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Mechanical injury to the articular cartilage is a key risk factor in joint damage and

predisposition to osteoarthritis. Integrative multi-omics approaches provide a valuable

tool to understand tissue behavior in response to mechanical injury insult and

help to identify key pathways linking injury to tissue damage. Global or untargeted

metabolomics provides a comprehensive characterization of the metabolite content of

biological samples. In this study, we aimed to identify the metabolic signature of cartilage

tissue post injury. We employed an integrative analysis of transcriptomics and global

metabolomics of murine epiphyseal hip cartilage before and after injury. Transcriptomics

analysis showed a significant enrichment of gene sets involved in regulation of

metabolic processes including carbon metabolism, biosynthesis of amino acids, and

steroid biosynthesis. Integrative analysis of enriched genes with putatively identified

metabolite features post injury showed a significant enrichment for carbohydrate

metabolism (glycolysis, galactose, and glycosylate metabolism and pentose phosphate

pathway) and amino acid metabolism (arginine biosynthesis and tyrosine, glycine, serine,

threonine, and arginine and proline metabolism). We then performed a cross analysis

of global metabolomics profiles of murine and porcine ex vivo cartilage injury models.

The top commonly modulated metabolic pathways post injury included arginine and

proline metabolism, arginine biosynthesis, glycolysis/gluconeogenesis, and vitamin B6

metabolic pathways. These results highlight the significant modulation of metabolic

responses following mechanical injury to articular cartilage. Further investigation of these

pathways would provide new insights into the role of the early metabolic state of articular

cartilage post injury in promoting tissue damage and its link to disease progression

of osteoarthritis.

Keywords: cartilage, injury, osteoarthritis, transcriptomics analysis, metabolomics, arginine metabolic pathways,

glycolysis (glycolytic pathway)
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INTRODUCTION

Cartilage is a unique connective tissue with only one cell type –
the chondrocytes – embedded in a rough matrix rich in collagen
II fibers and proteoglycan contents. Cartilage is an aneural
and avascular tissue (Huber et al., 2000), making it a model
connective tissue to study the direct responses arising from cells
in response to mechanical injury. The low surface attrition and
high lubrication of articular cartilage allow the smooth surface
articulation of opposing joint surfaces and the protection of
cartilage surface from shear stress (Seror et al., 2015). Cartilage
collagen fibers are oriented and highly cross-linked, which aids
the efficient joint articulation and provides the matrix with high
tensile properties (Palmoski et al., 1979; Vanwanseele et al., 2002).
Articular cartilage chondrocytes are highly mechanosensitive
cells although they rarely divide in healthy cartilage tissue and
may appear quiescent (Soder et al., 2002; Tesche and Miosge,
2004; Kvist et al., 2008).

Mechanical injury is a cause of articular cartilage damage
and is the main risk factor in the development of osteoarthritis;
a degenerative disease affecting the synovial joints which
is characterised by deterioration of the articular cartilage
(reviewed in Lohmander et al., 2007; Thomas et al., 2017).
Although OA is a common and disabling disease currently
affecting at least 250 million worldwide (Prieto-Alhambra
et al., 2014), its pathogenesis is poorly understood. There
is still no disease-modifying medical therapy for OA, which
creates a major socioeconomic burden in the population
(Hunter and Bierma-Zeinstra, 2019).

Recently, a number of studies have employed large-scale omics
approaches to understand OA as a heterogeneous disease with a
purpose to phenotype and stratify patient groups and to identify
early disease biomarkers. Metabolomics profiling provides an
unbiased comprehensive analysis of metabolites as the end
products of cellular processes in a biological system. Several
studies employed either targeted or untargeted metabolomics
analysis using NMR or LC-MS platforms in different tissues from
OA patients’ synovial joints including the bone, cartilage, and
synovial tissues while other studies focused on the analysis of
body fluids from OA patients as synovial fluid, serum, and urine
(Lamers et al., 2005; Shet et al., 2012; Mickiewicz et al., 2015;
Jin et al., 2016; Marchev et al., 2017; Carlson et al., 2018; Hinata
et al., 2018). These studies revealed possible common metabolic
changes associated with OA including amino acid metabolism,
glycolysis, TCA cycle, and ATP biosynthesis (reviewed in Rockel
and Kapoor, 2018).

