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Abstract
Objective: Electrical impedance myography (EIM) performed on the centre of the tongue shows
promise in detecting amyotrophic lateral sclerosis (ALS). Lateral recordings may improve
diagnostic performance and provide pathophysiological insights through the assessment of
asymmetry. However, it is not known if electrode proximity to the muscle edge, or electrode
rotation, distort spectra. We evaluated this using finite element-based modelling. Approach: Nine
thousand EIM from patients and healthy volunteers were used to develop a finite element model
for phase and magnitude. Simulations varied electrode proximity to the muscle edge and electrode
rotation. LT-Spice simulations assessed disease effects. Patient data were assessed for reliability,
agreement and classification performance.Main results: No effect on phase spectra was seen if all
electrodes remained in contact with the tissue. Small effects on magnitude were observed.
Cole-Cole circuit simulations indicated capacitance reduced with disease severity. Lateral tongue
muscle recordings in both patients and healthy volunteers were reproducible and symmetrical.
Combined lateral/central tongue EIM improved disease classification compared to either
placement alone. Significance: Lateral EIM tongue measurements using phase angle are feasible.
Such measurements are reliable, find no evidence of tongue muscle asymmetry in ALS and
improve disease classification. Lateral measurements enhance tongue EIM in ALS.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that not only causes weakness of
limb and respiratory muscles, but also weakness of the muscles of speech and swallowing, so-called bulbar
disease. The use of electrical impedance myography (EIM) as a disease biomarker in amyotrophic lateral
sclerosis for both limb and bulbar muscles has been well demonstrated (Alix et al 2020, Shellikeri et al 2015,
McIlduff et al 2017, Rutkove 2009, Rutkove et al 2007). Development of bulbar muscle biomarkers is
particularly important as there are few biomarkers offering an objective measure of bulbar disease (Benatar
et al 2016). EIM has the capacity to accurately identify and measure disease progression (Alix et al 2020,
Shefner et al 2018); thus, it may be of benefit both in clinical practice and research.

Impedance measurements in the bulbar region in patients with ALS have focused on the tongue. A novel
impedance device was used to take recordings in both 2D and 3D electrode configurations as a means to
obtain potential 3D structural information. So far, recordings have been reported for measurements made in
the midline of the tongue (Alix et al 2020, Shellikeri et al 2015, McIlduff et al 2017, Pacheck et al 2016); it is
not known if lateral measurements are feasible or provide clinically useful information. While EIM
electrodes can be carefully placed on limb muscles, for example, in relation to bony landmarks (Sanchez et al
2016), placement on the tongue is more difficult and could be subject to small rotations of the impedance
device. Attempts to undertake recordings on either half of the tongue blade may also be undermined by the
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proximity of the electrodes to the tongue edge (Scholz and Anderson 2000, Li et al 2019, Hua et al 1993).
However, if possible, lateral recordings may provide additional diagnostic information, for example, by
providing a more complete picture of the health of the muscle. Such recordings would also provide insight
into disease pathophysiology, as although limb involvement in ALS is often asymmetrical (Devine et al
2014), little is known about the presence/absence of bulbar disease asymmetry.

In this paper we demonstrate that lateral placement and electrode rotation have no significant effect on
the impedance phase spectra. To establish this we develop a finite element model of the tongue that achieves
a simultaneous fit across multiple electrode configurations. The model is applied to patients with ALS
exhibiting different severities of disease and to healthy volunteers. As a result the paper also develops a
method for identifying disease and its progression. Using real patient data we show that lateral measurements
outperform central measurements in the identification of disease, and that their combination further
enhances disease detection.

Herein we describe our impedance data collection process, development of the FEM model and
subsequent conclusions. An analysis of the robustness of data obtained through lateral placement is
presented, followed by an assessment of disease identification using lateral and central placement data.

2. Methods

2.1. Data collection in human participants
Impedance spectra were recorded from 41 patients with ALS and 30 healthy volunteers (demographics in
table 1). Informed consent was obtained and the study was approved by an NHS research ethics committee
(reference 15/YH/0121). Data was collected in patients at 3 monthly intervals for up to a year where possible,
while healthy volunteers had just one follow up visit 6 months from baseline.

Measurements were taken using a bespoke, handheld bioimpedance tongue device designed and
constructed by the Department of Clinical Engineering at Sheffield Teaching Hospitals NHS Foundation
Trust (Alix et al 2020) (figure 1(a)). Upper and lower electrode plates contained four, 1.5 mm diameter
circular, gold electrodes arranged in a square with a 5 mm centre inter-electrode distance and 7 mm plate
separation distance. A sinusoidal current (5 µA root mean square) was injected across 14 frequencies.

Let the dataset for each measurement beD = {Z( fi)|i= 1, · · · ,Nf}, where Z( fi) = R( fi)+ jX( fi) is the
impedance measurements in complex form with R(f ) being the resistance and X(f ) being the reactance. N f

is the number of frequencies (14) and fi = f12i−1 with f1 = 76 Hz. The impedance magnitude, |Z( fi)| and
impedance phase, θ(f i) are subsequently calculated as

θ( fi) = arctan
X( fi)

R( fi)
, |Z( fi)|=

√

R( fi)2 +X( fi)2. (1)

Multiple studies have demonstrated the impedance phase to be a clinically significant metric (Alix et al 2020,
Shellikeri et al 2015, McIlduff et al 2017, Rutkove 2009, Rutkove et al 2007). However, the potential utility of
impedance magnitude should not be discounted; indeed, this metric has been used in other applications of
impedance spectroscopy (Anumba et al 2020, Khan et al 2016). Figure 3 shows clear discrepancies between
patients and healthy volunteers in both phase and magnitude spectral patterns. Impedance readings were
taken for a number of different measurement configurations. This included measurements in the centre of
the tongue as well as with lateral placement both on the left and right sides; measurements repeated with the
tongue relaxed inside the mouth (intraoral) and tongue protruded (extraoral); and measurements for all
eight electrode configurations (as in figure 1(b)).

