u ≤ δ,

u − δ exp

(
−κ−1/ξ

(
− ln

(
1−u
1−δ

))1/ξ
)

u > δ,
(7)

where δ = FX(0) = (1 + γ2)−1 ∈ (0, 1) and κ = k/γξ+1
> 0.

It is remarkable that (7) is a uniformity-preserving transformation. If we set ξ = 1 and
κ = 1, we get

Vδ(u) =

{
(δ − u)/δ u ≤ δ,

(u − δ)/(1 − δ) u > δ
(8)
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which obviously includes the symmetric model V0.5(u) = |2u − 1|. The v-transform Vδ(u)
in (8) is a very convenient special case, and we refer to it as the linear v-transform.

In Figure 3, we show the v-transform Vδ,κ,ξ when δ = 0.55, κ = 1.4 and ξ = 0.65. We
will use this particular v-transform to illustrate further properties of v-transforms and find
a characterization.

3.2. Characterizing v-Transforms

It is easily verified that any v-transform obtained from (4) consists of two arms
or branches, described by continuous and strictly monotonic functions; the left arm is
decreasing and the right arm increasing. See Figure 3 for an illustration. At the fulcrum
δ, we have V(δ) = 0. Every point u ∈ [0, 1] \ {δ} has a dual point u∗ on the opposite side
of the fulcrum such that V(u∗) = V(u). Dual points can be interpreted as the quantile
probability levels of the distribution of X that give rise to the same level of volatility.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

u

V
(u

)

v

u u*δ

v

Figure 3. An asymmetric v-transform from the family defined in (7). For any v-transform, if v = V(u)
and u∗ is the dual of u, then the points (u, 0), (u, v), (u∗, 0) and (u∗, v) form the vertices of a square.

For the given fulcrum δ, a v-transform can never enter the gray shaded area of the plot.

We collect these properties together in the following lemma and add one further
important property that we refer to as the square property of a v-transform; this property
places constraints on the shape that v-transforms can take and is illustrated in Figure 3.

Lemma 2. A v-transform is a mapping V : [0, 1] → [0, 1] with the following properties:

1. V(0) = V(1) = 1;

2. There exists a point δ known as the fulcrum such that 0 < δ < 1 and V(δ) = 0;

3. V is continuous;

4. V is strictly decreasing on [0, δ] and strictly increasing on [δ, 1];
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5. Every point u ∈ [0, 1] \ {δ} has a dual point u∗ on the opposite side of the fulcrum satisfying
V(u) = V(u∗) and |u∗ − u| = V(u) (square property).

It is instructive to see why the square property must hold. Consider Figure 3 and fix
a point u ∈ [0, 1] \ {δ} with V(u) = v. Let U ∼ U(0, 1) and let V = V(U). The events

{V ≤ v} and {min(u, u∗) ≤ U ≤ max(u, u∗)} are the same and hence the uniformity of V
under a v-transform implies that

v = P(V ≤ v) = P(min(u, u∗) ≤ U ≤ max(u, u∗)) = |u∗ − u| . (9)

The properties in Lemma 2 could be taken as the basis of an alternative definition of
a v-transform. In view of (9), it is clear that any mapping V that has these properties is
a uniformity-preserving transformation. We can characterize the mappings V that have
these properties as follows.

Theorem 1. A mapping V : [0, 1] → [0, 1] has the properties listed in Lemma 2 if and only if it
takes the form

V(u) =
{
(1 − u)− (1 − δ)Ψ

(
u
δ

)
u ≤ δ,

u − δΨ−1
(

1−u
1−δ

)
u > δ,

(10)

where Ψ is a continuous and strictly increasing distribution function on [0, 1].

Our arguments so far show that every v-transform must have the form (10). It remains
to verify that every uniformity-preserving transformation of the form (10) can be obtained
from construction (4), and this is the purpose of the final result of this section. This allows us
to view Definition 2, Lemma 2, and the characterization (10) as three equivalent approaches
to the definition of v-transforms.

Proposition 3. Let V be a uniformity-preserving transformation of the form (10) and FX a con-
tinuous distribution function. Then, V can be obtained from construction (4) using any volatility
proxy transformation with change point µT = F−1

X (δ) and profile

gT(x) = F−1
X (FX(µT − x) + V(FX(µT − x)))− µT , x ≥ 0. (11)

Henceforth, we can view (10) as the general equation of a v-transform. Distribution
functions Ψ on [0, 1] can be thought of as generators of v-transforms. Comparing (10) with
(7), we see that our parametric family Vδ,κ,ξ is generated by Ψ(x) = exp(−κ(−(ln x)ξ)).
This is a 2-parameter distribution whose density can assume many different shapes on the
unit interval including increasing, decreasing, unimodal, and bathtub-shaped forms. In
this respect, it is quite similar to the beta distribution which would yield an alternative
family of v-transforms. The uniform distribution function Ψ(x) = x gives the family of
linear v-transforms Vδ.

In applications, we construct models starting from the building blocks of a tractable
v-transform V such as (7) and a distribution FX ; from these, we can always infer an implied
profile function gT using (11). The alternative approach of starting from gT and FX and
constructing V via (4) is also possible but can lead to v-transforms that are cumbersome and
computationally expensive to evaluate if FX and its inverse do not have simple closed forms.

3.3. V-Transforms and Copulas

If two uniform random variables are linked by the v-transform V = V(U), then the
joint distribution function of (U, V) is a special kind of copula. In this section, we derive
the form of the copula, which facilitates the construction of stochastic processes using
v-transforms.

To state the main result, we use the notation V−1 and V ′ for the the inverse function
and the gradient function of a v-transform V . Although there is no unique inverse V−1(v)
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(except when v = 0), the fact that the two branches of a v-transform mutually determine
each other allows us to define V−1(v) to be the inverse of the left branch of the v-transform
given by V−1 : [0, 1] → [0, δ], V−1(v) = inf{u : V(u) = v}. The gradient V ′(u) is defined
for all points u ∈ [0, 1] \ {δ}, and we adopt the convention that V ′(δ) is the left derivative
as u → δ.

Theorem 2. Let V and U be random variables related by the v-transform V = V(U).

1. The joint distribution function of (U, V) is given by the copula

C(u, v) = P(U ≤ u, V ≤ v) =





0 u < V−1(v)

u − V−1(v) V−1(v) ≤ u < V−1(v) + v

v u ≥ V−1(v) + v .