The cartilage damage in OA may be caused by maladaptive
responses to repetitive mechanical injury. Using murine and
porcine ex vivo models of cartilage injury, we previously
showed that mechanical injury to cartilage rapidly activates
the intracellular signaling pathways characteristic of the
inflammatory response including TAK1 (Ismail et al., 2017),
NFκB, MAP kinases (Vincent et al., 2002; Gruber et al., 2004;
Watt et al., 2013; Ismail et al., 2017), and Src (Watt et al., 2013)
followed by induction of genes characteristic of inflammation
(Chong et al., 2013; Ismail et al., 2017). Using these models
of early cartilage injury is a useful tool to identify the cellular

responses of articular cartilage to mechanical injury insults.
This will provide a deep understanding of the key pathways
modulated by injury and give insights into how early responses
to injury would induce tissue damage leading to pathological
injury-linked diseases as seen in OA.

Here we have identified the metabolic signature of articular
cartilage post mechanical injury using an integrative analysis
of transcriptomics and global metabolomics profiling of
murine femoral epiphyseal hip cartilage before and after
injury. Furthermore, we performed a global metabolomics
profiling of another cartilage injury model using porcine
metacarpophalangeal joints. A summary of the study design
and analysis pipeline is shown in Supplementary Figure 1.
Integrative gene–metabolite analysis of murine cartilage injury
and the cross-species analysis showed a significant enrichment
of genes and putative metabolites involved in amino acids and
carbohydrate metabolism, in particular, arginine biosynthesis
and related metabolic pathways, glycolysis/gluconeogenesis,
and vitamin B6 metabolic pathways. These results show that
early cellular responses to mechanical injury involve a rapid
modulation ofmetabolic pathways that could provide ametabolic
phenotype and early markers for cartilage tissue response to
injury. Further investigation is required to understand the role of
the early modulation of these metabolic pathways in promoting
the tissue damage seen in OA.

MATERIALS AND METHODS

Ex vivo Murine and Porcine Cartilage
Injury Models
Injury to the murine hip cartilage was induced by avulsion
of femoral epiphysis of freshly culled 5–6-week-old mice as
described previously (Chong et al., 2013). Pig trotters (front
feet) of freshly slaughtered 3–6−month−old pigs were purchased
from a local farm and used as a source of cartilage. Injury to
porcine articular cartilage was induced by explantation from the
articular surface of the metacarpophalangeal (MCP) joints of the
pig trotters as previously described (Watt et al., 2013). Cartilage
was then snap-frozen (0 h) or cultured for indicated times post
injury in serum-freemedium. Following incubation, cartilage was
snap-frozen and stored at −80◦C until further processing.

RNA Extraction and Microarray Analysis
RNA Extraction

Six murine cartilage hips were combined from three freshly
culled animals for each time point as one biological replicate to
provide sufficient RNA amount. Three independent biological
replicates were prepared for two samples sets (control and injured
cartilage). Hips from each replicate were homogenized in 1 ml
TRIzol (Invitrogen) for 1 min on ice; then, the homogenate
was left at room temperature for 5 min and mixed with 200 µl
of 1-bromo-3-chloropropane (BCP). Samples were vortexed for
15 s then incubated at RT for 5 min followed by centrifugation
at 13,000 rpm for 15 min at 4◦C. The aqueous layer was
separated and used for further purification using a Zymo-Spin
RNA cleanup kit (R1013, Zymo Research) as per manufacturer’s
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instructions. RNA quality was tested by RNA Bioanalyzer before
proceeding with microarray analysis.

Microarray Data Analysis

RNA was prepared and hybridized to Illumina mouse BeadChip
microarrays following manufacturers’ protocols. Raw data were
imported into R statistical software (https://www.r-project.org/)
for further processing and analysis using Bioconductor packages.
Raw signal intensities were background-corrected (using array-
specific measures of background intensity based on negative
control probes) and then transformed and normalized using
the “vsn” package (Gentleman et al., 2004; R Core Team,
2007). Further statistical analysis and visualization of the results
were performed using Perseus software (Tyanova et al., 2016).
Microarray data have been submitted to the Gene Expression
Omnibus (accession number: GSE155892). Pathway analysis
of enriched gene sets was performed using STRING (https://
www.string-db.org/) (Szklarczyk et al., 2019) and WebGestalt
databases (http://www.webgestalt.org/) (Liao et al., 2019).

