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Abstract: In this study, networks of interconnected heterogeneous micro-grids are studied. The transient dynamics is modelled
as an averaging process whereby micro-grids are assimilated to dynamic agents in a network. An analysis of the convergence
of the consensus dynamics is carried out under different assumptions on the damping and inertia parameters and the topology
of the network. This study provides an insight into the relation between the network topology and the system's response. An
analysis of the ways in which the heterogeneous inertial parameters affect the transient response of the network is also
implemented. Additionally, the conditions that guarantee stability are identified when the system is under the influence of
uncertain non-linear parameters. Finally, simulations are carried out based on a model calibrated on an existing network in the
UK under parameter uncertainties.

1 Introduction
This paper presents an analysis of the transient dynamics of a
network of micro-grids, mainly the influence of oscillations during
the system response. A micro-grid is modelled using the swing
dynamics and incorporating parameters for damping and inertia.
The interrelation among micro-grids is modelled using the coupled
oscillator archetype and the resulting dynamics is described by a
graph-Laplacian matrix. The transient analysis is extended to a
number of cases to gain insight on the role of the connectivity and
the parameters.

Although the presented model is a simplified representation for
individual micro-grids, it has been proven to be useful as a tool for
the study of smart-grid related subjects, such as demand-side
management in [1] and real-time pricing [2]. This paper provides a
more in-depth stability analysis and yields some other highlights
that might not be entirely practical in nature but are interesting
nonetheless.

The parameter heterogeneity that is involved in this study can
be useful in the design of modern power systems, since the impact
of inertia is a present challenge [3, 4], as more low-inertia systems
such as renewables are being commonly integrated into current
power networks [5].

1.1 Main contributions

As a first result, the relation between the transient stability and
consensus dynamics is explored under the assumption that the
micro-grids are homogeneous, namely every micro-grid in the
network has equal parameters. This study sheds light on the ways
in which different damping coefficients influence the frequency
and power flow consensus values.

Secondly, stability analysis for the heterogeneous case is
performed by estimating the system's eigenvalues based on the
Gershgorin disc theorem. The conditions that guarantee absolute
stability, namely the case in where the system's measurements are
subject to non-linearities and uncertainties, are also explored.

Thirdly, simulations are performed using different topologies;
reaffirming the ways in which the connectivity of the network
affects the time constant of the transient response. Additionally, the

present work also involves the adaptation of the proposed model to
real instances in the UK electrical networks and the calibration of
the nodes’ parameters using data of the power capabilities of the
micro-grids, simulation results also show the system's response
when subject to parameter change over time.

1.2 Reviewed literature

Following a previous work of the authors in [6], this paper
investigates the interplay between the transmission dynamics and
the micro-grid dynamics by obtaining the conditions for stability
when the system is subject to uncertainties. We are dealing with
input/output systems interconnected through diffusive coupling as
in [7, 8], we differentiate our work by focusing on the
heterogeneous case. This is also a continuation of the study in [9]
about the effects of the parameters of homogeneous micro-grids on
their transient stability. We now extend the approach to
heterogeneous networks. A brief analysis of the influence of the
parameters on a micro-grid, along with a simplified version of the
model used in the present paper is found in [1]. The role of the
Laplacian in the swing dynamics and the correspondence with the
Kuramoto coupled oscillator is considered in [10]. The equivalent
model for the connection between two micro-grids is based on the
reduction shown in [11]. The link between the Laplacian and the
swing dynamics for small phase angles is discussed in [12]; we use
this approximation in the micro-grid model. The model for a
micro-grid subject to uncertainties is explained in [2] based on a
game-theoretic approach to describe the disturbances. A study of
the power flow and demand response in a distributed system of
micro-grids similar to the present one is carried out in [13]. As the
main difference, we provide a stability analysis. Transient analysis
and study of the impact of the damping to inertia ratio is in the
same spirit as in [14], from which conditions obtained are also
employed for the non-linearity sector calculation. The role of the
damping parameters in electrical generators and the procedure to
obtain them is discussed in [15]. We also borrow from [9] the idea
of converting the one-line diagram into a dynamic network.

This paper is structured as follows. In Section 2, we state the
problem and introduce the model. In Sections 3 and 4, we present
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our results. In Section 6, we provide numerical examples. Finally,
in Section 7, we provide conclusions and discuss further directions.

2 Problem statement and model
This study mainly addresses the analysis of the transient dynamics
of a network system comprised of interconnected micro-grids and
the influence of the parameters and topology of the network on the
stability, more specifically, the ways in which the heterogeneous
parameters in the network influence the eigenvalues of the overall
system. Furthermore, we investigate conditions that guarantee
absolute stability, that is, the maximum magnitude of uncertain
non-linear parameters that the system can withstand when subject
to such uncertainties.