(12)

2. Conditional on V = v, the distribution of U is given by

U =





V−1(v) with probability ∆(v) if v 6= 0

V−1(v) + v with probability 1 − ∆(v) if v 6= 0

δ if v = 0

(13)

where

∆(v) = − 1

V ′(V−1(v))
. (14)

3. E(∆(V)) = δ.

Remark 1. In the case of the symmetric v-transform V(u) = |1 − 2u|, the copula in (12) takes the
form C(u, v) = max(min(u + v

2 − 1
2 , v), 0). We note that this copula is related to a special case of

the tent map copula family CT
θ in Rémillard (2013) by C(u, v) = u − CT

1 (u, 1 − v).

For the linear v-transform family, the conditional probability ∆(v) in (14) satisfies
∆(v) = δ. This implies that the value of V contains no information about whether U is
likely to be below or above the fulcrum; the probability is always the same regardless of V.
In general, this is not the case and the value of V does contain information about whether
U is large or small.

Part (2) of Theorem 2 is the key to stochastically inverting a v-transform in the general
case. Based on this result, we define the concept of stochastic inversion of a v-transform.
We refer to the function ∆ as the conditional down probability of V .

Definition 3 (Stochastic inversion function of a v-transform). Let V be a v-transform with
conditional down probability ∆. The two-place function V

−1 : [0, 1]× [0, 1] → [0, 1] defined by

V
−1(v, w) =

{
V−1(v) if w ≤ ∆(v)

v + V−1(v) if w > ∆(v).
(15)

is the stochastic inversion function of V .

The following proposition, which generalizes Lemma 1, allows us to construct general
asymmetric processes that generalize the process of Algorithm 1.

Proposition 4. Let V and W be iid U(0, 1) variables and let V be a v-transform with stochastic
inversion function V . If U = V

−1(V, W), then V(U) = V and U ∼ U(0, 1).

In Section 4, we apply v-transforms and their stochastic inverses to the terms of
time series models. To understand the effect this has on the serial dependencies between
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random variables, we need to consider multivariate componentwise v-transforms of ran-
dom vectors with uniform marginal distributions and these can also be represented in
terms of copulas. We now give a result which forms the basis for the analysis of serial
dependence properties. The first part of the result shows the relationship between copula
densities under componentwise v-transforms. The second part shows the relationship
under the componentwise stochastic inversion of a v-transform; in this case, we assume
that the stochastic inversion of each term takes place independently given V so that all
serial dependence comes from V .

Theorem 3. Let V be a v-transform and let U = (U1, . . . , Ud)
′ and V = (V1, . . . , Vd)

′ be vectors
of uniform random variables with copula densities cU and cV , respectively.

1. If V = (V(U1), . . . ,V(Ud))
′, then

cV (v1, . . . , vd) =
2

∑
j1=1

· · ·
2

∑
jd=1

cU(u1j1 , . . . , udjd
)

d

∏
i=1

∆(vi)
I{ji=1}(1 − ∆(vi))

I{ji=2} (16)

where ui1 = V−1(vi) and ui2 = V−1(vi) + vi for all i ∈ {1, . . . , d}.

2. If U = (V−1(V1, W1), . . . ,V−1(Vd, Wd))
′ where W1, . . . , Wd are iid uniform random vari-

ables that are also independent of V1, . . . , Vd, then

cU(u1, . . . , ud) = cV (V(u1), . . . ,V(ud)). (17)

4. VT-ARMA Copula Models

In this section, we study some properties of the class of time series models obtained
by the following algorithm, which generalizes Algorithm 1. The models obtained are
described as VT-ARMA processes since they are stationary time series constructed using
the fundamental building blocks of a v-transform V and an ARMA process.

We can add any marginal behaviour in the final step, and this allows for an infinitely
rich choice. We can, for instance, even impose an infinite-variance or an infinite-mean
distribution, such as the Cauchy distribution, and still obtain a strictly stationary process
for (Xt). We make the following definitions.

Definition 4 (VT-ARMA and VT-ARMA copula process). Any stochastic process (Xt) that
can be generated using Algorithm 2 by choosing an underlying ARMA process with mean zero and
variance one, a v-transform V , and a continuous distribution function FX is a VT-ARMA process.
The process (Ut) obtained at the penultimate step of the algorithm is a VT-ARMA copula process.

Algorithm 2:

1. Generate (Zt) as a causal and invertible Gaussian ARMA process of order

(p, q) with mean zero and variance one.

2. Form the volatility PIT process (Vt) where Vt = Φ(Zt) for all t.

3. Generate iid U(0, 1) random variables (Wt).

4. Form the series PIT process (Ut) by taking the stochastic inverses Ut = V
−1(Vt, Wt).

5. Form the process (Xt) by setting Xt = F−1
X (Ut) for some continuous cdf FX .

Figure 4 gives an example of a simulated process using Algorithm 2 and the v-
transform Vδ,κ,ξ in (7) with κ = 0.9 and MA parameter ξ = 1.1. The marginal distribution
is a heavy-tailed skewed Student distribution of type (6) with degrees-of-freedom ν = 3
and skewness γ = 0.8, which gives rise to more large negative returns than large positive
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returns. The underlying time series model is an ARMA(1,1) model with AR parameter
α = 0.95 and MA parameter β = −0.85. See the caption of the figure for full details
of parameters.

In the remainder of this section, we concentrate on the properties of VT-ARMA
copula processes (Ut) from which related properties of VT-ARMA processes (Xt) may be
easily inferred.

4.1. Stationary Distribution

The VT-ARMA copula process (Ut) of Definition 4 is a strictly stationary process
since the joint distribution of (Ut1

, . . . , Utk
) for any set of indices t1 < · · · < tk is invariant

under time shifts. This property follows easily from the strict stationarity of the underlying
ARMA process (Zt) according to the following result, which uses Theorem 3.

Proposition 5. Let (Ut) follow a VT-ARMA copula process with v-transform V and an underlying
ARMA(p,q) structure with autocorrelation function ρ(k). The random vector (Ut1

, . . . , Utk
) for

k ∈ N has joint density cGa
P(t1,...,tk)

(V(u1), . . . ,V(uk)), where cGa
P(t1,...,tk)

denotes the density of the

Gaussian copula CGa
P(t1,...,tk)

and P(t1, . . . , tk) is a correlation matrix with (i, j) element given by

ρ(|tj − ti|).