Metabolite Extraction and Global
Metabolomics Analysis
The same processing procedure was followed for extraction of
metabolites from porcine and murine cartilage samples. Samples
were prepared in triplicates for each time point. Each replicate
from murine samples included six hips while a replicate from
porcine samples is for the cartilage surface explanted from a
single trotter MCP joint. Cartilage samples were mixed with pre-
chilled solvent mixture containing methanol/chloroform/water
(2.5:1:1, by volume) to 100 mg tissue dry weight. Tissue was
ground using a FastPrep-24 5G homogenizer (MP Biomedicals).
Samples were vortexed, kept on ice for 5 min, and then
centrifuged at 14,000 rpm for 2 min at 4◦C. Supernatant was
then removed into a pre-chilled tube. Pellet was re-extracted with
pre-chilled solvent mixture containing methanol/chloroform
(1:1 by volume) then vortexed and incubated on ice for
10 min. New extracts were centrifuged, and supernatants
were collected then combined with supernatants of the first
extraction step. Combined supernatants were mixed with pre-
chilled ddH2O and chloroform then centrifuged at 14,000 rpm
for 15 min at 4◦C. Cleared extracts were separated into
two phases (an aqueous phase and an organic phase),
and the aqueous phase was retained and stored at −80◦C
prior to analysis.

Metabolite extract aqueous phases were analyzed in positive
and negative ion modes using a Waters Acquity UPLC
coupled to a Waters SYNAPT G2-Si time-of-flight (ToF)
mass spectrometer with electrospray sample introduction (ESI)
(Waters Corporation, United States). The instrument was
calibrated prior to analysis using sodium formate over the
mass range 50–1,200 amu. Samples were introduced directly
into the mass spectrometer using the UPLC as an automated
injector and using leucine enkephalin as a post-processing
lock mass standard in order to obtain highly accurate mass
measurements. Each sample was run in triplicate, and the
spectra from these technical replicates were combined to select
only those peaks present in all three technical replicates. Data

were collected over the mass range 50–1,200 m/z with a
scan time of 1 s per scan. Data were then processed using
an in-house Excel macro based on Overy et al. (2005) for
noise reduction and binning of data. The macro also assigned
putative IDs by matching accurate m/z peaks to the BioCyc.org
database – the encyclopedia of genes and metabolism (https:
//humancyc.org/) using a tolerance of 20 ppm. IDs are putatively
identified by accurate mass and manually cross-checked against
the Human Metabolome Database (HMDB) (https://hmdb.ca/)
and mummichog (http://mummichog-2.appspot.com/) (Li et al.,
2013) database. A more detailed protocol for cartilage metabolite
extraction and metabolomics analysis is available upon request.

Statistical and Pathway Analyses
Metabolite mass-to-charge ratios (m/z) and their corresponding
peak average intensity tables were imported into Perseus software
1.6.12.0 (Tyanova et al., 2016). Data were filtered based on
valid values, and only metabolites that are successfully detected
in the three biological replicates of each time point were
used for further analysis. Data were then log-transformed
and values missing from normal distribution were imputed
from the analysis using default parameters of imputation
function in Perseus. Differential enrichment of metabolite
features between injured and control groups was analyzed
using two-tailed Student’s t-tests FDR-adjusted p-value less
than 0.05. Enriched metabolite features were mapped to
relevant pathways using mummichog (Li et al., 2013) and
MetaboAnalyst 4.0 (Chong et al., 2019). Lists of enriched
genes and metabolites post injury of murine hips were
used in the joint pathway module for integrative analysis
in MetaboAnalyst 4.0. Pathways reported were significant by
pathway overrepresentation analysis with an FDR-adjusted
p-value less than 0.05.