Our approach allows to link the transient response to the
connectivity of the equivalent network graph, approximate the
eigenvalues’ position and bounds depending on the different micro-
grid parameters, derive conditions for the stability and determine
the maximum amplitude of uncertainties in terms of the parameters
of each micro-grid.

The model of a single micro-grid i in a network describes the
dynamics of the power flow Pi in the micro-grid, which follows the
first-order differential equation:

P˙ i = ∑
j ∈ Ni

Ti j

σi
( f j − f i) −

μi

σi
Pi, (1)

where f i and f j are the frequencies of micro-grids i and j,
respectively, Ti j is the synchronising coefficient which represents
the maximum power transfer between micro-grids i and j [10] in
MVA, where Ti j = Vi ∥ V j ∥ Yi j  and Yi j is the inverse of the
impedance Zi j of the transmission line {i, j}, Fig. 1 shows the
equivalent circuit representation for the interconnection of two
micro-grids [11], σi and μi are the transmission inertia and damping
coefficients, respectively. If micro-grid i is connected to multiple
other micro-grids, then the first term is a sum of the adjacent
micro-grids Ni to micro-grid i as we shall explain later. The second
term helps describe the characteristic response of the power
transmission. From (1), it can be seen that the power flow depends
on the frequency error f j − f i. A physical interpretation of this is
that if f i < f j then the power flows from micro-grid j to micro-grid
i; in contrast if f i > f j then the power flows from micro-grid i to

micro-grid j. The model of micro-grid i also involves the dynamics
of frequency f i represented by the swing equation [1, 2]:

f˙ i = −
Di

Mi
f i +

1
Mi

Pi, (2)

where Di and Mi denote the micro-grid's swing damping and inertia
coefficients, respectively. In electrical systems the damping Di is
obtained as a result of changing loads and control loops [15] and is
measured in MJ/rad. Mi is the moment of inertia caused by the
rotors of the electric generators in the micro-grid [16, p. 438] and is
measured in MJ-s/rad. Fig. 2 shows the system block
representation of the system (1) and (2). 

The state-space representation of the system is obtained by
introducing the state variables Pi = x1

(i), f i = x2
(i) and taking f j = x2

( j)

as an external input. Model (1) and (2) is rewritten as

ẋ1
(i)

ẋ2
(i)

=

−
μi

σi
−

Ti j

σi

1
Mi

−
Di

Mi

x1
(i)

x2
(i)

+

Ti j

σi

0

x2
( j) . (3)

A system of interconnected micro-grids can be modelled by a
graph like the one shown in Fig. 3. Each node represents a micro-
grid and each edge the power line that connects two of them; the
connectivity of a micro-grid is captured by the degree di of the
corresponding node, which is equal to the its number of
connections. In the unweighted and undirected case, di is equal to
the number of edges that are incident to node i. By extending (3) to
the case of a system of n micro-grids, we obtain the state-space
model (5). The block matrix that contains the synchronisation
parameters Ti j is linked to the graph-Laplacian matrix, given by

L :=

T11 −T12 ⋯ −T1n

−T21 T22 ⋯ −T2n

⋮ ⋮ ⋱ ⋮

−Tn1 −Tn2 ⋯ Tnn

, (4)

where its diagonal entries correspond to the sum of the weights of
the outgoing edges, while the off-diagonal entries are the weights
of the adjacency matrix A of the network. Let us recall that the
Laplacian of a graph is expressed as L = Dout − A, where Dout is a
diagonal matrix whose elements are the out-degree of the nodes.
The Laplacian matrix is then used to represent the system
dynamics in matrix form as follows:

ẋ1
(1)

⋮

ẋ1
(n)

ẋ2
(1)

⋮

ẋ2
(n)

=

−
μ1

σ1

⋯ 0 −
T11

σ1

⋯
T1n

σ1

0 ⋱ 0 ⋱

0 ⋯ −
μn

σn

Tn1

σn
⋯ −

Tnn

σn

1
M1

⋯ 0 −
D1

M1

⋯ 0

0 ⋱ 0 0 ⋱ 0

0 ⋯
1

Mn
0 ⋯ −

Dn

Mn

x1
(1)

⋮

x1
(n)

x2
(1)

⋮

x2
(n)

. (5)

Let X j = [xj
(i)]i = 1, …, n then

X˙
1

X˙
2

=

−diag
μi

σi
−diag

1
σi

L

diag
1

Mi
−diag

Di

Mi

A

X1

X2

, (6)

Fig. 1  Equivalent circuit showing the connection between micro-grids i
and j, with shunt conductances Yi = 1/Zi

 

Fig. 2  System block representation of micro-grid i
 

Fig. 3  Graph topology analogous to the micro-grid network in [17]
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where diag(Di/Mi) and diag(μi/σi) denote diagonal matrices with
main diagonal entries equal to the damping to inertia ratio and
diag(1/Mi) and diag(1/σi) are diagonal matrices with main diagonal
entries equal to the inverse of the inertial constants Mi and σi of
each micro-grid i. The state variables X1 and X2 are the vectors of
power flows Pi and frequencies f i of each micro-grid i for
i = 1, …, n. Based on the micro-grid network model introduced
above, we now leverage the two following derivations to help
study its stability.