An expression for the joint density facilitates the calculation of a number of depen-
dence measures for the bivariate marginal distribution of (Ut, Ut+k). In the bivariate case,
the correlation matrix of the underlying Gaussian copula CGa

P(t,t+k)
contains a single off-

diagonal value ρ(k) and we simply write CGa
ρ(k)

. The Pearson correlation of (Ut, Ut+k) is

given by

ρ(Ut, Ut+k) = 12
∫ 1

0

∫ 1

0
u1u2cGa

ρ(k)(V(u1),V(u2))du1du2 − 3 . (18)

This value is also the value of the Spearman rank correlation ρS(Xt, Xt+k) for a VT-
ARMA process (Xt) with copula process (Ut) (since the Spearman’s rank correlation of
a pair of continuous random variables is the Pearson correlation of their copula). The
calculation of (18) typically requires numerical integration. However, in the special case
of the linear v-transform Vδ in (8), we can get a simpler expression as shown in the
following result.

Proposition 6. Let (Ut) be a VT-ARMA copula process satisfying the assumptions of Proposition 5
with linear v-transform Vδ. Let (Zt) denote the underlying Gaussian ARMA process. Then,

ρ(Ut, Ut+k) = (2δ − 1)2ρS(Zt, Zt+k) =
6(2δ − 1)2 arcsin

(
ρ(k)

2

)

π
. (19)

For the symmetric v-transform V0.5, Equation (19) obviously yields a correlation of
zero so that, in this case, the VT-ARMA copula process (Ut) is a white noise with an autocor-
relation function that is zero, except at lag zero. However, even a very asymmetric model
with δ = 0.4 or δ = 0.6 gives ρ(Ut, Ut+k) = 0.04ρS(Zt, Zt+k) so that serial correlations tend
to be very weak.

When we add a marginal distribution, the resulting process (Xt) has a different auto-
correlation function to (Ut), but the same rank autocorrelation function. The symmetric
model of Section 2 is a white noise process. General asymmetric processes (Xt) are not
perfect white noise processes but have only very weak serial correlation.

4.2. Conditional Distribution

To derive the conditional distribution of a VT-ARMA copula process, we use the vector
notation Ut = (U1, . . . , Ut)′ and Zt = (Z1, . . . , Zt)′ to denote the history of processes up to
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time point t and ut and zt for realizations. These vectors are related by the componentwise
transformation Zt = Φ−1(V(Ut)). We assume that all processes have a time index set
given by t ∈ {1, 2, . . .}.

Proposition 7. For t > 1, the conditional density fUt |Ut−1
(u | ut−1) is given by

fUt |Ut−1
(u | ut−1) =

φ
(

Φ−1(V(u))−µt
σǫ

)

σǫφ(Φ−1(V(u))) (20)

where µt = E(Zt | Zt−1 = Φ−1(V(ut−1))) and σǫ is the standard deviation of the innovation
process for the ARMA model followed by (Zt).

When (Zt) is iid white noise µt = 0, σǫ = 1 and (20) reduce to the uniform density
fUt |Ut−1

(u | ut−1) = 1 as expected. In the case of the first-order Markov AR(1) model

Zt = α1Zt−1 + ǫt, the conditional mean of Zt is µt = α1Φ−1(V(ut−1)) and σ2
ǫ = 1 − α2

1.
The conditional density (20) can be easily shown to simplify to fUt |Ut−1

(u | ut−1) =

cGa
α1
(V(u),V(ut−1)) where cGa

α1
(V(u1),V(u2)) denotes the copula density derived in Propo-

sition 5. In this special case, the VT-ARMA model falls within the class of first-order
Markov copula models considered by Chen and Fan (2006), although the copula is new.

If we add a marginal distribution FX to the VT-ARMA copula model to obtain a model
for (Xt) and use similar notational conventions as above, the resulting VT-ARMA model
has conditional density

fXt |Xt−1
(x | xt−1) = fX(x) fUt |Ut−1

(FX(x) | FX(xt−1)) (21)

with fUt |Ut−1
as in (20). An interesting property of the VT-ARMA process is that the

conditional density (21) can have a pronounced bimodality for values of µt in excess of
zero that is in high volatility situations where the conditional mean of Zt is higher than the
marginal mean value of zero; in low volatility situations, the conditional density appears
more concentrated around zero. This phenomenon is illustrated in Figure 4. The bimodality
in high volatility situations makes sense: in such cases, it is likely that the next return will
be large in absolute value and relatively less likely that it will be close to zero.

The conditional distribution function of (Xt) is FXt |Xt−1
(x | xt−1) = FUt |Ut−1

(FX(x) |
FX(xt−1)) and hence the ψ-quantile xψ,t of FXt |Xt−1

can be obtained by solving

ψ = FUt |Ut−1
(FX(xψ,t) | FX(xt−1)) . (22)

For ψ < 0.5, the negative of this value is often referred to as the conditional (1 − ψ)-
VaR (value-at-risk) at time t in financial applications.
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Figure 4. Top left: realization of length n = 500 of (Xt) for a process with a marginal skewed Student distribution

(parameters: ν = 3, γ = 0.8, µ = 0.3, σ = 1) a v-transform of the form (7) (parameters: δ = 0.50, κ = 0.9, ξ = 1.1) and an

underlying ARMA process (α = 0.95, β = −0.85, σǫ = 0.95). Top right: the underlying ARMA process (Zt) in gray with the

conditional mean (µt) superimposed in black; horizontal lines at µt = 0.5 (a high value) and µt = −0.5 (a low value). The

corresponding conditional densities are shown in the bottom figures with the marginal density as a dashed line.

5. Statistical Inference

In the copula approach to dependence modelling, the copula is the object of central
interest and marginal distributions are often of secondary importance. A number of
different approaches to estimation are found in the literature. As before, let x1, . . . , xn

represent realizations of variables X1, . . . , Xn from the time series process (Xt).
The semi-parametric approach developed by Genest et al. (1995) is very widely used

in copula inference and has been applied by Chen and Fan (2006) to first-order Markov
copula models in the time series context. In this approach, the marginal distribution FX is

first estimated non-parametrically using the scaled empirical distribution function F
(X)
n

(see definition in Section 1) and the data are transformed onto the (0, 1) scale. This has the
effect of creating pseudo-copula data ut = rank(xt)/(n + 1) where rank(xt) denotes the
rank of xt within the sample. The copula is fitted to the pseudo-copula data by maximum
likelihood (ML).