RESULTS

Transcriptomics of Articular Cartilage
Post Injury Shows a Significant
Enrichment of Gene Sets Involved in
Regulation of Metabolic Processes
To identify the specific gene sets modulated by articular cartilage
injury, we performed a microarray transcriptomic analysis
of hip murine cartilage before and after injury. Injury to
cartilage was induced by avulsion of the femoral epiphysis
as described previously (Chong et al., 2013) and either snap-
frozen (CTRL) or cultured for 4 h post injury. Samples were
then prepared and analyzed as described in the “Materials and
Methods.”

Microarray data were then filtered and analyzed using
Perseus software version 1.6.12.0 (Tyanova et al., 2016).
Differentially enriched genes post injury with a fold of
change >2 and FDR-adjusted p-value less than 0.05 were
considered significant. Injury to murine hip cartilage resulted
in a significant modulation of a large set of genes. A group
of 769 genes was significantly downregulated while a group
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FIGURE 1 | Injury to murine cartilage significantly modulates the expression profile of a large set of genes involved in regulation of metabolic processes. Microarray

transcriptomic analysis of murine cartilage hips before and after injury was performed as described in “Materials and Methods.” (A) Volcano plot of gene expression

profiles in injured cartilage compared to control. Differentially regulated genes post injury are highlighted in red (upregulated) and blue (downregulated). Examples of

modulated metabolic genes are labeled in black. Genes significantly regulated in response to injury were analyzed for pathway enrichment using WebGestalt and

STRING databases. (B) Gene Ontology biological processes of enriched genes post injury. Analysis shows that more than 800 genes are involved in metabolic

processes. (C) Enriched metabolic pathways post injury retrieved from the STRING database using the list of significantly modulated genes.

of 946 genes was differentially upregulated in hip cartilage
chondrocytes post injury. Figure 1A shows a volcano plot of
differentially regulated genes in the injured set compared to

control. Pathway analysis was then performed on differentially
enriched genes using WebGestalt and STRING databases. The
bar chart in Figure 1B shows enriched Gene Ontology (GO)
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biological processes. Interestingly, more than 800 genes were
involved in metabolic processes. Using the STRING database,
a set of 621 enriched genes was mapped to “regulation of
metabolic processes” (GO:0019222). KEGG pathway analysis
showed a significant enrichment of genes involved in glycolysis,
amino acid biosynthesis, and fructose and mannose pathways.
Reactome analysis showed enrichment of 200 genes involved in
metabolism including carbohydrate metabolism and amino acid
transporters (Figure 1C). Examples of significantly modulated
metabolic genes post injury are labeled on the volcano plot in
Figure 1A including genes encoding for lactate dehydrogenase
(Ldhc), arginase 1 (Arg1), arginase 2 (Arg2), enolase 3
(Eno3), aldolase c (Aldoc), and glucose transporter 1 (Slc2a1).
Details of enriched genes in metabolic pathways are shown in
Supplementary Table 1.

The strong enrichment of genes post injury linked to
metabolic processes raised the possibility that injury to articular
cartilage would change the metabolic state of chondrocytes and
consequently the tissue metabolic profile. For that, we extended
the analysis and performed global metabolomics profiling of
murine hip cartilage before and after induction of tissue injury
as described below.

Mechanical Injury to Murine Hip
Cartilage Significantly Modulates the
Tissue Metabolic Profile
Metabolomics profiling provides deep and comprehensive
insights into the tissue state in response to a stimulus. To identify
the metabolic signature of cartilage in response to mechanical
injury, we performed untargeted metabolomics profiling of
murine hip cartilage before and after injury. Hip cartilage was
pooled from three freshly culled animals per time point, and
cartilage was either snap-frozen (CTRL) or cultured at 1 hour
(triplicates) and 2 hours (duplicates) post injury. Metabolite
extracts were prepared and then analyzed in negative and positive
ionmodes usingmass spectrometry as described in the “Materials
and Methods.”

Peak intensities from control and injured samples
were analyzed using Perseus software. A large number
of m/z features were detected in each mode. A total of
4,160 m/z features were detected in positive mode, and
1,890 m/z features were detected in negative mode in all
samples. Differentially modulated metabolite features were
detected by comparison of combined injury samples with
uninjured controls. Principal component analysis (PCA) showed
a strong separation between samples based on phenotype and
distinguished injured sets from uninjured sets in both modes
(Figures 2A,C).