3 Preliminary derivations
In this section, we review a couple of preliminary results on the
determinant of the micro-grid network system and the Gershgorin
disc theorem which will be used in the following sections to show
the ways in which the eigenvalues are obtained and subsequently
the conditions for the system's stability.

3.1 Transient dynamics of the micro-grid network system

The first preliminary derivation deals with the transient dynamics
of system (6). To this purpose, we need to obtain the eigenvalues of
matrix A. For an unweighted, undirected network of heterogeneous
micro-grids with inertial coefficients Mi, σi and damping
coefficients Di, μi, to find the eigenvalues of system (6), the roots
of det(λI − A) must be obtained. Taking A as a square block
matrix, its determinant is obtained as (see (7)) By denoting
Ψ := diag(Di/Mi), Φ := diag(1/Mi), Γ := diag(1/σi) and
κ := diag(μi/σi), the determinant (7) is rewritten as

det(λI − A) = det(λ2
I + λ(Ψ + κ) + κΨ + ΓΦL) . (8)

System (6) is stable if all its eigenvalues λi lie in the left-half side
of the complex plane. The following theorem illustrates the ways in
which an estimation of the eigenvalues of matrix A can be
obtained.

3.2 Gershgorin disc theorem

This theorem is a well-known tool used to bound the possible
values of the eigenvalues of a square matrix in the complex plane.
Let Ann be an n × n matrix and let ai j be its ijth entry. For
i ∈ 1, …, n, let the radius Ri = ∑ j ≠ i ai j  be the sum of the absolute
values of the non-diagonal elements in the ith row. Let Δ(aii, Ri) be
the closed disc centred at aii with radius Ri. Such disc is called a
Gershgorin disc.
 

Theorem 1: Every eigenvalue λi of Ann lies within at least one of
the Gershgorin discs Δ(aii, Ri).
 

Proof: We refer the reader to the original paper by Geršgorin
[18] for full details of the proof. □

4 Stability and response analysis
In this section, we present results regarding the transient of the
system. Firstly, an estimation of the eigenvalues of system (6) is
provided using the Gershgorin disc theorem. Furthermore, a
discussion of the ways in which the eigenvalue that is closest to the
origin affects the system's response is presented. Secondly, the
eigenvalues are obtained for the case when the damping to inertia
ratios are normalised to one and the inertia is either equal to one or

has different values for each micro-grid. Thirdly, a procedure to
identify regions containing the eigenvalues of the system, is shown.

4.1 Eigenvalue location and response bounding

In the following, we focus on obtaining an estimation for the
eigenvalues of A taking mainly into account the different damping
to inertia ratios of the micro-grids. For the analysis utilising the
Gershgorin disc theorem, two sets of discs are obtained. For the
first one, we take Di > 0 and Mi > 0 for i = 1, 2, …, m. Then we
obtain a disc Δi

(1) in the first set which encloses the position of an
eigenvalue λi in the complex plane. Let R

(1) = 1/Mi, then the disc
Δi

(1) is given by

Δi
(1) −

Di

Mi
,

1
Mi

= ξ:ξ ∈ ℂ ∥ ξ +
Di

Mi
≤ R

(1) . (9)

Every disc Δi
(1) has a radius equal to R = 1/Mi and is centred in

−Di/Mi on the real axis of the complex plane. For the second set of
discs denoted by Δi

(2), let us set μi > 0 for i = m + 1, m + 2, …, n.
Let R

(2) = ∑ j
N

li j /σi, then we obtain a disc Δi
(2) in the second set

given by

Δi
(2) −

μi

σi
, ∑

j

N
1
σi

li j = ξ:ξ ∈ ℂ ∥ ξ +
μi

σi
≤ R

(2) . (10)

Every disc Δi
(2) has a radius equal to R = ∑ j

N
li j /σi and is centred

in −μi/σi on the real axis of the complex plane. Here we denote by
li j = Ti j  the absolute value of the ijth element of the Laplacian
L. Let us recall that the spectrum of A is the set of eigenvalues
{λ1, λ2, …, λn}.
 

Lemma 1: For the spectrum of matrix A, we have

spec(A) ∈ ⋃
i = 1

m

Δi
(1) −

Di

Mi
,

1
Mi

∪ ⋃
i = m

n

Δi
(2) −

μi

σi
, ∑

j

N
1
σi

li j . (11)

 
Proof: Recalling the Gershgorin disc theorem, all eigenvalues

of the system are contained within the union of all areas of the
discs. The centre of each disc is situated on each of the diagonal
elements of A in (6), the radius of each disc is equal to the sum of
the rest of the elements in the matching row. □

In the following, we present some results in the case where the
transmission dynamics is much faster than the swing dynamics.
This is an assumption that is commonly found in the literature,
since it yields the standard swing equation [1, 2, 6, 9] because of
the difference in the parameter's magnitude.
 