As an alternative, the inference-functions-for-margins (IFM) approach of Joe (2015)
could be applied. This is also a two-step method although in this case a parametric model
F̂X is estimated under an iid assumption in the first step and the copula is fitted to the data
ut = F̂X(xt) in the second step.

The approach we adopt for our empirical example is to first use the semi-parametric
approach to determine a reasonable copula process, then to estimate marginal parameters
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under an iid assumption, and finally to estimate all parameters jointly using the parameter
estimates from the previous steps as starting values.

We concentrate on the mechanics of deriving maximum likelihood estimates (MLEs).
The problem of establishing the asymptotic properties of the MLEs in our setting is a
difficult one. It is similar to, but appears to be more technically challenging than, the prob-
lem of showing consistency and efficiency of MLEs for a Box-Cox-transformed Gaussian
ARMA process, as discussed in Terasaka and Hosoya (2007). We are also working with
a componentwise transformed ARMA process, although, in our case, the transformation
(Xt) → (Zt) is via the nonlinear, non-increasing volatility proxy transformation T(Z)(x)
in (5), which is not differentiable at the change point µT . We have, however, run extensive
simulations which suggests good behaviour of the MLEs in large samples.

5.1. Maximum Likelihood Estimation of the VT-ARMA Copula Process

We first consider the estimation of the VT-ARMA copula process for a sample of
data u1, . . . , un. Let θ(V) and θ(A) denote the parameters of the v-transform and ARMA
model, respectively. It follows from Theorem 3 (part 2) and Proposition 5 that the log-
likelihood for the sample u1, . . . , un is simply the log density of the Gaussian copula under
componentwise inverse v-transformation. This is given by

L(θ(V), θ(A) | u1, . . . , un) = L∗(θ(A) | Φ−1(Vθ(V)(u1)), . . . , Φ−1(Vθ(V)(un)))

−
n

∑
t=1

ln φ
(

Φ−1
(
Vθ(V)(ut)

)) (23)

where the first term L∗ is the log-likelihood for an ARMA model with a standard N(0,1)
marginal distribution. Both terms in the log-likelihood (23) are relatively straightforward
to evaluate.

The evaluation of the ARMA likelihood L∗(θ(A) | z1, . . . , zn) for parameters θ(A) and
data z1, . . . , zn can be accomplished using the Kalman filter. However, it is important to
note that the assumption that the data z1, . . . , zn are standard normal requires a bespoke
implementation of the Kalman filter, since standard software always treats the error vari-
ance σ2

ǫ as a free parameter in the ARMA model. In our case, we need to constrain σ2
ǫ

to be a function of the ARMA parameters so that var(Zt) = 1. For example, in the case
of an ARMA(1,1) model with AR parameter α1 and MA parameter β1, this means that
σ2

ǫ = σ2
ǫ (α1, β1) = (1 − α2

1)/(1 + 2α1β1 + β2
1). The constraint on σ2

ǫ must be incorporated
into the state-space representation of the ARMA model.

Model validation tests for the VT-ARMA copula can be based on residuals

rt = zt − µ̂t, zt = Φ−1(Vθ̂(V)(ut)) (24)

where zt denotes the implied realization of the normalized volatility proxy variable and
where an estimate µ̂t of the conditional mean µt = E(Zt | Zt−1 = zt) may be obtained
as an output of the Kalman filter. The residuals should behave like an iid sample from a
normal distribution.

Using the estimated model, it is also possible to implement a likelihood-ratio (LR)
test for the presence of stochastic volatility in the data. Under the null hypothesis that
θ(A) = 0, the log-likelihood (23) is identically equal to zero. Thus, the size of the maximized
log-likelihood L(θ̂(V), θ̂(A) ; u1, . . . , un) provides a measure of the evidence for the presence
of stochastic volatility.
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5.2. Adding a Marginal Model

If FX and fX denote the cdf and density of the marginal model and the parameters are
denoted θ(M), then the full log-likelihood for the data x1, . . . , xn is simply

Lfull(θ | x1, . . . , xn) =
n

∑
t=1

ln fX(xt ; θ(M))

+ L
(

θ(V), θ(A) | FX(x1 ; θ(M)), . . . , FX(xn ; θ(M))
)

(25)

where the first term is the log-likelihood for a sample of iid data from the marginal
distribution FX and the second term is (23).

When a marginal model is added, we can recover the implied form of the volatility
proxy transformation using Proposition 3. If δ̂ is the estimated fulcrum parameter of the
v-transform, then the estimated change point is µ̂T = F−1

X (δ̂; θ̂(M)) and the implied profile
function is

ĝT(x) = F̂−1
X

(
F̂X(µ̂T − x)− Vθ̂(V)

(
F̂X(µ̂T − x)

))
− µ̂T . (26)

Note that is is possible to force the change point to be zero in a joint estimation of
marginal model and copula by imposing the constraint FX(0; θ(M)) = δ on the fulcrum and
marginal parameters during the optimization. However, in our experience, superior fits
are obtained when these parameters are unconstrained.

5.3. Example

We analyse n = 1043 daily log-returns for the Bitcoin price series for the period
2016–2019; values are multiplied by 100. We first apply the semi-parametric approach
of Genest et al. (1995) using the log-likelihood (23) which yields the results in Table 1. Dif-
ferent models are referred to by VT(n)-ARMA(p, q), where (p, q) refers to the ARMA model
and n indexes the v-transform: 1 is the linear v-transform Vδ in (8); 3 is the three-parameter
transform Vδ,κ,ξ in (7); 2 is the two-parameter v-transform given by Vδ,κ := Vδ,κ,1. In unre-
ported analyses, we also tried the three-parameter family based on the beta distribution,
but this had negligible effect on the results.

The column marked L gives the value of the maximized log-likelihood. All values are
large and positive showing strong evidence of stochastic volatility in all cases. The model
VT(1)-ARMA(1,0) is a first-order Markov model with linear v-transform. The fit of this
model is noticeably poorer than the others suggesting that Markov models are insufficient
to capture the persistence of stochastic volatility in the data. The column marked SW
contains the p-value for a Shapiro–Wilks test of normality applied to the residuals from the
VT-ARMA copula model; the result is non-significant in all cases.

Table 1. Analysis of daily Bitcoin return data 2016–2019. Parameter estimates, standard errors (below

estimates) and information about the fit: SW denotes Shapiro–Wilks p-value; L is the maximized

value of the log-likelihood and AIC is the Akaike information criterion.