We have observed that injury caused a differential regulation
of putative metabolite levels in both modes. A total of 414
accurate peaks mapped to 202 spectral bins were differentially
modulated in negative mode while 760 unique accurate
peaks were differentially modulated in positive mode and
mapped to 266 spectral bins (volcano plots in Figures 2B,D

and Supplementary Table 2). K-mean clustering analysis
of differentially regulated metabolite features post injury in

both modes identified six different clusters of metabolite
sets (Figure 2E).

Accurate peak lists of enriched features retrieved from
both modes were annotated as described in “Materials
and Methods” and analyzed for pathway enrichment
using MetaboAnalyst 4.0 (Figure 2F) and mummichog
databases (Figure 2G). Interestingly, amino acid and
carbohydrate metabolic pathways are significantly enriched
using both databases. Examples of the top enriched
metabolic pathways post injury are metabolism of vitamin
B6, arginine biosynthesis, glycolysis/gluconeogenesis, and
arginine and proline metabolism. Details of enriched
pathways and matched putative metabolites are described
in Supplementary Table 3.

Taken together, mechanical injury to cartilage significantly
changed the metabolic state of the tissue as seen by significant
modulation of several putative metabolic features. Top
modulated features weremapped to amino acid and carbohydrate
metabolism with significant involvement of arginine and
proline metabolism.

Integrative Analysis of Transcriptomics
and Metabolomics Profiles of Murine
Articular Cartilage Post Injury
To identify the joint gene–metabolite pathways, we performed
an integrative analysis of enriched genes and metabolite
features retrieved from the transcriptomic microarray analysis
and metabolomics profiling of hip cartilage. The lists of
enriched genes and metabolites with folds of changes were
used for joint pathway analysis in MetaboAnalyst 4.0 as
described in the “Materials and Methods.” The organism
was specified as Mus musculus. The bar chart in Figure 3A

shows the top significantly enriched metabolic pathways with
integrated genes. A significant enrichment was observed
for carbohydrate metabolism as glycolysis, galactose, and
glycosylate metabolism as well as TCA cycle and amino acid
metabolism (valine, leucine, cysteine, methionine, and arginine
biosynthesis). The heat maps in Figures 3B,C show genes and
putative metabolite features modulated in response to injury
in arginine biosynthesis, arginine–proline metabolism, and
glycolysis/gluconeogenesis metabolic pathways (integrated
gene–metabolite map in Supplementary Figures 2, 3). Details of
genes and metabolites enriched in all pathways are described in
Supplementary Table 4.

In arginine biosynthesis, Arg1, glutamic pyruvate
transaminase (Gpt2), and glutaminase (Gls) genes were
significantly upregulated post injury together along with
L-ornithine, urea, and N-acetyl glutamate putative metabolite
features, while four metabolite features were significantly
downregulated including carbamoyl phosphate, L-citrulline,
L-arginine, and N-(L-arginino)succinate. An enrichment
of four genes (Gamt, P4ha1, Ckb, and Moab) and 12
putative metabolite features linked to arginine and proline
metabolism was also observed (Figures 3B,C). In glycolysis
and gluconeogenesis pathways, Ldhc, Aldoc, Pgam1, Gpi,
Aldh1a3, HK2 and HK3, Adpegk, and Pfk1 genes were

Frontiers in Molecular Biosciences | www.frontiersin.org 5 December 2020 | Volume 7 | Article 592905



Southan et al. Cartilage Injury Modulates Metabolic Pathways

FIGURE 2 | Mechanical injury to murine hip cartilage significantly modulates the tissue metabolic profile. Injury to murine hips was induced, and tissue metabolites

were extracted followed by global metabolomics profiling of the tissue before and after injury using LC–MS. Extracted metabolites were analyzed in positive and

negative ion modes as described in “Materials and Methods.” Principal component analysis and volcano plots of detected metabolites in positive mode (A) and

negative mode (B). Enriched metabolite features post injury are labeled in red (upregulated) and blue (downregulated). Numbers on volcano plots represent spectral

bins of enriched features post injury in positive mode (C) and negative mode (D). (E) K-mean clustering of enriched-metabolite post hip cartilage injury shows six

clusters of modulated features that could be distinguished based on their profile post injury. (F) Top enriched metabolic pathways post cartilage injury were identified