Assumption 1: The transmission damping coefficient μi is much
larger than the swing damping coefficient Di, μi ≫ Di.

If Assumption 1 holds, let us then assume without loss of
generality that the nodes are ordered decreasingly in the damping
to inertia ratio as follows:

−
μn

σn
< −

μn − 1

σn − 1

≪ −
μm + 2

σm + 2

< −
μm + 1

σm + 1

≪ −
Dm

Mm
< −

Dm − 1

Mm − 1

≪ −
D2

M2

< −
D1

M1

.

(12)

det(λI − A) = det

λI + diag
μi

σi
diag

1
σi

L

−diag
1

Mi
λI + diag

Di

Mi

= det λ
2
I + λ diag

Di

Mi
+

μi

σi
+ diag

μiDi

σiMi
+ diag

1
σiMi

L .

(7)
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In other words, the ratio −D1/M1 corresponds to the micro-grid
with the smallest damping to inertia ratio and is the centre to the
disc that encircles the smallest eigenvalue λ1.

Before presenting the next result, let us define the closest point
of each disc to the origin as the upper bound of Δi

(1) and Δi
(2),

respectively, as

λ¯i :=
1 − Di

Mi
, λ

^

i = ∑
j

N
1
σi

li j −
μi

σi
. (13)

Fig. 4 shows a possible configuration of the discs and their upper
bounds in the complex plane. 
 

Theorem 2: System (6) is stable if for the upper bound of its
smallest eigenvalues it holds

λ1 := max
i

{λ¯i, λ
^

i} < 0. (14)

Furthermore, the rate of convergence satisfies

x(t) − xeq ≤ Υ2ne
λ1t, (15)

where xeq is a generic equilibrium point and Υ2n is an opportune
1 × 2n vector.
 

Proof: Let any point p̄i ∈ Δi
(1) and similarly, let p^ i ∈ Δi

(2) be
given, it holds that ℜ[ p̄i] < λ¯i; ℜ[p^ i] < λ

^

i. It follows that if
condition (14) holds true, then ℜ[ p̄i], ℜ[p^ i] < 0, and therefore, the
real part of the eigenvalues is negative.

By obtaining all eigenvalues {λ1, …, λn} of A, an eigenvector
matrix V can be computed, as well as its inverse W = V

−1. The
modal transformation of A is obtained from

WAV = diag({λ1, …, λn}) = Λ, (16)

which results in a diagonal matrix Λ where all elements contain an
eigenvalue of A. The response of the system for a given initial state
x(0) and zero input is now expressed as

x(t) = VeΛtWx(0), (17)

the rate of decay of the smallest eigenvalue λ1 is dominant for the
system's response. Since λ1 upper bounds, the smallest eigenvalue
λ1, every state of (17) is exponentially bounded by λ1. Namely, the
system converges to an equilibrium xeq as in (15). From the discs
representation in Fig. 4, we can see that the radius of each disc Δi

(2)

depends proportionally on the topology by means of li j  of the
Laplacian. Therefore, the eigenvalues are tied to the network's
connectivity. □

From Fig. 4, it can be seen that the imaginary part of the
eigenvalues is bounded by the radii of the discs. Namely, the
maximal amplitude of the frequency of the oscillations is bounded
by the radius. Moreover, without altering the topology, if the inertia
coefficients σi and Mi increase, the discs are shifted to the left with
a reduced radius. Conversely, if decreased, the discs shift to the
right and the radii expand, leading to larger and faster oscillations
in the transient.

4.2 Effect of inertia on eigenvalues

In this section, two cases are analysed. In the first one, the
eigenvalues of the system are obtained for the ideal case of when
all of its parameters are normalised to one. In the second, all inertia
coefficients are considered different in order to emphasise the ways
in which such parameters affect the transient. A result for each case
is shown below. Let us now state the first assumption.
 

Assumption 2: All damping and inertia coefficients in (6) are
unitary, namely μi = Di = 1, and σi = Mi = 1 for all i, so that
κ = Γ = Φ = Ψ = I ∈ ℝn.

This is a strong assumption, however, it is useful for the
purpose of isolating the effect of the topology in the network's
eigenvalues and subsequently illustrate the rate of convergence
towards the consensus value. The above will be relaxed by
Assumption 3. Let us denote dmax as the maximum degree of all the
nodes in the network, namely dmax := maxi {di} which identifies
the node with most connections and its quantity.
 