Model α1 β1 δ κ ξ SW L AIC

VT(1)-ARMA(1,0) 0.283 0.460 0.515 37.59 −71.17
0.026 0.001

VT(1)-ARMA(1,1) 0.962 −0.840 0.416 0.197 92.91 −179.81
0.012 0.028 0.004

VT(2)-ARMA(1,1) 0.965 −0.847 0.463 0.920 0.385 94.73 −181.45
0.011 0.026 0.001 0.131

VT(3)-ARMA(1,1) 0.962 −0.839 0.463 0.881 0.995 0.407 94.82 −179.64
0.012 0.028 0.001 0.123 0.154
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According to the AIC values, the VT(2)-ARMA(1,1) is the best model. We experi-
mented with higher order ARMA processes, but this did not lead to further significant
improvements. Figure 5 provides a visual of the fit of this model. The pictures in the
panels show the QQplot of the residuals against normal, acf plots of the residuals and
squared residuals and the estimated conditional mean process (µ̂t), which can be taken as
an indicator of high and low volatility periods. The residuals and absolute residuals show
very little evidence of serial correlation and the QQplot is relatively linear, suggesting that
the ARMA filter has been successful in explaining much of the serial dependence structure
of the normalized volatility proxy process.
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Figure 5. Plots for a VT(2)-ARMA(1,1) model fitted to the Bitcoin return data: QQplot of the residuals

against normal (upper left); acf of the residuals (upper right); acf of the absolute residuals (lower

left); estimated conditional mean process (µt) (lower right).

We now add various marginal distributions to the VT(2)-ARMA(1,1) copula model
and estimate all parameters of the model jointly. We have experimented with a number of
location-scale families including Student-t, Laplace (double exponential), and a double-
Weibull family which generalizes the Laplace distribution and is constructed by taking
back-to-back Weibull distributions. Estimation results are presented for these three distri-
butions in Table 2. All three marginal distributions are symmetric around their location
parameters µ, and no improvement is obtained by adding skewness using the construction
of Fernández and Steel (1998) described in Section 3.1; in fact, the Bitcoin returns in this
time period show a remarkable degree of symmetry. In the table, the shape and scale
parameters of the distributions are denoted η and σ, respectively; in the case of Student, an
infinite-variance distribution with degree-of-freedom parameter η = 1.94 is fitted, but this
model is inferior to the models with Laplace and double-Weibull margins; the latter is the
favoured model on the basis of AIC values.

Figure 6 shows some aspects of the joint fit for the fully parametric VT(2)-ARMA(1,1)
model with double-Weibull margin. A QQplot of the data against the fitted marginal
distribution confirms that the double-Weibull is a good marginal model for these data.
Although this distribution is sub-exponential (heavier-tailed than exponential), its tails
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do not follow a power law and it is in the maximum domain of attraction of the Gumbel
distribution (see, for example, McNeil et al. 2015, Chapter 5).

Table 2. VT(2)-ARMA(1,1) model with three different margins: Student-t, Laplace, double Weibull.

Parameter estimates, standard errors (alongside estimates) and information about the fit: SW denotes

Shapiro–Wilks p-value; L is the maximized value of the log-likelihood and AIC is the Akaike

information criterion.

Student Laplace dWeibull

α1 0.954 0.012 0.953 0.012 0.965 0.021
β1 −0.842 0.026 −0.847 0.025 −0.847 0.035
δ 0.478 0.001 0.480 0.002 0.463 0.000
κ 0.790 0.118 0.811 0.129 0.939 0.138
η 1.941 0.005 0.844 0.022
µ 0.319 0.002 0.315 0.002 0.192 0.001
σ 2.427 0.003 3.194 0.004 2.803 0.214

SW 0.585 0.551 0.376
L −2801.696 −2791.999 −2779.950
AIC 5617.392 5595.999 5573.899

Using (26), the implied volatility proxy profile function ĝT can be constructed and is
found to lie just below the line y = x as shown in the upper-right panel. The change point is
estimated to be µ̂T = 0.06. We can also estimate an implied volatility proxy transformation
in the equivalence class defined by ĝT and µ̂T . We estimate the transformation T = T(Z)

in (5) by taking T̂(x) = Φ−1(Vθ̂(V)(FX(x; θ̂(M)))). In the lower-left panel of Figure 6, we

show the empirical v-transform formed from the data (xt, T̂(xt)) together with the fitted
parametric v-transform Vθ̂(V) . We recall from Section 1 that the empirical v-transform is

the plot (ut, vt) where ut = F
(X)
n (xt) and vt = F

(T̂(X))
n (T̂(xt)). The empirical v-transform

and the fitted parametric v-transform show a good degree of correspondence. The lower-
right panel of Figure 6 shows the volatility proxy transformation T̂(x) as a function of x
superimposed on the points (xt, Φ−1(vt)). Using the curve, we can compare the effects of,
for example, a log-return (× 100) of -10 and a log-return of 10. For the fitted model, these
are 1.55 and 1.66 showing that the up movement is associated with slightly higher volatility.

As a comparison to the VT-ARMA model, we fit standard GARCH(1,1) models using
Student-t and generalized error distributions for the innovations; these are standard choices
available in the popular rugarch package in R. The generalized error distribution (GED)
contains normal and Laplace as special cases as well as a model that has a similar tail
behaviour to Weibull; note, however, that, by the theory of Mikosch and Stărică (2000),
the tails of the marginal distribution of the GARCH decay according to a power law in
both cases. The results in Table 3 show that the VT(2)-ARMA(1,1) models with Laplace
and double-Weibull marginal distributions outperform both GARCH models in terms of
AIC values.

Table 3. Comparison of three VT(2)-ARMA(1,1) models with different marginal distributions with

two GARCH(1,1) models with different innovation distributions.

Parameters AIC

VT-ARMA (Student) 7 5617.39
VT-ARMA (Laplace) 6 5596.00
VT-ARMA (dWeibull) 7 5573.90
GARCH (Student) 5 5629.02
GARCH (GED) 5 5611.53
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Figure 6. Plots for a VT(2)-ARMA(1,1) model combined with a double Weibull marginal distribution fitted to the Bitcoin

return data: QQplot of the data against fitted double Weibull model (upper left); estimated volatility proxy profile function

gT (upper right); estimated v-transform (lower left); implied relationship between data and volatility proxy variable

(lower right).

Figure 7 shows the in-sample 95% conditional value-at-risk (VaR) estimate based
on the VT(2)-ARMA(1,1) model which has been calculated using (22). For comparison,
a dashed line shows the corresponding estimate for the GARCH(1,1) model with GED
innovations.