using the modulated metabolite features list in the MetaboAnalyst 4.0 pathway analysis module. Numbers shown are of matched putative metabolite hits per total

number of metabolites in each pathway. (G) Top enriched pathways of differentially modulated m/z metabolites features in positive and negative ion modes using

mummichog metabolomics analysis software (http://mummichog-2.appspot.com/).
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FIGURE 3 | Integrative pathway analysis of differentially regulated genes and putative metabolite features post injury shows significant enrichment of arginine

biosynthesis, arginine/proline metabolism, and glycolysis/gluconeogenesis metabolic pathways. (A) Top enriched pathways using genes–metabolites joint pathway

analysis module in MetaboAnalyst 4.0. (B) Heat map of significant genes post injury in arginine metabolism and glycolysis/gluconeogenesis. (C) Heat map of

putative metabolite features enriched in arginine metabolism and glycolysis/gluconeogenesis. D(m/z) for detected peaks, A(m/z) for accurate peaks, M for mode, N

for negative ion mode, and P for positive ion mode. In (B,C) Fc is for gene expression or putative metabolite feature fold of change in injured cartilage compared to

uninjured control. LogP is for –log10 of p-value identified by Student’s t-test. Heat maps were generated using MORPHEUS matrix analysis software

(https://software.broadinstitute.org/morpheus/).

significantly upregulated while Pgam2, Dlat, Adh7, Pdha1,
and Eno3 genes were downregulated. The levels of putative
metabolite features matching lactate, glycerone phosphate,
oxaloacetate, glucose, glyceraldehyde-3-phosphate, phosphoenol

pyruvate, and fructose-6-phosphate were upregulated while
features of glycerol phosphate, 2,3-bisphospho-D-glycerate, and
acetate were significantly downregulated (Figures 3B,C and
Supplementary Figure 4).
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This shows that mechanical injury to articular cartilage
modulates gene expression and metabolite features linked
to arginine biosynthesis, arginine–proline metabolism, and
glycolysis and gluconeogenesis.

Metabolomics Profiling of Porcine
Cartilage Post Injury
To validate our findings in another ex vivo cartilage injury
model, we used porcine metacarpophalangeal joints.
Cartilage was explanted from these joints as described in
the “Materials and Methods.” Two time series were analyzed
in cartilage post injury: a short time series (0, 5, 10, and
30 min) and a longer time series at 1, 2, 4, and 24 h post
injury in triplicates.

Metabolites were extracted and analyzed as described in
the “Materials and Methods.” Features detected in both modes
were combined for further analysis in Perseus software.
For clarity, PCA is shown for the longer (hours) time
series only (Figure 4A), which showed a good separation
of samples based on injury induction time. Injury resulted
in a rapid modulation of several metabolite features as
early as 5 min. Volcano plots in Figure 4B show the
spectral bins of enriched metabolite features post injury
in both modes at indicated time points. A set of 48
putative metabolite features were commonly enriched in
all time points post injury. A unique set of metabolites
was enriched at 24 h (Supplementary Figure 5). Retrieved
matched features/compound hits were used for pathway
enrichment analysis in MetaboAnalyst 4.0. We have observed
a significant enrichment of 20 metabolic pathways (Figure 4C

and Supplementary Table 5) including arginine and proline
metabolism, arginine biosynthesis, vitamin B6 metabolism, and
carbohydrate metabolic pathways.

These results showed that a rapid response of porcine articular
cartilage chondrocytes is observed following mechanical injury.
Pathways involved in amino acid and carbohydrate metabolism
are at the top of the enriched-pathways list, implicating the
importance of these pathways in early response to injury in the
cartilage tissue.

Cross Analysis of Porcine and Murine
Cartilage Untargeted Metabolomics Post
Injury
To identify commonly enriched metabolic pathways post injury
in porcine and murine cartilage injury models, enriched
putative metabolite features identified in both analyses
were cross analyzed with Venny 2.0.1 (Figure 4D). A set of
common 290 putative metabolite features were commonly
enriched post injury. Interestingly, this set showed a significant
enrichment for arginine biosynthesis pathway and arginine
and proline metabolism. Other pathways involved in amino
acids and carbohydrate metabolism are also significantly
enriched as shown in Figure 4E. A complete list of enriched
pathways and matched putative metabolites is listed in
Supplementary Table 6.