Theorem 3: Let Assumption 2 hold true. Then system (6) is
stable. Furthermore, the maximal frequency of the oscillations is
bounded by

2 dmax . (18)
 

Proof: From Assumption 2, the determinant (8) is rewritten as

det((λ2 + 2λ)I + L + I) = ∏
i

n

((λ2 + 2λ)I + ηi), (19)

where ηi denotes the ith eigenvalue of −(L + I). Taking (19) equal
to zero, the eigenvalues of A, which we denote by λi are then
obtained as

λi, i + 1 =
−2 ± 4 + 4ηi

2
, for i = 1, …, n . (20)

From (20) and from the fact that by definition all ηi ≤ − 1, it can
be deduced that ℜ(λi) is negative for all eigenvalues, hence the
network system is stable. As discussed in [10], the smallest
eigenvalue of - L is lower bounded by −2dmax. By extension, the
lowest bound for the smallest ηi is equal to −2dmax − 1. From this,
we can infer bounds on the argument of the square root of (20)
which is the imaginary part of the eigenvalues. This, in turn,
establishes that the maximal oscillation frequency of the system's
response depends directly on the topology, substituting said bound
in (20) we get 2 dmax. □

For the second case, since matrices Φ and Γ are diagonal, ΓΦL

is equal to the Laplacian L scaled on each row by 1/σiMi:

ΓΦL =

l11

σ1M1

⋯
l1n

σ1M1

⋱

ln1

σnMn
⋯

lnn

σnMn

=

1
σ1M1

l1

⋮

1
σnMn

ln

, (21)

where li is the ith row of L. Note that by definition, the eigenvalues
of a Laplacian L are non-negative with its smallest eigenvalue
equal to zero. Such eigenvalues are non-positive for −L. Scaling L
by any positive scalar, will not affect the sign of the eigenvalues
but these will be compressed or expanded depending on the scalar.

The next result shows that stability is guaranteed under weaker
conditions than the ones in Theorem 3 and serves to highlight the
effect of the inertia coefficients on the eigenvalues. This can be
justified in the sense that, as emphasised by the authors in [3, 4]
and references therein, a current problem in power systems is the
tendency towards low-inertia micro-grids; and knowing the effect

Fig. 4  Gershgorin disc configuration example
 

854 IET Smart Grid, 2020, Vol. 3 Iss. 6, pp. 851-859
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



of different inertia parameters in the network is pivotal in the
stability of the overall system.
 

Assumption 3: All damping to inertia ratios in (6) are unitary,
namely μi/σi = Di/Mi = 1 for all i, so that Ψ = κ = I ∈ ℝn.

Let us define σmax and Mmax as the largest inertia coefficients in
the system, namely σmax := maxi {σi}, Mmax := maxi {Mi}.
 

Theorem 4: Let Assumption 3 hold true. Then system (6) is
stable. Furthermore, the maximum frequency of the oscillations is
upper bounded by

2 dmax/σmaxMmax . (22)
 

Proof: With Assumption 3 in mind, the same expression (20)
can be obtained from the determinant (8), substituting ηi with μ^ i

which is the ith eigenvalue of −(ΓΦL + I).
The scaling of the Laplacian shifts the discs closer to the origin.

Furthermore, by adding the eigenvalues of - I we obtain that all
μ^ i < − 1 and therefore, all eigenvalues are negative. The bound of
the imaginary part of the eigenvalues is obtained by substituting
the lowest bound for the smallest μ^ i in (20) which in this case is
−2dmax/σmaxMmax − 1. □

4.3 Clusterisation

In this subsection, we introduce a tool that helps to discern the
area(s) in the complex plane where the eigenvalues can be located.
The union of the area of a number of overlapping discs derived
from system (6) can be referred to as a cluster.
 

Theorem 5: The number of clusters is obtained from

∑
i

⋃
j = 1

i

Δ j ∩ ⋃
j = i + 1

n

Δ j = ∅ , (23)

where ∥[ ⋅ ] denotes the indicator function, and Δ j is any disc in the
complex plane.
 

Proof: Depending on the values of Di and Mi and ordering the
discs as in (12), there can be an instance where the equality

−
1 + Di

Mi
<

1 − Di + 1

Mi + 1

, for any i ∈ {1, …, m} (24)

is yielded, where the left-hand side describes the maximum
distance of a point in Δi

(1) from the origin, and the right-hand side is
the minimum distance of any point in Δi + 1

(1)  from the origin, (24)
means that there is at least a partial overlap between both discs. A

similar inequality can be derived for all Δi
(2). For the case where

two or more discs overlap, suppose there exists a specific value for
i denoted by i

~
 such that satisfies

⋃
j = 1

i
~

Δ j ∩ ⋃
j = i

~
+ 1

n

Δ j = ∅, (25)

which is the argument of (23). The above condition means that the
union of the first i

~
 discs {Δ1, …, Δi

~} is disjoint from the union of
the last n − i

~
 discs {Δi + 1, …, Δn}. Using the indicator function on

(25) hints the separation of two clusters, the sum of the times I[ ⋅ ]
yields a positive result equals to the number of clusters in which
the eigenvalues lie. □

5 Stability under uncertainties
In this section, we extend the analysis to the case where both
frequency and power values in each micro-grid are subject to
uncertainties ψi. According to the proposed method we isolate the
uncertainty in the feedback loop, as illustrated in Fig. 5, where
ψi( ⋅ ) denotes a sector non-linearity. An interpretation of the non-
linearity in the feedback loop can be, for instance that the power
and frequency measurements are subject to disturbances.