Finally, we carry out an out-of-sample comparison of conditional VaR estimates using
the same two models. In this analysis, the models are estimated daily throughout the
2016–2019 period using a 1000-day moving data window and one-step-ahead VaR forecasts
are calculated. The VT-ARMA model gives 47 exceptions of the 95% VaR and 11 exceptions
of the 99% VaR, compared with expected numbers of 52 and 10 for a 1043 day sample, while
the GARCH model leads to 57 and 12 exceptions; both models pass binomial tests for these
exception counts. In a follow-up paper (Bladt and McNeil 2020), we conduct more extensive
out-of-sample backtests for models using v-transforms and copula processes and show
that they rival and often outperform forecast models from the extended GARCH family.
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Figure 7. Plot of estimated 95% value-at-risk (VaR) for Bitcoin return data superimposed on log returns. Solid line shows

VaR estimated using the VT(2)-ARMA(1,1) model combined with a double-Weibull marginal distribution; the dashed line

shows VaR estimated using a GARCH(1,1) model with GED innovation distribution.

6. Conclusions

This paper has proposed a new approach to volatile financial time series in which
v-transforms are used to describe the relationship between quantiles of the return dis-
tribution and quantiles of the distribution of a predictable volatility proxy variable. We
have characterized v-transforms mathematically and shown that the stochastic inverse
of a v-transform may be used to construct stationary models for return series where arbi-
trary marginal distributions may be coupled with dynamic copula models for the serial
dependence in the volatility proxy.

The construction was illustrated using the serial dependence model implied by a
Gaussian ARMA process. The resulting class of VT-ARMA processes is able to capture
the important features of financial return series including near-zero serial correlation
(white noise behaviour) and volatility clustering. Moreover, the models are relatively
straightforward to estimate building on the classical maximum-likelihood estimation of an
ARMA model using the Kalman filter. This can be accomplished in the stepwise manner
that is typical in copula modelling or through joint modelling of the marginal and copula
process. The resulting models yield insights into the way that volatility responds to returns
of different magnitude and sign and can give estimates of unconditional and conditional
quantiles (VaR) for practical risk measurement purposes.

There are many possible uses for VT-ARMA copula processes. Because we have
complete control over the marginal distribution, they are very natural candidates for the
innovation distribution in other time series models. For example, they could be applied to
the innovations of an ARMA model to obtain ARMA models with VT-ARMA errors; this
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might be particularly appropriate for longer interval returns, such as weekly or monthly
returns, where some serial dependence is likely to be present in the raw return data.

Clearly, we could use other copula processes for the volatility PIT process (Vt). The
VT-ARMA copula process has some limitations: the radial symmetry of the underlying
Gaussian copula means that the serial dependence between large values of the volatility
proxy must mirror the serial dependence between small values; moreover, this copula does
not admit tail dependence in either tail and it seems plausible that very large values of the
volatility proxy might have a tendency to occur in succession.

To extend the class of models based on v-transforms, we can look for models for
the volatility PIT process (Vt) with higher dimensional marginal distributions given by
asymmetric copulas with upper tail dependence. First-order Markov copula models as
developed in Chen and Fan (2006) can give asymmetry and tail dependence, but they
cannot model the dependencies at longer lags that we find in empirical data. D-vine copula
models can model higher-order Markov dependencies and Bladt and McNeil (2020) show
that this is a promising alternative specification for the volatility PIT process.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

We observe that, for x ≥ 0,

FT(X)(x) = P(µT − T−1
1 (x) ≤ Xt ≤ µT + T−1

2 (x)) = FX(µT + T−1
2 (x))− FX(µT − T−1

1 (x)).

{Xt ≤ µT} ⇐⇒ {U ≤ FX(µT)} and in this case

V = FT(X)(T(Xt)) = FT(X)(T1(µT − Xt)) = FX(µT + T−1
2 (T1(µT − Xt)))− FX(Xt)

= FX

(
µT + gT

(
µT − F−1

X (U)
))

− U.

{Xt > µT} ⇐⇒ {U > FX(µT)} and in this case

V = FT(X)(T(Xt)) = FT(X)(T2(Xt − µT)) = FX(Xt)− FX(µT − T−1
1 (T2(Xt − µT)))

= U − FX

(
µT − g−1

T

(
F−1

X (U)− µT

))
.

Appendix A.2. Proof of Proposition 2

The cumulative distribution function F0(x) of the double exponential distribution is
equal to 0.5ex for x ≤ 0 and 1 − 0.5e−x if x > 0. It is straightforward to verify that

FX(x; γ) =

{
δeγx x ≤ 0

1 − (1 − δ)e−
x
γ x > 0

and F−1
X (u; γ) =





1
γ ln

(
u
δ

)
u ≤ δ

−γ ln
(

1−u
1−δ

)
u > δ .
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When gT(x) = kxξ , we obtain for u ≤ δ that

Vδ,κ,ξ(u) = FX

(
k

γξ

(
ln

(
δ

u

)ξ
)

; γ

)
− u = 1 − u − (1 − δ) exp

(
− k

γξ+1

(
− ln

(u

δ

))ξ
)

.

For u > δ, we make a similar calculation.

Appendix A.3. Proof of Theorem 1

It is easy to check that Equation (10) fulfills the list of properties in Lemma 2. We
concentrate on showing that a function that has these properties must be of the form (10). It
helps to consider the picture of a v-transform in Figure 3. Consider the lines v = 1 − u and
v = δ − u for u ∈ [0, δ]. The areas above the former and below the latter are shaded gray.

The left branch of the v-transform must start at (0, 1), end at (δ, 0), and lie strictly
between these lines in (0, δ). Suppose, on the contrary, that v = V(u) ≤ δ − u for u ∈ (0, δ).
This would imply that the dual point u∗ given by u∗ = u + v satisfies u∗ ≤ δ which
contradicts the requirement that u∗ must be on the opposite side of the fulcrum. Similarly,
if v = V(u) ≥ 1 − u for u ∈ (0, δ), then u∗ ≥ 1 and this is also not possible; if u∗ = 1, then
u = 0, which is a contradiction.