DISCUSSION

Mechanical injury is a cause of articular cartilage damage
and is linked to OA. The articular chondrocytes are highly
mechanosensitive cells which respond very rapidly and efficiently
to an injury insult. Understanding the cellular response of
chondrocytes to mechanical injury will give insights into how
injury would induce tissue damage and lead to pathological
injury-linked diseases as seen in OA.

To understand how mechanical injury modulates the
chondrocyte transcriptome and metabolome and how these
levels of cellular regulation are integrated, we performed
transcriptomics and metabolomics analyses of murine cartilage
before and after injury. We extended the analysis further
to include an ex vivo porcine cartilage injury model to
compare and validate the metabolomics data obtained from
the murine injury model. The transcriptomics analysis
of murine cartilage showed a significant enrichment
of a large number of genes post injury. Interestingly,
almost half of the enriched genes are either related to
or involved in the regulation of metabolic processes and
metabolic pathways such as amino acid synthesis and
transport, as well as carbohydrate metabolism (Figure 1

and Supplementary Table 1).
Integrative analysis of transcriptomics and metabolomics of

murine hip cartilage post injury showed modulation of genes and
metabolites linked to a number of amino acids and carbohydrate
metabolic pathways (Figure 3 and Supplementary Table 4).
We observed a significant enrichment of arginine biosynthesis
and related proline metabolic pathways. A significant gene
expression induction of Arg1, Arg2, Gpt2, and Gls genes
was observed accompanied by increased levels of putative
metabolite features of ornithine and urea as products of L-
arginine degradation, which conforms to significantly reduced
features of arginine post injury. Levels of arginine feature
were also significantly reduced post injury in all time points
in porcine cartilage. We also observed increased levels of L-
citrulline and fumarate while levels of L-arginino-succinate and
carbamoyl phosphate features were significantly reduced post
injury (Figure 3 and Supplementary Figure 2). A number
of metabolic pathways use arginine as a substrate in a
competitive way to produce either L-citrulline/nitric oxide
through a reaction activated by nitric oxide synthase (NOS)
(Abramson et al., 2001) or urea and L-ornithine through
arginase, which is encoded by the Arg1 gene. Arginase is
a manganese-containing enzyme essential for the disposal of
toxic ammonia by converting L-arginine to L-ornithine and
urea in the final step of the urea cycle (Caldwell et al.,
2018). Arginase contributes to collagen synthesis and factors
involved in fibrosis through further metabolism (Wehling-
Henricks et al., 2010). Interestingly, in OA patients, ornithine is
increased while the ratio of arginine to ornithine is decreased
compared to that in controls (Zhang et al., 2016). Arginine is
significantly depleted in plasma of refractory knee OA patients
(Zhang et al., 2016). Our results also showed induced gene
expression of Gpt2, which is accompanied by increased levels
of 2-oxaloglutarate and decreased levels of alanine metabolite
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FIGURE 4 | Enriched metabolite features and metabolic pathways post mechanical injury in porcine articular cartilage and cross analysis with differentially modulated

features in injured murine cartilage. (A) Principal component analysis (PCA) of metabolite features in porcine cartilage tissue samples after 0, 1, 2, and 4 h and

overnight (ON) post injury (combined positive and negative ion modes). (B) Volcano plots of detected metabolite features post cartilage injury at indicated times

compared to uninjured control. Numbers on plots are for annotated enriched metabolite features spectral bins. Upregulated features after injury are shown in red,

and downregulated features are shown in blue compared to control. (C) Pathway analysis of enriched metabolite features post injury to porcine cartilage using

MetaboAnalyst 4.0. (D) Cross analysis of enriched features (m/z) in murine and porcine cartilage post mechanical injury. (E) Pathways commonly enriched in murine

and porcine cartilage. A list of 290 common metabolite features between the two ex vivo cartilage injury models was used for pathway analysis in MetaboAnalyst

4.0. Numbers on the bar chart are for the matched metabolite hits per total number of metabolites in each pathway.
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features. The Gpt2 gene encodes alanine aminotransferase
enzyme, which is involved in L-alanine degradation through
activation of the reversible transamination reaction between 2-
oxaloglutarate and alanine to form glutamate and pyruvate (Yang
et al., 2002). These data highlight the importance of arginine
metabolism/biosynthesis in cartilage hemostasis and its response
to mechanical injury.