For each visit, recordings were made in turn for left, right, then central placement; first in the extraoral
configuration followed by the intraoral configuration. To take a second set of measurements (trial 2) this
whole process was repeated, thus the probe was removed and replaced several times during a recording
session. The six measurement paradigms and eight electrode configurations used means that 48 spectra were
generated for each participant visit, therefore the full multi-visit dataset contains over 9000 spectra.

Measurement errors can be caused by poor tongue to electrode contact (see section 3.2.1). During
measurements constant observation of electrode contact was made. If electrodes became visible during
measurement, then the recording was aborted. Any recordings comprising negative resistance at any
frequency were removed; because the tongue is a passive system this would imply that it will behave as a
positive real system and, as such, is a good indication that the measurements are artefactual. Next, remaining
outlier spectra were removed using a root-mean-squared deviation-based outlier detection algorithm (see
appendix A).
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Table 1. Demographics of the participant cohort. Note that this paper uses the same impedance dataset as Alix et al (2020), which
includes further details of clinical and electrophysiological characteristics of the patients. Reprinted from Alix et al (2020), Copyright
(2020), with permission from © 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.

Measurement Patients Healthy volunteers P value

N= 41 N= 30 (statistical test)
Mean age in years 62 56 P= 0.12
(range) (30–83) (22–86) (t-test)
Male:female (n) 22:19 14:16 P= 0.63
(%) (54:46) (47:53) (Fishers test)
Limb onset disease 24 (59%)
Bulbar onset disease 17 (41%)

Figure 1. (a) The novel EIM tongue device with eight electrodes in a cuboidal arrangement. (b) The eight electrode
configurations used, separated into 2D and 3D groups, utilising the electrode labels employed in (a). (c) Image showing central
placement of the device on the participant’s tongue. (d) FEM tongue geometry and mesh built in Comsol Multiphysics. (b)
reprinted from Alix et al (2020), Copyright (2020), with permission from © 2020 International Federation of Clinical
Neurophysiology. Published by Elsevier B.V. All rights reserved.

2.2. Grouping patients by symptoms
In order to develop finite element models for different severities of disease, patients were sorted into four
symptom groups (figure 2) by combining the ALS functional rating bulbar subscore (ALSFRS), tongue
strength, and clinical examination findings (clinical signs of tongue wasting, weakness and fasciculations).

The no symptom group was determined by a maximum (12/12) score on the ALS functional rating scale
bulbar subscore and the absence of any abnormal clinical signs. The other groups were obtained through the
combination of ALSFRS bulbar subscore, tongue strength and clinical examination. Clinical examination
was undertaken by an experienced physician, with scoring described in table 1. Evaluation of tongue strength
was undertaken with quantitative muscle testing (QMT) system (Averil Medical), coupled to the Iowa Oral
Performance Instrument (IOPI) (Shellikeri et al 2015, Easterling et al 2013). Briefly, patients were asked to
press the small bulb up onto the roof of the mouth as hard as possible for 10 s.

3
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(a) (b)

(c) (d)

Figure 2. Histograms showing the distribution over the four symptom groups of (a) ALSFRS-r bulbar score, (b) tongue strength
(Newtons) and (c) clinical score. By combining all three scores the different patient groups become visually distinct (d).

Assessment of the central placement tongue impedance data was made to evaluate the differences in
spectral patterns between these four groups (figure 2). Due to the similarity between healthy volunteers and
patients in the no symptom and mild groups, finite element modelling was only applied to healthy volunteers
and the moderate and severe patient groups.

2.3. Building the FEM-based model
Finite element method (FEM) based modelling was employed to explore the underlying differences in the
electrical properties of the tissue between the different disease states. Model parameters were then attributed
to a lumped circuit LT-Spice model to gain further insight into the disease process.

Capturing the detailed structure of the tongue is difficult due to a highly complicated muscle fibre
arrangement, with fibres running in multiple directions (Gilbert and Napadow 2005, Gaige et al 2007). Here,
a simplified tongue geometry was built from layers of tissue with varying electrical conductivity and
anisotropy. The shape of the tissue mimics that of a tongue MRI taken from Ong and Chong (2006), with a
length of 78 mm and maximum breadth of 56.5 mm, which are reported for the average dimensions of an
adult tongue (Hopkin 1967). The muscle is surrounded by a 2 mm epithelium layer (Prestin et al 2012), with
set value of conductivity spectra (10) taken from reported results for the dorsal and ventral layers (Lackovic
and Stare 2007, Richter et al 2015). The geomtry used is shown in figure 1(d).

The model was developed using the AC/DC module in Comsol Multiphysics software. Modelled local
impedance measurements are produced using eight electrodes of 1.5 mm diameter in a cuboidal
arrangement analogous to the novel tongue device. The conductivity of the electrodes is set to be much
greater than that of the tissue. The finite element mesh was generated automatically with the Comsol
software and consisted of 97 155 elements. The model is run to generate spectra for each of the eight
electrode configurations in turn, by passing current and reading voltage between different electrode pairs, as
laid out in figure 1(b). The 2D configurations pass current and read voltage on the same surface, while the
3D electrodes pass current and read voltage between the upper and lower tongue surfaces.

A frequency domain study was employed with the scalar electric potential as the dependent variable.
Magnetic induction effects are assumed to be negligible since they are expected to be approximately six
orders of magnitude smaller. The current flow in EIM is the combination of direct current and displacement
current (̄Jtot = J̄c + J̄d). Direct current flows due to moving charge particles and is defined as

J̄c(x,y,z) = σ(z).Ē(x,y,z), (2)

4
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where x y and z are the longitudinal, transverse and vertical coordinates of the local current; σ(z) is the local
conductivity of the tissue, which is assumed to be uniform over x and y but varies with z (different values
between the layers of tissue); and Ē(x,y,z) is the local electric field.