Thus, the curve that links (0, 1) and (δ, 0) must take the form

V(u) = (δ − u)Ψ
(u

δ

)
+ (1 − u)

(
1 − Ψ

(u

δ

))
= (1 − u)− (1 − δ)Ψ

(u

δ

)

where Ψ(0) = 0, Ψ(1) = 1 and 0 < Ψ(x) < 1 for x ∈ (0, 1). Clearly, Ψ must be continuous
to satisfy the conditions of the v-transform. It must also be strictly increasing. If it were
not, then the derivative would satisfy V ′(u) ≥ −1, which is not possible: if at any point
u ∈ (0, δ), we have V ′(u) = −1, then the opposite branch of the v-transform would have to
jump vertically at the dual point u∗, contradicting continuity; if V ′(u) > −1, then V would
have to be a decreasing function at u∗, which is also a contradiction.

Thus, Ψ fulfills the conditions of a continuous, strictly increasing distribution function
on [0, 1], and we have established the necessary form for the left branch equation. To find the
value of the right branch equation at u > δ, we invoke the square property. Since V(u) =
V(u∗) = V(u − V(u)), we need to solve the equation x = V(u − x) for x ∈ [0, 1] using the
formula for the left branch equation of V . Thus, we solve x = 1 − u + x − (1 − δ)Ψ( u−x

δ )
for x, and this yields the right branch equation as asserted.

Appendix A.4. Proof of Proposition 3

Let gT(x) be as given in (11) and let u(x) = FX(µT − x). For x ∈ R+, u(x) is a
continuous, strictly decreasing function of x starting at u(0) = δ and decreasing to 0. Since
Ψ is a cumulative distribution function, it follows that

u∗(x) = u(x) + V(u(x)) = 1 − (1 − δ)Ψ

(
u(x)

δ

)

is a continuous, strictly increasing function starting at u∗(0) = δ and increasing to 1. Hence,
gT(x) = F−1

X (u∗(x))− µT is continuous and strictly increasing on R+ with gT(0) = 0 as
required of the profile function of a volatility proxy transformation. It remains to check
that, if we insert (11) in (4), we recover V(u), which is straightforward.

Appendix A.5. Proof of Theorem 2

1. For any 0 ≤ v ≤ 1, the event {U ≤ u, V ≤ v} has zero probability for u < V−1(v).
For u ≥ V−1(v), we have

{U ≤ u, V ≤ v} = {V−1(v) ≤ U ≤ min(u,V−1(v) + v)}

and hence P(U ≤ u, V ≤ v) = min(u,V−1(v) + v)− V−1(v) and (12) follows.
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2. We can write P(U ≤ u, V ≤ v) = C(u, v), where C is the copula given by (12). It
follows from the basic properties of a copula that

P(U ≤ u, V = v) =
d

dv
C(u, v) =





0 u < V−1(v)

− d
dvV−1(v) V−1(v) ≤ u < V−1(v) + v

1 u ≥ V−1(v) + v

This is the distribution function of a binomial distribution, and it must be the case
that ∆(v) = − d

dvV−1(v). Equation (14) follows by differentiating the inverse.

3. Finally, E(∆(V)) = δ is easily verified by making the substitution x = V−1(v) in the

integral E(∆(V)) = −
∫ 1

0
1

V ′(V−1(v))
dv.

Appendix A.6. Proof of Proposition 4

It is obviously true that V(V−1(v, W)) = v for any W. Hence, V(U) = V(V−1(V, W)) =
V. The uniformity of U follows from the fact that

P

(
V

−1(V, W) = V−1(v) | V = v
)
= P(W ≤ ∆(v) | V = v) = P(W ≤ ∆(v)) = ∆(v) .

Hence, the pair of random variables (U, V) has the conditional distribution (13) and is
distributed according to the copula C in (12).

Appendix A.7. Proof of Theorem 3

1. Since the event {Vi ≤ vi} is equal to the event {V−1(vi) ≤ Ui ≤ V−1(vi) + vi}, we
first compute the probability of a box [a1, b1]× · · · × [ad, bd] where ai = V−1(vi) ≤
V−1(vi) + vi = bi. The standard formula for such probabilities implies that the
copulas CV and CU are related by

CV (v1, . . . , vd) =
2

∑
j1=1

· · ·
2

∑
jd=1

(−1)j1+···+jd CU(u1j1 , . . . , udjd
) ;

see, for example, McNeil et al. (2015), p. 221. Thus, the copula densities are related by

cV (v1, . . . , vd) =
2

∑
j1=1

· · ·
2

∑
jd=1

cU(u1j1 , . . . , udjd
)

d

∏
i=1

d

dvi
(−1)ji uiji ,

and the result follows if we use (14) to calculate that

d

dvi
(−1)juij =

{
d

dvi

(
−V−1(vi)

)
= ∆(vi) if j = 1,

d
dvi

(
vi + V−1(vi)

)
= 1 − ∆(vi) if j = 2.

2. For the point (u1, . . . , ud) ∈ [0, 1]d, we consider the set of events Ai(ui) defined by

Ai(ui) =

{
{Ui ≤ ui} if ui ≤ δ

{Ui > ui} if ui > δ

The probability P(A1(u1), . . . , Ad(ud)) is the probability of an orthant defined by the
point (u1, . . . , ud) and the copula density at this point is given by

cU(u1, . . . , ud) = (−1)∑
d
i=1 I{ui>δ} dd

du1 · · ·dud
P

(
d⋂

i=1

Ai(ui)

)
.
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The event Ai(ui) can be written

Ai(ui) =

{
{Vi ≥ V(ui), Wi ≤ ∆(Vi)} if ui ≤ δ

{Vi > V(ui), Wi > ∆(Vi)} if ui > δ

and hence we can use Theorem 2 to write

P

(
d⋂

i=1

Ai(ui)

)
=
∫ 1

V(u1)
· · ·

∫ 1

V(ud)
cV (v1, . . . , vd)

d

∏
i=1

∆(vi)
I{ui≤δ} (1 − ∆(vi))

I{ui>δ}dv1 · · ·dvd .

The derivative is given by

dd

du1 · · ·dud
P

(
d⋂

i=1

Ai(ui)

)
= (−1)dcV (V(u1), . . . ,V(ud))

d

∏
i=1

p(ui)
I{ui≤δ} (1 − p(ui))

I{ui>δ}V ′(ui)

where p(ui) = ∆(V(ui)) and hence we obtain

cU(u1, . . . , ud) = cV (V(u1), . . . ,V(ud))
d

∏
i=1

(−p(ui))
I{ui≤δ}(1 − p(ui))

I{ui>δ}V ′(ui).