For the mentioned case, system (3) can then be rewritten as

ẋ1
(i)

ẋ2
(i)

=

−
μi

σi
−

Ti j

σi

1
Mi

−
Di

Mi

A

x1
(i)

x2
(i)

+
1 0

0 1
B

ψ1(x1
(i))

ψ2(x2
(i))

+

Ti j

σi

0
U

x2
( j), (26)

where the non-linearities ψi belong to the sector [Kmin, Kmax]. This
implies that the following inequality holds:

[ψ(x) − Kminx)]T[ψ(x) − Kmaxx)] ≤ 0, (27)

where Kmin = − γ2I and Kmax = γ2I, γ2 is a sufficiently small gain
that determines the size of the non-linearity sector, and

γ1 = sup
ω ∈ R

ςmax[G(jω)], (28)

where ςmax[ ⋅ ] denotes the maximum singular value of the system's
transfer function G(jω) and γ1 its upper bound; both γ1 and γ2 serve
as tools to determine the size of the non-linearity that the system
tolerates before becoming unstable. Conceptually, it is assumed
that ψi satisfies a sector condition, namely that ψi is at equilibrium
at the origin and is locally Lipschitz in the system output's domain.
Fig. 6 shows an example of the sector non-linearity and its bounds. 
The utility of this method is to determine if the origin is
asymptotically stable for all non-linearities in the sector, yielding
absolute stability to the system, this is also referred as Lure's
problem [19]. Although the existence and uniqueness of a solution
to the system can potentially be verified through the Lipschitz
condition; the presence of uncertainties complicate the analysis,
calling for a substantially different approach as touched in [20] and
references therein. An advantage of the sector non-linearity method
is that to determine stability, as mentioned above, given a positive
real system only ψi has to be checked to be Lipschitz.

5.1 Amplitude of uncertainty

Let us first point up the system's transfer function G(s) derived
from (26) as (see (29)) . In the case where the transmission and
swing dynamics have similar parameters, we can obtain a sufficient
condition for the maximum size of the non-linearity sector for
which absolute stability holds. Such value is equal to the square
root of the maximum eigenvalue of the transfer function matrix
G(jω) multiplied by its conjugate transpose, i.e.

Fig. 5  Micro-grid i subject to disturbances
 

Fig. 6  Sector definition example (dashed) for non-linearity ψi
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ςmax = λmax[G
T( − jω)G(jω)] . (30)

With the purpose of obtaining such value and for the rest of the
analysis, the external input x2

(i) in (26) is assumed to be equal to
zero. While obtaining an expression of γ1, for illustrative purposes,
the following assumption can be made:
 

Assumption 4: Both swing and transmission damping to inertia
ratios, have similar values, such that Di/Mi ≃ μi/σi. Also, we
assume Di > Mi, namely, the dynamics are over-damped, as
discussed in [14].
 

Theorem 6: Let Assumption 4 hold true. Then the maximum
amplitude for the non-linearity sector in (26) is

γ2 < 1/ Mi
2/(Di

2 + 1) . (31)
 

Proof: Due to the complexity of the expression for ςmax and for
the sake of simplicity, taking δ for the shorthand of the polynomial
in (29), G(jω) can be denoted as

G(jω) =
1

δ(jω)

G11(jω) G12(jω)

G21(jω) G22(jω)
, (32)

G
T( − jω) can be defined similarly. ςmax comes from the largest

eigenvalue of G
∗
G, where ⋅∗ is the conjugate transpose, we can

obtain it using the determinant Δ and trace T. Expressions for both
are simplified by accounting the following: G12(jω) and G21(jω)
have no imaginary part, taking Assumption 4 as true, it holds that
G11 = G22 . We can also assume the network to be undirected:
Ti j = 1, yielding G12 = − G21; G12 = G21 . Taking f = G11  and
g = G12  and using ⋅̄ to denote the conjugate we obtain

T =
2
δδ̄

(g2 + f
2), Δ =

1

(δδ̄)
2 (g2 + f

2)2 . (33)

The eigenvalues of G∗
G are then obtained from (33) as follows:

λ =
2(g2 + f

2) ± (4/(δδ̄)
2
)(g2 + f

2)
2
− (4/(δδ̄)

2
)(g2 + f

2)
2

2δδ̄

=
g

2 + f
2

δδ̄
.