An alternating current with amplitude, I0 and frequency, ω (rad s−1) is passed between a terminal
electrode and ground electrode (where the electric potential is set to 0). The displacement current then arises
from the changing field induced by this alternating current and is given by

J̄d(x,y,z) = ϵ
∂Ē(x,y,x)

∂t
= ϵ0ϵr

∂Ē(x,y,z)

∂t
, (3)

where ε is the permittivity (ϵ= ϵ0ϵr), ε0 is permittivity of free space (8.854× 10−12) and εr is relative
permittivity. The phasor representation of the electric field produced by an alternating current is given by

Ē= Ē0e
jωt (4)

and hence (3) becomes

J̄d = jωϵ0ϵrĒ. (5)

For alternating current sources inside conductive media the equation of continuity is then solved:

Q=∇· J̄tot, (6)

where Q is the total charge inside each element. To get a full description of an electromagnetics problem,
boundary conditions must be specified at material interfaces. The boundary condition implemented in
Comsol, for interfaces between different media with electric field Ē1 and Ē2 and outward normal from
medium two, n̄2 is given by

n̄2.(Ē1 − Ē2) = Q. (7)

The electric field is related to the potential difference (V) through

Ē=−∇V, (8)

and hence the electrical potential at the electrode surfaces can be output by the FEM.
The local impedance (Z) between a set of electrode pairs at the frequency of excitation current signal is

then calculated as

Z=
V1 −V2

I0
(9)

where V1 and V2 are the potentials at the two electrodes, respectively, as obtained from the FEM model.

2.3.1. Model parameterisation
To provide a parametrisation with potential for interpretation of the parameters, the conductivity spectra for
the tissue making up the main body of the tongue is set as the following simplified Cole-Cole equation:

σ(z ∈ Φl) =
1

Z(l)
1 +

Z(l)
0 −Z(l)

1

1+ j
f

F(l)c

(10)

where j is the imaginary unit, f (=ω/2π) is the frequency (Hz) and Z(l)
0 , Z(l)

1 and F(l)C are real valued free
parameters, which depend on the specific layer of depth, Φl. The tongue muscle has anisotropic properties
(Gaige et al 2007), so different sets of parameters are inputted for the longitudinal, transverse and vertical
directions of the tongue.

Since it is possible that fibres run in predominantly different directions at different depths (Benatar et al
2016), the tongue body was split into three layers in order to allow enough geometrical complexity for the
model fit to data to be achievable. A total of 27 free parameters for conductivity properties were used, with
an additional parameter representing the thickness of the middle layer.

5
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(a) (b)

Figure 3.Median impedance spectra of (a) phase and (b) magnitude. With central measurement data in configuration 3D1 for
the four symptom groups and healthy volunteers. Similar patterns were seen across all electrode configurations (not shown).

To assess the agreement between the modelled and measured data the normalised root mean squared
error (NRMSE) is employed. The NRMSE metric between the impedance measurement (θ, |Z|) and model

estimate (θ̂, ˆ|Z|) is calculated independently for phase and magnitude as

NRMSE=

√

∑Nf
i=1(αi−α̂i)2

k

αmax −αmin
, (11)

where α represents θ or |Z|, N f is the number of measurements in the set (14 frequencies per electrode
configuration). Note that calculation on impedance phase is not affected by phase flips since values are
automatically constrained between−90◦ and 90◦.

2.4. Disease classification and symptom correlation
Classification analysis between patients and healthy volunteers was undertaken with 3-nearest neighbour and
4-fold cross validation (Bishop 2006). Classification performance was assessed through sensitivity, specificity
and the area under the receiver operating characteristics curve (AUROC). Each electrode configuration
dataset holds 14 phase values from all frequencies, and two electrode configurations (3D1 and 3D2) data
were combined (see section 3.2.2).

Feature selection was made through a wrapper algorithm forward selection approach. This involved
building up features one by one using the AUROC as the evaluation criterion. The algorithm then selects the
combination of features that gives the optimal results. A maximum of eight selected features was
implemented to reduce overfitting.

For comparison of two AUROC values A1 and A2, the Z-score was calculated as

Ξ =
(A1 −A2)

√

SE21 + SE22 − 2Covar[A1,A2]
, (12)

where SE1 and SE2 are the standard errors of each AUROC value, and Covar[A1,A2] is the covariance of the
two AUROCs. These were calculated using methods described in Hanley and Hajian-Tilaki (1997).

In order to assess the correlation of the impedance data with tongue strength, the spectra were reduced
into one metric using the L2 (Euclidean) norm. Where again, features were selected through a forward
selection wrapper algorithm. The L2 norm is calculated as the square root of the sum of the squared values
over the chosen features. The correlation performance was quantified using the Spearman rank correlation
coefficient (ρ) which measures the strength and direction of monotonic association between the L2 norm
and tongue strength.

3. Results

3.1. Model fit
The parameter values were iteratively adapted so that the model impedance spectra for both phase angle and
magnitude were in good agreement with collected data. The patients were split into different disease
categories due to differences in the appearance of spectra (figure 3). The parameter optimization was
initialised with a trial and error process for a good fit. Following this an iterative local parameter search was
made to determine the minimum deviation between the model and collected data. Separate models were

6
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(a)

(b)

Figure 4. Data generated using Comsol (red line) compared to spectra distributions for human participants (dashed line: spectral
median, shaded area: interquartile range). Magnitude and phase spectra presented for eight electrode configurations in (a) severe
symptom patients, (b) moderate symptom patients and (c) healthy volunteers.

generated for healthy volunteers, patients with moderate disease and patients with severe disease. Producing
a simultaneous fit across all electrode configurations for both phase and magnitude was challenging due to
the high number of parameters and variables involved. Despite this challenge, a high level of agreement
between the observed data and FEM was achieved across all groups for both phase and magnitude (figure 4).

Visual assessment of the residual distributions of the FEM fit demonstrated a random distribution
centred around 0 (appendix C1). Calculation of the NRMSE also showed a good fit, with the variation in the
phase being around half of the average variation between two repeat measurements (see section 3.2.2 and
figure 8). Therefore, the model was deemed to have sufficiently captured the overall electrical properties in
different stages of disease.