It remains to verify that each of the terms in the product is identically equal to 1.
For ui ≤ δ, this follows easily from (14) since −p(ui) = −∆(V(ui)) = 1/V ′(ui). For
ui > δ, we need an expression for the derivative of the right branch equation. Since
V(ui) = V(ui − V(ui)), we obtain

V ′(ui) = V ′(ui − V(ui))(1 − V ′(ui)) = V ′(u∗
i )(1 − V ′(ui)) =⇒ V ′(ui) =

V ′(u∗
i )

1 + V ′(u∗
i )

implying that

1 − p(ui) = 1 − ∆(V(ui)) = 1 − ∆(V(u∗
i )) = 1 +

1

V ′(u∗
i )

=
1 + V ′(u∗

i )

V ′(u∗
i )

=
1

V ′(ui)
.

Appendix A.8. Proof of Proposition 5

Let Vt = V(Ut) and Zt = Φ−1(Vt) as usual. The process (Zt) is an ARMA process
with acf ρ(k) and hence (Zt1

, . . . , Ztk
) are jointly standard normally distributed with corre-

lation matrix P(t1, . . . , tk). This implies that the joint distribution function of (Vt1
, . . . , Vtk

)
is the Gaussian copula with density cGa

P(t1,...,tk)
and hence by Part 2 of Theorem 3 the joint dis-

tribution function of (Ut1
, . . . , Utk

) is the copula with density cGa
P(t1,...,tk)

(V(u1), . . . ,V(uk)).

Appendix A.9. Proof of Proposition 6

We split the integral in (18) into four parts. First, observe that, by making the substitu-
tions v1 = V(u1) = 1 − u1/δ and v2 = V(u2) = 1 − u2/δ on [0, δ]× [0, δ], we get

∫ δ

0

∫ δ

0
u1u2cGa

ρ(k)(V(u1),V(u2))du1du2 = δ4
∫ 1

0

∫ 1

0
(1 − v1)(1 − v2)c

Ga
ρ(k)(v1, v2)dv1dv2

= δ4
E((1 − Vt)(1 − Vt+k))

= δ4(1 −E(Vt)−E(Vt+k) +E(VtVt+k)) = δ4
E(VtVt+k)
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where (Vt, Vt+k) has joint distribution given by the Gaussian copula CGa
ρ(k)

. Similarly, by

making the substitutions v1 = V(u1) = 1 − u1/δ and v2 = V(u2) = (u2 − δ)/(1 − δ) on
[0, δ]× [δ, 1], we get

∫ δ

0

∫ 1

δ
u1u2cGa

ρ(k)(V(u1),V(u2))du1du2

=
∫ 1

0

∫ 1

0
δ2(1 − δ)(1 − v1)

(
δ + (1 − δ)v2

)
cGa

ρ(k)(v1, v2)dv1dv2

= δ3(1 − δ)E(1 − Vt) + δ2(1 − δ)2
E((1 − Vt)Vt+k) =

δ2(1 − δ)

2
− δ2(1 − δ)2

E(VtVt+k)

and the same value is obtained on the quadrant [δ, 1]× [0, δ]. Finally, making the substitu-
tions v1 = V(u1) = (u1 − δ)/(1 − δ) and v2 = V(u2) = (u2 − δ)/(1 − δ) on [δ, 1]× [δ, 1],
we get

∫ 1

δ

∫ 1

δ
u1u2cGa

ρ(k)(V(u1),V(u2))du1du2

=
∫ 1

0

∫ 1

0
(1 − δ)2

(
δ + (1 − δ)v1

)(
δ + (1 − δ)v2

)
cGa

ρ(k)(v1, v2)dv1dv2

=
∫ 1

0

∫ 1

0
(1 − δ)2

(
δ2 + δ(1 − δ)v1 + δ(1 − δ)v2 + (1 − δ)2v1v2

)
cGa

ρ(k)(v1, v2)dv1dv2

= δ2(1 − δ)2 + δ(1 − δ)3
E(Vt) + δ(1 − δ)3

E(Vt+k) + (1 − δ)4
E(VtVt+k)

= δ(1 − δ)2 + (1 − δ)4
E(VtVt+k)

Collecting all of these terms together yields

∫ 1

0

∫ 1

0
u1u2cGa

ρ(k)(V(u1),V(u2))du1du2 = δ(1 − δ) + (2δ − 1)2
E(VtVt+k)

and, since ρS(Zt, Zt+k) = 12E(VtVt+k)− 3, it follows that

ρ(Ut, Ut+k) = 12E(UtUt+k)− 3 = 12
∫ 1

0

∫ 1

0
u1u2cGa

ρ(k)(V(u1),V(u2))du1du2 − 3

= 12δ(1 − δ) + 12(2δ − 1)2
E(VtVt+k)− 3

= 12δ(1 − δ) + (2δ − 1)2(ρS(Zt, Zt+k) + 3)− 3

= (2δ − 1)2ρS(Zt, Zt+k) .

The value of Spearman’s rho ρS(Zt, Zt+k) for the bivariate Gaussian distribution is
well known; see, for example, McNeil et al. (2015).

Appendix A.10. Proof of Proposition 7

The conditional density satisfies

fUt |Ut−1
(u | ut−1) =

cUt(u1, . . . , ut−1, u)

cUt−1
(u1, . . . , ut−1)

=
cGa

P(1,...,t)
(V(u1), . . . ,V(ut−1),V(u))

cGa
P(1,...,t−1)

(V(u1), . . . ,V(ut−1))
.

The Gaussian copula density is given in general by

cGa
P (v1, . . . , vd) =

fZ

(
Φ−1(v1), . . . , Φ−1(vd)

)

∏
d
i=1 φ

(
Φ−1(vi)

)
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where Z is a multivariate Gaussian vector with standard normal margins and correlation
matrix P. Hence, it follows that we can write

fUt |Ut−1
(u | ut−1) =

fZt

(
Φ−1

(
V(u1)

)
, . . . , Φ−1

(
V(ut−1)

)
, Φ−1

(
V(u)

))

fZt−1

(
Φ−1

(
V(u1)

)
, . . . , Φ−1

(
V(ut−1)

))
φ
(
Φ−1

(
V(u)

))

=
fZt |Zt−1

(
Φ−1

(
V(u)

)
| Φ−1

(
V(ut−1)

))

φ
(
Φ−1

(
V(u)

))

where fZt |Zt−1
is the conditional density of the ARMA process, from which (20) follows easily.
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