Then, ςmax is obtained taking the square root as in (30)

ςmax = (g2 + f
2)/δδ̄ . (34)

Substituting all values and expressions in (34), we get

ςmax =
Di

2

Mi
2 + ω

2 +
1

Mi
2 /

(1 + Di
2)

2

Mi
4 +

2(Di
2 − 1)ω2

Mi
2 + ω

4 (35)

Substituting (35) into (28) we get γ1 = supω ∈ R ςmax, which refers
to the largest value that (35) can get to as ω varies. If Assumption 4
holds, (35) is a monotonically decreasing function, with a least
upper bound at ω = 0, obtaining γ1 = Mi

2/(Di
2 + 1). Since we

know from the small-gain theorem [19, p. 411] that γ1γ2 < 1, it can
be inferred that inequality (31) holds. □

The above gives us a clearer definition of the size of the non-
linearity sector as a function of the parameters.

5.2 Lyapunov approach

In the general case, where there is no simple expression for the
maximum singular value, a numerical Lyapunov stability approach
can be carried out. Some other alternatives to corroborate stability
include the application of a loop transformation of the system into
feedback-connected passive dynamical systems, and the utilisation
of either the Popov or the circle criterion when applicable [9, 19].

Let us denote by V a candidate Lyapunov function V = xTPx

for system (26).
 

Theorem 7: Given a small ε, γ2 and a symmetric positive
definite matrix P that satisfies the Riccati equation:

PA + A
T
P + εC

T
C +

1

γ2
2 PBB

T
P ≤ 0, (36)

then (26) is absolutely stable and V is a Lyapunov function.
 

Proof: The derivative of V along the trajectories of system (26)
is

V˙ = xT(PA + A
T
P)x − 2xTPBψ . (37)

V˙  is strictly negative if the given V˙  plus a small quantity γ2
2
ψT are

not larger than the small quadratic function −εxTLx, namely

V˙ + γ2
2
ψTψ ≤ − εxTLx . (38)

Then, inequality (38) can be expanded as

xT(PA + A
T
P)x − 2xTPBψ + γ2

2
ψTψ ≤ − εxTLx . (39)

To validate that (39) holds, let us rewrite it using L = C
T
C as

xT ψT
PA + A

T
P + εC

T
C −PB

−B
T
P −γ2

2
I

M

x

ψ
≤ 0. (40)

The negative definiteness of M can be shown by imposing that its
Schur complement is negative. Given that −γ2 ≤ 0, we take the
Schur complement of the block −γ2

2
I:

M /[ − γ2
2
I] := PA + A

T
P + εC

T
C − (PB(γ2

2
I)−1( − B

T
P)),

and by setting it to less than or equal to zero, we obtain the Riccati
equation (36) itself. □

Other ways in which the linear matrix inequality (40) can be
solved are via a graphical method or by recurring to a system of
algebraic Riccati equations (AREs).

6 Simulations
In this section, real instances of power network topologies are
simulated. The first one covers the case when the network is
considered homogeneous, unweighted and undirected. The second
example touches on a different network with different topology and
shows the influence of the connectivity on the response. The third
set of simulations contains parameter uncertainties, in such case the
network is heterogeneous, weighted and directed.

G(s) =
1

s
2 + ((μi/σi) + (Di/Mi))s + ((Ti j + Diμi)/σiMi)

Di

Mi
+ s −

Ti j

σi

1
Mi

μi

σi
+ s

. (29)

856 IET Smart Grid, 2020, Vol. 3 Iss. 6, pp. 851-859
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



6.1 Graph modelling from the existing network

Simulations were carried out using data of the London City Road
power network, as found in [17]. Fig. 7 shows a simplified diagram
extracted from the one-line diagrams in [17], this contains the
names of the generators and their respective load buses; from this,
a network graph was derived which is the example in Fig. 3.

The graph was modelled as unweighted and undirected,
assuming that the influence between any two nodes is bidirectional.
The objective of the first set of simulations is to analyse the
transient dynamics and investigate the convergence of the
frequency and power to the desired reference. When this occurs,
the network achieves synchronisation. In the present simulations,
all micro-grids are considered homogeneous. The corresponding
parameters were selected as follows: the number of nodes n = 10,
inertial constants Mi = 1, σi = 1 MJ/rad synchronising coefficients
Ti j = 1 MVA, the number of iterations N = 1000, the step size
dt = 0.01 s. For illustrative reasons, different damping constants
Di = 1, 2, 4 and μi = 5, 10, 20 MJ − s/rad are used for different
runs. The initial states of the frequency and power are obtained as
random values in the interval [–0.5, 0.5]. The frequency and power
variables are also reset every 3.3 s as a way to simulate periodic
disturbances. The resulting plots have been scaled around 50 Hz
and 30 MW for the frequency and power flow, respectively, to
represent realistic values.