7
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(a)

(b)

Figure 5.Model parameters interpreted as electrical circuit elements. (a) LT-spice 12 element Cole-Cole based circuit simulation.
(b) Circuit parameter values RP, R and C for the three modelled disease states in the upper, middle and lower sections of tongue
tissue.

To gain further insight into the effect of the disease process from the external electrical measurements
made, we explored reducing the system to a lumped circuit model, similar to that presented in Shiffman and
Rutkove (2013a), Shiffman and Rutkove (2013b). The optimised model parameters describing the
conductivity spectra of the tongue were fit to a lumped model of a balanced Pi network of four simplified
Cole-Cole networks (figure 5(a)). This network was simulated with the LT-Spice simulator using AC
small-signal analysis. A NRMSE analysis was undertaken to assess the level of agreement between the FE and
LT-spice models. Each set of parameters (Z0,Z1,FC) is then interpreted as an intracellular resistance (RP),
extracellular resistance (R) and capacitance (C).

Inspection of the model parameters for the three scenarios (appendix B2) characterises the underlying
disease changes to tongue properties and tissue anisotropy. Using LT-Spice simulations these can then be
interpreted as circuit parameters varying across the different stages of disease (figure 5). The good agreement
(NRMSE< 0.005) between Comsol and Spice demonstrate that the FEM tongue characteristics can
accurately be reduced to a lumped model. The most explicit change seen was decreasing capacitance (and
hence more negative reactance) with disease progression, mainly due to changes in the x/y directions in the
middle and lower tongue sections. The overall effect on extracellular resistance was an increase with disease
severity. The intracellular resistance also consistently increased in the lower tongue and the x/y directions of
the middle tongue, while the direction of change seen in the upper tongue is less consistent. Overall, these
results are in keeping with the known pathophysiology of muscle in ALS (see section 4).

3.2. Robustness analysis of patient measurements
The feasibility of lateral tongue EIM phase angle measurements was interrogated using the FEM. The
robustness of patient data was then evaluated through the assessment of similarity/agreement of different
measurement configurations, as well as overall measurement reliability.

3.2.1. FEM assessment of edge and rotation effects
Using the optimised FEM-based models the effects of moving the electrodes closer to the edge of the tissue
were investigated for both impedance magnitude and phase angle. Simulations were run for four edge
positions (shift A–D shown in figure 6(a)), starting with the extreme of one electrode pair having no contact
with the tongue and moving until all electrodes are in full contact. The data show that the effect on
magnitude is greater than that on phase, with the latter only showing obvious changes when electrode
contact has been lost (see figure 6, RMSD values presented in appendix B3).

When the electrodes are placed close to the edge of the tongue the path of the currents changes because
the current flow is constrained to be within the tongue and not the surrounding air. The results in figure 4
demonstrate that the displacement of the current path changes its magnitude distribution but not its phase,
hence for the transferred impedance measurement there is a greater sensitivity to magnitude over phase. It
must be noted that all electrodes in use require at least partial contact with the tissue surface. Lack of contact

8
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(c)

(d)

(a)

(b)

Figure 6. (a) Four electrode edge positions, labelled shift A–D. Starting from the extreme of one electrode pair having no contact
with the tongue and moved inwards until all electrodes are within the tissue edge. (b)–(d) Modelled magnitude and phase spectra
comparing central measurement (black line) to the measurements made at the four edge positions (red, blue, green and yellow
lines for shift A, B, C, D respectively). Shown for severe symptom (b), moderate symptom (c) and healthy volunteer model (d).

can result in an extreme change to the phase spectra and, in addition, the instrumentation will not produce
reliable results with an open circuit electrode. It is likely that these measurements will likely be excluded in
the outlier removal stage (2.5% of lateral measurements were removed as outliers, compared to 1.2% of
central measurements).

9
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(a)

(b)

(c

Figure 7.Modelled magnitude and phase spectra comparing no rotation (black line) to the rotated measurements (red, blue and
green lines for 15◦, 30◦ and 45◦ respectively). Shown for severe symptom (a), moderate symptom (b) and healthy volunteer
model (c).

Since the tongue muscle demonstrates anisotropy between the longitudinal and transverse directions,
rotation of the electrode plates during device placement may impact upon the measured impedance spectra.
To explore this, the FEM simulated electrode plate rotations by 15◦, 30◦ and 45◦ (figure 7, RMSD values
presented in appendix B4).

Minimal changes to either impedance magnitude or phase spectra were observed under electrode
rotation. Minor alterations were seen in some 2D electrode configurations, likely due to a higher level of
anisotropy present on the tongue surface. The phase was again more stable than magnitude. Overall, the
impedance phase appears stable during lateral measurements and electrode rotation.

10
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(a)

Measurement
B-A: Bias(◦)

B-A: 95%
NRMSE mean

configurations data range (◦)

Trial 1 Trial 2 0.9874 53.2 0.2137

Intraoral Extraoral -0.6660 54.07 0.2045

3D1 3D2 -1.0040 41.64 0.1439

(b)

Figure 8. (a) Bland–Altman plots showing the difference between two repeat measurements (trial 1 and 2); an intraoral and
extraoral measurement; measurements for configurations 3D1 and 3D2. Horizontal lines plotted for 2.5th and 97.5th quartiles
and the mean value. (b) Table summarising the Bland–Altman bias (mean value of phase difference) and 95% data range
(difference between 97.5th and 2.5th quartiles), and the mean value of NRMSE metric between the two measurement
configurations.

(a)

Measurement
Disease B-A: Bias(◦)

B-A: 95%
NRMSE mean

configurations data range (◦)

Left Right
Patient 0.2512 59.23 0.2171

Healthy 0.0159 59.67 0.2209

Central Lateral
Patient 2.4048 62.1 0.2533

Healthy 3.8367 69.75 0.3386

(b)

Figure 9. (a) Bland–Altman plots showing the difference between measurements made at left and right sides of the tongue, and
between measurements made in the centre and edges of the tongue. Horizontal lines plotted for 2.5th and 97.5th quartiles and the
mean value. (b) Table summarising the Bland–Altman bias (mean value of phase difference) and 95% data range (difference
between 97.5th and 2.5th quartiles), and the mean value of NRMSE metric between the two measurement configurations.
Analysed separately for patient and healthy volunteer data.