A set of enriched putative metabolite features post injury
was linked to proline metabolism. For example, proline
and hydroxyl proline in both murine and porcine cartilage
models were significantly reduced post injury. We have
found four genes enriched in our integrative analysis known
to be involved in arginine/proline metabolism including
P4ha1, which was upregulated while Ckm, Gamt, and Moab
genes were downregulated post injury. Gamt and Ckm
genes are involved in the conversion of guanidinoacetate
to phosphocreatine (Da Silva et al., 2009). Intermediate
metabolite features in this reaction were also downregulated
post injury compared to control. Other metabolite features
linked to arginine and proline metabolism were significantly
reduced following injury in both injury models including
spermine, spermidine, creatine, glutamate-5 semialdehyde,
agmatine, 4-aminobutyraldehyde and putrescine while
S-adenosyl methionine and S-adenosyl methioninamine
were significantly upregulated (Supplementary Figure 3).
These results reflect a possible suppression of arginine–
proline metabolism following mechanical injury to the
articular cartilage, which may lead to inhibition of protein
synthesis as proline metabolism is essential for this process
(Wu et al., 2011).

Interestingly, in both ex vivo cartilage injury models,
we have observed a modulation of amino acid features
(Supplementary Tables 3, 5) including valine and tryptophan,
arginine, proline, glycine, alanine, glutamine, leucine, and
isoleucine. Functional amino acids are beneficial and would
play an anti-inflammatory role in healthy tissues. OA
development was linked to alterations in amino acid metabolism
including glutamate and arginine family amino acids as well
as their related metabolites (e.g., creatinine, hydroxyproline,
γ-aminobutyrate, dimethylarginine, and homoarginine)
(reviewed in Li et al., 2016).

We have also observed a significant enrichment of genes
and metabolite features linked to glycolysis/gluconeogenesis
following injury including Ldhc, Pfkp, Adpgk, HK2, Aldoc,
HK3, Eno1, Pgk1, Gpi1, and Aldh1a3 genes accompanied
by upregulation of metabolite features of glucose, lactate,
oxaloacetate, phosphoenol pyruvate, glycerine phosphate,
glucose-6-phosphate, and phosphoglycerate (Figure 3 and
Supplementary Figure 4). This implicates upregulation
of glycolysis as a source of energy production, which is
needed for cartilage repair post injury stress. Another set of
genes and metabolites linked to glycolysis/gluconeogenesis
was downregulated post injury, highlighting a possible
two-tier mechanism involved in this pathway regulation.
Interestingly, synovial fluids from OA patients showed
higher levels of metabolites involved in both glycolysis and
TCA cycle compared to rheumatoid arthritis (RA) patients

(Anderson et al., 2018) while TCA intermediates malate,
citrate, succinate, and fumarate showed higher levels in
late stages of OA compared to early stages of the disease
(Kim et al., 2017).

Overall, our findings suggest that mechanical injury
to the articular cartilage modulates a set of genes and
metabolites involved in arginine biosynthesis and related
metabolism as well as glycolysis/gluconeogenesis pathways.
Data suggest an enhanced arginine metabolism upon injury
accompanied by reduced proline metabolism, which may
occur to suppress/halt protein synthesis. Injury stress
response is also accompanied by a two-tier regulation of
glycolysis needed for energy production with several genes
integrated (upregulated and downregulated). This initial
response may provide a chance for the cartilage tissue to
repair itself and provide the essential energy needed to
perform these reparative reactions. The study provides
some basic clues on the responsive nature of the local
environment of articular cartilage to mechanical injury
on gene and global metabolic levels. This early metabolic
signature of injury may reflect cellular events promoting
tissue damage in OA when the tissue fails to repair itself.
Further targeted analysis of the putative metabolite features
identified in this study is essential in cartilage injury
models and in comparison to diseased cartilage samples to
specify the direct role of injury-enriched metabolic pathways
in tissue damage.
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