Fig. 8 shows the frequency response of each micro-grid. It can
be seen that the response remains in the range between [49.5, 50.5]
Hz and does not exceed in magnitude the desired frequency by >1 
Hz. Fig. 9 displays the power flow of each micro-grid, the values
remain in the range of [29.5, 30.5] MW as well. In both plots,
different damping values are used from top to bottom. Observe that
for larger values, both oscillations and settling times are reduced.

To show that the previous results are scalable, a different
section of the London City Road network was selected. The
derived undirected unweighted graph is shown in Fig. 10. It is
worth mentioning that on average, this topology has 2.75
connections per node, in contrast to the 2.5 of the previous
example. The rest of the parameters are unchanged.

The frequency response is shown in Fig. 11. Comparing these
results against the previous simulations, it can be seen that under
the second topology the system converges about half a second
faster; this is more evident in the top plots, where
Di = 1 MJ − s/rad, reaffirming our justification for Assumption 2.
This implies that a larger connectivity yields a smaller time
constant in the overall system. Furthermore, all frequency
responses have less oscillations with a smaller magnitude during
the transient. We omit showing the power flow plot since it has no
significant differences from the previous one.

6.2 Parameter varying and heterogeneity

To account for heterogeneity, we now consider the system shown
in Fig. 3, where all nodes contain different parameters and the
influence from nodes i to j differs to the one from j to i. The
following simulations shed light on the transient response when the
synchronising coefficient Ti j, the damping coefficients Di, μi and

Fig. 7  Reduced network model based on the one-line diagram of the
London City Road Network from [17]

 

Fig. 8  State of the micro-grid frequency over time
 

Fig. 9  State of the power flow in each micro-grid over time
 

Fig. 10  Derived graph for a different section of the network in [17]
 

Fig. 11  Frequency response in a different topology
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the inertial coefficient Mi, σi are different between micro-grids.
First, based on the information in [17], a weighted and directed
graph has been derived as shown in Fig. 12.

The synchronising coefficients Ti j have been selected
depending on the power in MVA that flows in and out of each
micro-grid as found in [17], i.e. if micro-grid i outputs 60 MVA to
micro-grid j, its Ti j will vary within the range [59, 61] MVA. This
range has been introduced with the aim of including uncertainties
in the system. Due to the unavailability of data on the exact
parameters of the network, approximations were done in
accordance to typical data from Westinghouse in [16, p. 436]. The
inertial coefficients Mi and σi depend on the capacity Gi of each
micro-grid as shown in Table 1. The constant Hi is assigned
randomly from a range of values in [6, 9]. For the swing inertia, we
take Mi = GiHi/π f i, where f i is the nominal frequency, which in
this case is 50 Hz. For the damping constant Di, a random value in
the interval [4.5Mi, 5.5Mi] is assigned to each micro-grid for the
simulation. For illustrative purposes the values of μi are chosen as
μi = 15Di. As a way to subject the system to non-linearities, the
parameters change their value randomly within their assigned
range every 0.1 s during the simulations. Also, the states are reset
every 3.3 s as in previous examples.

It can be seen in Fig. 13 that the power flow is contained within
the acceptable tolerance of 1 MW for the entirety of the simulation. 
Let us finally mention that the random change of topology every
0.1 s produces barely noticeable oscillations that do not modify the
behaviour or the consensus value. For the sake of brevity, we omit
to show simulations on the effect of uncertainties that result in an
unstable response. However, it is straightforward to choose an
uncertainty amplitude value that causes larger measurement
variations, namely an amplitude under which condition (31) does
not hold for the given inertia and damping parameters.

7 Conclusions
As a progression of previous works which are focused on networks
of homogeneous micro-grids, we have now extended the analysis
to the case where heterogeneity is involved in the form of the
different parameters for each micro-grid.

We have investigated the transient stability, and shown the ways
in which the heterogeneity of the parameters between micro-grids
in the network affects both the response and eigenvalues of the
overall system. We mainly focused on the inertial parameters since
studying their effect is a current issue in the design of modern
power systems.

We obtained a few interesting observations regarding the
displacement of the eigenvalues, which depends on the multiple
heterogeneous parameters in the network; plus the way of deriving
the clusterisation of the areas where the eigenvalues might reside
in.

We have studied the maximal magnitude of the non-linearities
that the system can accept while remaining stable and expressed it
as a function of the parameters.

Finally, we have illustrated the scalability of the model by
simulating different topologies and shown the role of the
connectivity in the network's response.

The future direction of this work involves the analysis of the
impact of stochastic disturbances due to renewable generation and
demand response under on-line dynamic pricing.
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