3.2.2. Variability of measurement configurations
All recordings were performed twice (trial 1 and trial 2) to allow for analysis of reproducibility. Some
participants (both patients and healthy volunteers) found extraoral recordings difficult and thus all recording
paradigms were not possible in every individual. Bland-Altmann plots and the NRMSE (11) were used to
assess spectral agreement/similarity between measurement configurations. The Bland–Altmann mean

11
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Table 2. Description of clinical examination scoring. An experienced physician (JJPA) gives a score in each of the three categories
(wasting, weakness and fasciculations). The overall clinical score is then calculated as the sum of the three scores.

Clinical sign Description and corresponding score

Tongue wasting None: 0 Minimal: 1 Moderate: 2 Severe: 3
Movement inside and Movement onlyTongue weakness None: 0
outside mouth: 1 inside mouth: 2

Paresis: 3

Fasciculations Absent: 0 Present: 1

Table 3. Reproducibility analysis. Intraclass correlation coefficient shown for central and lateral measurements with patient data, healthy
volunteer data and all participants pooled. 95% confidence interval for the ICC is shown in brackets.

Central ICC Lateral ICCAnalysis
(95% confidence interval) (95% confidence interval)

0.903 0.907Pooled
(0.898–0.908) (0.902–0.911)
0.926 0.915Patients
(0.920–0.931) (0.909–0.920)
0.876 0.896Healthy Volunteers
(0.866–0.885) (0.889–0.903)

difference reveals bias, and, since the data is non-parametric, the 95% difference range was calculated using
percentiles (Bland and Altman 1999). If the spectral similarity between two measurement configurations is
within that of two repeat measurements, then the two different measurement configurations can be treated
as equivalent data types.

Spectral similarity was assessed between intra- and extraoral measurements and different device
placement positions (centre, left, right). Comparison was also made between the two electrode
configurations 3D1 and 3D2, which are identical apart from a 5 mm lateral shift in the measurement area
(see figure 1). NRMSE and Bland–Altman analyses demonstrated that both intraoral-extraoral and 3D1–3D2
comparison were within the threshold of two repeat measurements (figure 8). Thus, measurements are
unaffected by tongue protrusion and there are no local variations in tissue structure.

Evaluation of left placement vs. right placement also revealed a high level of spectral similarity within
the limits of two repeat measurements (figure 9). This was the case for both ALS patients (for all disease
severities, appendix B5) and healthy volunteers. This indicates that no asymmetry in disease is observed. The
comparison between lateral and central placements shows the largest difference; bias was relatively high,
suggesting that central measurements output a higher phase than lateral measurements. Both the
Bland–Altmann range and the NRMSE exceed that of trial 1–trial 2 comparison.

3.2.3. Measurement reliability
A single-measure, two-way mixed effects intra-class correlation coefficient (ICC) analysis was undertaken to
assess the reproducibility of measurements. The reliability of phase measurements was high for patients and
healthy volunteers across both central and lateral measurements (table 3).

In addition, inter- and intra-rater analyses demonstrate high reliability across different observers; this
was maintained across patient visits (appendix B1).

3.3. Classification performance and symptom correlation assessment
Feature selection was applied to the performance of both central and lateral (left and right combined)
datasets independently for each electrode configuration. Left and right data are combined on the grounds of
having similar spectra (see figure 9).

In our anlayses we found that lateral measurements AUROC outperform those made on the centre of the
tongue (figure 10(a)). We then combined the lateral and central measurement data and found that the
combined dataset outperformed the lateral measurement only dataset (figure 10(b)). In addition,
comparison of left vs. right lateral measurements revealed an identical performance (Ξ= 0). Inspection of
the features (frequencies) selected by the wrapper algorithm revealed a preponderance of frequencies in top
half of our frequency range (appendix B6). Comparing the performance of the different electrode
configurations resulted in a general improvement for the 3D configurations over the 2D, as was previously
demonstrated in Alix et al (2020).

The correlation of impedance phase with tongue strength was also compared between the lateral, central
and combined datasets. Figure 11 shows the correlation between EIM (selected features presented in
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(a) (b)

Figure 10. Graphs showing the mean average of two AUROC values A1 and A2 against the comparative Z-score (12). Results for
classification made on each electrode configuration individually. (a) The comparison of classification performance using either
central data or lateral data. Negative Z value infers better performance for lateral measurements. (b) The classification
performance with analysis made on both central and lateral data combined, compared to only lateral data. Positive Z value infers
better performance for combined data analysis.

(a) (b)

Electrode Spearman correlation coefficient ρ

Configuration Lateral Central Combined
2D1 0.696 0.462 0.638

2D2 -0.583 -0.525 -0.525

2D3 -0.578 0.487 0.677

2D4 -0.430 0.207 -0.521

3D1/2 0.584 0.587 0.618

3D3 0.546 0.549 -0.684

3D4 0.721 -0.535 -0.620

(c)

Figure 11. Relationship of EIM data to tongue strength. Scatter plots of the tongue strength against L2 norm for the two best
performing electrode configurations (a) 2D1 and (b) 3D4; comparing the use of lateral, central and combined datasets. (c) Table
of the Spearman rank correlation coefficients, ρ, for all electrode configurations. The highest performing dataset (|ρ| closest to 1)
is shown in bold for each configuration. Scatter plots for remaining configurations are presented in appendix C1.

appendix B7) and tongue strength for the highest performing 2D and 3D configurations (2D1 and 3D4),
where best correlation was observed for the lateral datasets.

Comparing correlation coefficients between central, lateral and combined data for all configurations
(figure 11(c)) shows consistent lowest performance for using central data. Both combined and lateral datasets
perform well, with the overall best correlation observed for the lateral 3D4 dataset (Spearman ρ= 0.72).

4. Discussion

Previous FEM-based models of EIM have used impedance measurements of murine gastrocnemius muscle
to obtain values for permittivity and conductivity (Pacheck et al 2016, Jafarpoor et al 2013, Jafarpoor et al
2011). This has the advantage of obtaining and using information taken directly from muscle preparations
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but has the disadvantage of inputting results from muscle fibres of a different size to those in human subjects.
Here, we have used a large dataset of over 9000 spectra from eight electrode configurations to develop a
3-dimensional model fitted to different stages of disease. Despite the difference in approach, our results align
well with previous studies. For example, the small difference we observed on the effect of recording on the
muscle edge concur with the conclusions of Pacheck et al whose FEM modelling on tongue EIM indicated
that there is limited flow of current away from the electrodes (Pacheck et al 2016). Thus, while we did not
utilise different tongue geometries for our patient and volunteer models, both our results and those of
Pacheck et al suggest that changes in tongue volume are unlikely to impact upon measured or modelled
spectra.

Edge effects have been reported in impedance imaging (Scholz and Anderson 2000, Li et al 2019). The
minimal change to spectra observed in our studies may be explained by the variations seen in the impedance
magnitude of the simulations. These observations imply that resistance and reactance are equally affected by
any edge effects and therefore become insensitive to changes in phase but not magnitude. Phase angle is
generally employed as the measured impedance parameter, since it is also deemed more resilient to changes
in tissue size and effects of subcutaneous fat (Rutkove 2009, Rutkove et al 2007, Schwatrtz et al 2015, Li et al
2016). The slightly greater removal of outliers lateral data suggests that these recordings can still be subject to
measurement error when electrodes loose contact with the tongue surface.

One limitation to our work is the use of central measurement data to optimise the FEM. However, the
differences in central and lateral measurement spectra are small (figure 9) and much less prominent than the
differences seen between the different patient groups. A future work could include generating models based
on differing electrode placements in order to develop a more sophisticated 3D model.

Nonetheless, the application of our FEM to Cole-Cole circuit simulation results in changes to model
parameters that are in keeping with the known pathophysiology of ALS. There are associated problems in
attributing particular tissue properties directly to elements within the LT-Spice lumped parameter model,
where the accuracy can be significantly affected by the approximations made (McAdams and Jossinet 1996).
However, the capacitive element is differential to tissue permittivity and hence to cell membrane area within
the tissue volume. Disease progression is associated with a loss of cell membranes and hence a reduction in
the model capacitance is consistent with muscle cell atrophy. Increased extracellular resistance was also found
and is in keeping with increases in extracellular connective tissue and fat known to occur in ALS (Rutkove
2009).

Our results also provide insight into the pathophysiology of tongue disease in ALS as the asymmetry
typically observed in limb muscles was not seen in the tongue. This was the case across all severities of
disease, suggesting that there is no asymmetry early on which is lost as the disease progresses. In keeping with
the present results, it is our experience that clinically observable asymmetry of the tongue is not a feature of
ALS. Cerebral hemispheric dominance has been suggested to be a driver of limb asymmetry (Henderson et al
2019); interestingly, the hypoglossal nucleus receives bilateral cortical innervation which may limit any such
effect in the tongue muscle (Urban et al 1998, Chen et al 1999). There do, however, appear to be differences
in the impedance spectra obtained from the centre of the tongue versus the lateral portions. Histological
studies show a central band of connective tissue, the lingual septum (Larsson et al 1982), which may underlie
such differences. It seems unlikely that the lingual septum will undergo any significant changes during ALS
and thus central tongue EIM measurements will still be dominated by muscle. In keeping with this, both our
group and others have shown that central placement is sensitive to disease and correlates with ALS symptoms
(Alix et al 2020, Shellikeri et al 2015, McIlduff et al 2017).

During the collection of human data, we investigated intra- and extraoral recordings and found them to
be similar. This is not surprising since extraoral protrusion is achieved via contraction of the genioglossus,
and not the tongue blade from which recordings are made. Since some participants, mostly patients but
some healthy volunteers, appeared to find extraoral recordings more difficult, this similarity indicates that
the examiner can use whichever method is most comfortable for the participant.

As noted in our previous work, 3D electrode configurations appear to provide a superior performance to
2D arrangements. The reason for this remains undetermined but perhaps relates to the 3D configurations
assessing a relatively greater amount of tongue muscle. Regardless of cause, this observation was preserved in
both central and lateral placements. With regard to placement, classification performance across lateral and
central measurements was high and correlation with tongue strength is observed in both datasets, suggesting
pathology is occurring and detectable throughout the tongue. In general, however, lateral placement
outperformed central placement. The underlying cause of the higher classification and tongue strength
correlation from lateral measurements is unclear, although a purer assessment of muscle in lateral recordings
(vs. muscle and the lingual septum in central recordings) may be a contributing factor. Nonetheless,
classification appears enhanced through the incorporation of both lateral and central measurements and
could be further assessed in a larger study.
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5. Conclusion

In this paper we have further developed the technique of tongue EIM through a combination of FEM and
detailed patient assessments. Our results show that lateral tongue measurements are technically and
practically achievable. The data from lateral placement reveals symmetry in ALS tongue disease and,
importantly, enhance disease identification. These data support the use of combined lateral and central
tongue EIM measurements as a biomarker for ALS.
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Appendix A. Outlier removal algorithm

(a) If any measurement set has resistance< 0 at any frequency the measurement set is removed.
(b) Repeat the following for impedance phase and impedance magnitude:

For each configuration (c) and frequency (j) calculate the ‘severe patient’ median and quartiles (using
only the data from patients presenting with severe symptoms, see appendix B1): Q1cjp , Q2

cj
p , Q3

cj
p .

For each set of measurements i in configuration c (Zc
i( fj) ) calculate the RMSD (Jci ) as:

J ic =

√

√

√

√

√

1

14

14
∑

j=1

(

Zi
c( fj)−Q2cjp

Q3cjp −Q1cj)p

)2

.

For the variable J ic calculate the lower quartile, upper quartile and MedCouple: Q1[J ic],Q3[J
i
c],MC[J ic].

Define a threshold for each configuration:

Tc = Q3[J ic] + 3 ∗
(

Q3[J ic]−Q1[J ic]
)

∗ e4∗MC[J ic ]

Then if: J ic ≥ Tc the full set of measurements i in configuration c is removed.
(c) If any measurement set has phase> 30◦ at frequencies f 1 or f 14 the measurement set is removed.
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Appendix B. Tables

Table B1. Reproducibility analysis for final visit and inter-rater comparisons.

ICC (95% confidence interval)

Analysis Central Lateral

Patients 0.913 0.873
final visit (0.903–0.922) (0.861–0.885)

0.903 0.907Intra-rater
(0.898–0.908) (0.902–0.911)
0.870 0.866Inter-rater
(0.859–0.880) (0.858–0.875)

Table B2.Model parameters for the conductivity spectra in x, y and z directions and thickness of the upper, middle and lower sections of
the tongue. For model of severe disease, moderate disease and healthy tissue.

Severe disease Moderate disease Healthy

FC Thickness FC Thickness FC Thickness
section Direction Z0 Z1 (Hz) (mm) Z0 Z1 (Hz) (mm) Z0 Z1 (Hz) (mm)

x 15.1 4 530 26.4 4.4 260 20.5 2.9 380
y 16.8 4.2 590 28.1 4.6 290 26.8 3.3 395

Upper

z 6.2 4.8 1.7× 10−5

2.31

7.1 4.5 1.4× 10−5

2.17

7.5 4.3 1.1× 10−5

2.03

x 110 0.2 110 6.5 0.8 55 29 0.1 65
y 45 0.1 280 29 0.1 65 7.2 0.1 60

Middle

z 210 0.2 200

2.38

235 1.5 60

2.66

180 0.1 35

2.94

x 12.1 0.77 250 6.4 1.1 20 4.6 0.95 15
y 10.6 0.75 250 17.5 1.2 25 5.8 1.15 15

Lower

z 12 9.6 1.7× 10−5

2.31

6.1 3.5 1.4× 10−5

2.17

9.2 4.4 1.1× 10−5

2.03

Table B3. Normalised root mean square error (NRMSE) between central impedance spectra and spectra for shift A, B, C, D (see figure
5(a)). Shown for all electrode configurations for impedance magnitude and phase. NRMSE> 0.1 is shown in bold.

Severe disease Moderate disease Healthy

Magnitude NRMSE

Shift A B C D A B C D A B C D

2D1 1.272 0.310 0.183 0.139 1.113 0.301 0.178 0.105 1.25 0.304 0.186 0.119
2D2 0.325 0.057 0.112 0.085 0.394 0.061 0.082 0.074 0.714 0.100 0.104 0.078
2D3 0.398 0.307 0.182 0.122 1.404 0.714 0.395 0.265 1.279 0.640 0.302 0.195
2D4 0.574 0.016 0.065 0.067 0.612 0.070 0.079 0.055 2.81 0.191 0.208 0.142
3D1 0.638 0.360 0.295 0.218 0.559 0.298 0.229 0.169 0.949 0.343 0.273 0.195
3D2 0.160 0.076 0.055 0.038 0.122 0.062 0.046 0.031 0.125 0.070 0.041 0.033
3D3 0.405 0.291 0.183 0.129 0.361 0.203 0.126 0.087 0.365 0.223 0.133 0.097
3D4 0.425 0.304 0.191 0.135 0.356 0.294 0.185 0.120 0.424 0.300 0.191 0.130

Phase NRMSE

2D1 0.067 0.032 0.039 0.034 0.051 0.026 0.024 0.020 0.082 0.022 0.033 0.027
2D2 0.298 0.049 0.027 0.023 0.334 0.045 0.025 0.019 0.338 0.027 0.029 0.028
2D3 0.033 0.032 0.030 0.020 0.066 0.021 0.030 0.029 0.072 0.054 0.078 0.064
2D4 0.316 0.021 0.015 0.013 0.380 0.032 0.023 0.014 0.502 0.060 0.037 0.026
3D1 0.234 0.050 0.045 0.032 0.297 0.039 0.035 0.032 0.043 0.031 0.030 0.022
3D2 0.032 0.015 0.017 0.016 0.042 0.021 0.012 0.011 0.055 0.024 0.025 0.022
3D3 0.032 0.015 0.017 0.016 0.042 0.021 0.012 0.011 0.055 0.024 0.025 0.022
3D4 0.046 0.039 0.033 0.024 0.068 0.036 0.037 0.029 0.085 0.036 0.050 0.039
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Table B4. Normalised root mean square error (NRMSE) between central impedance spectra and spectra for rotations of 45◦, 30◦ and
15◦. Shown for all electrode configurations for impedance magnitude and phase. NRMSE> 0.1 is shown in bold.

Severe disease Moderate disease Healthy

Magnitude NRMSE

Rotation 45◦ 30◦ 15◦ 45◦ 30◦ 15◦ 45◦ 30◦ 15◦

2D1 0.020 0.012 0.011 0.041 0.040 0.006 0.097 0.058 0.035
2D2 0.023 0.010 0.002 0.022 0.014 0.007 0.054 0.029 0.021
2D3 0.041 0.028 0.007 0.468 0.160 0.021 0.188 0.098 0.040
2D4 0.043 0.028 0.010 0.188 0.109 0.031 0.183 0.127 0.051
3D1 0.003 0.004 0.001 0.021 0.010 0.002 0.027 0.021 0.014
3D2 0.003 0.003 0.003 0.008 0.004 0.003 0.026 0.016 0.002
3D3 0.005 0.007 0.001 0.008 0.004 0.003 0.020 0.004 0.012
3D4 0.005 0.004 0.001 0.012 0.004 0.006 0.025 0.007 0.006

Phase NRMSE

2D1 0.045 0.031 0.005 0.064 0.044 0.018 0.100 0.083 0.039
2D2 0.026 0.015 0.004 0.021 0.011 0.006 0.043 0.024 0.012
2D3 0.026 0.015 0.008 0.240 0.098 0.018 0.037 0.015 0.006
2D4 0.021 0.010 0.008 0.209 0.102 0.028 0.049 0.031 0.012
3D1 0.008 0.011 0.003 0.015 0.009 0.008 0.024 0.015 0.010
3D2 0.007 0.006 0.003 0.017 0.011 0.007 0.018 0.011 0.005
3D3 0.007 0.005 0.002 0.022 0.012 0.003 0.017 0.009 0.006
3D4 0.007 0.004 0.002 0.025 0.013 0.006 0.016 0.007 0.004

Table B5. Asymmetry analysis at different symptom severities. The difference between left and right measurements is quantified through
Bland–Altman (B-A) analysis (columns 1 and 2) and the NRMSE metric (column 3). Variation in the left and right spectra neither
increases nor decreases with disease.

Symptoms B-A: Bias(◦) B-A: data range (◦) NRMSE mean

None 1.1187 55.21 0.2195
Mild −0.3454 63.28 0.2866
Moderate 0.7829 51.95 0.1842
Severe 0.8679 54.00 0.2494
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Table B6. Classification performance comparison between (a) lateral data, (b) central data, and (c) both data types combined. For each
electrode configuration 3-nearest neighbour, 4-fold cross validation with forward selection wrapper method algorithm applied to select
a maximum of eight features.

Lateral data classification

Features AUROC Sensitivity Specificity

2D1 f9, f12, f13 0.74 0.69 0.79
2D2 f10, f12 0.81 0.84 0.79
2D3 f1, f11 0.73 0.71 0.76
2D4 f3, f6, f11, f12, f13, f14 0.77 0.75 0.79
3D1/2 f9, f10, f12, f14 0.82 0.71 0.92
3D3 f3, f5, f9, f10, f11, f12, f13, f14 0.86 0.90 0.81
3D4 f8, f11, f13, f14 0.81 0.81 0.8

Central data classification

Features AUROC Sensitivity Specificity

2D1 f11, f12 0.75 0.79 0.71
2D2 f9, f12, f13 0.78 0.74 0.82
2D3 f5, f6, f7, f8, f9, f12, f13, f14 0.75 0.59 0.92
2D4 f1, f12, f14 0.70 0.5 0.90
3D1/2 f2, f5, f9, f10, f11, f12 0.82 0.79 0.85
3D3 f10, f11, f13 0.80 0.79 0.81
3D4 f6, f12, f13 0.76 0.75 0.77

Combined data classification

Features AUROC Sensitivity Specificity

Central: f82D1
Lateral: f11, f12

0.77 0.76 0.79

Central: f82D2
Lateral: f10

0.83 0.84 0.82

Central: f4, f92D3
Lateral: f1, f9

0.79 0.71 0.88

Central: f1, f32D4
Lateral: f12, f14

0.72 0.44 1.0

Central: f1, f11, f133D1/2
Lateral: f9, f13

0.91 0.89 0.92

Central: f11, f133D3
Lateral: f12

0.87 0.90 0.85

Central: f9, f11, f12, f133D4
Lateral: f14

0.84 0.88 0.8
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Table B7. Features selected through forward selection wrapper for L2 norm phase impedance correlation with tongue strength.
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Appendix C. Figures

Figure C1. Residual plots for the model fit to the median impedance phase and magnitude spectra for healthy volunteers (light
grey), moderate symptom patients (dark grey) and severe symptom patients (black). All residual plots demonstrate random
errors centred around zero. The normalised root mean square error (NRMSE) between the modelled and collected spectra is also
presented and demonstrates a significantly smaller error than the average between trial 1 and trial 2 recordings (see figure 6).
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Figure C2. Scatter plots of the tongue strength against L2 norm for the remaining electrode configurations not presented in
section 3.3.
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Richter I, Alajbeg I, Vučícevíc Boras V, Andabak Rogulj A and Brailo V 2015 Mapping electrical impedance spectra of the healthy oral

mucosa: a pilot study Acta Stomatol. Croat. 49 331–39
Rutkove S B 2009 Electrical impedance myography: background, current state and future directionsMuscle Nerve 40 936–46
Rutkove S B, Zhang H, Schoenfeld D A, Raynor E A, Shefner J M, Cudkowics M E, Chin A B, Aaron R and Shiffman C A 2007 Electrical

impedance myography to assess outcome in amyotrophic lateral sclerosis clinical trials Clin. Neurophysiol. 118 2413–418
Sanchez B, Pacheck A and Rutkove S B 2016 Guidelines to electrode positioning for human and animal electrical impedance myography

research Sci. Rep. 6 32615 (https://www.nature.com/articles/srep32615)
Scholz B and Anderson R 2000 On electrical impedance scanning—principles and simulations Electromedica 68 35–44
Schwatrtz S, Geisbush T R, Mijailovic A, Pasternak A, Darras B T and Rutkove S B 2015 Optimizing electrical impedance myography

measurements by using a multifrequency ratio: a study in Duchenne muscular dystrophy Clin. Neurophysiol. 126 202–08
Shefner J M, Rutkove S B, Caress J B, Benatar M, David W S, Cartwright M S, Macklin E A and Bohorquez J L 2018 Reducing sample size

requirements for future ALS clinical trials with a dedicated electrical impedance myography system Amyotrop. Lateral Scler.
Frontotemporal Degener. 19 555–61

Shellikeri S, Yunusova Y, Green J R, Pattee G L, Berry J D, Rutkove S B and Zinman L 2015 Electrical impedance myography in the
evaluation of the tongue musculature in amyotrophic lateral sclerosisMuscle Nerve 52 584–91

Shiffman C A and Rutkove S B 2013a Circuit modeling of the electrical impedance: I. neuromuscular disease Physiol. Meas. 34 203–21
Shiffman C A and Rutkove S B 2013b Circuit modeling of the electrical impedance: II. Normal subjects and system reproducibility

Physiol. Meas. 34 223–35
Urban P P, Vogt T and Hopf H C 1998 Corticobulbar tract involvement in amyotrophic lateral sclerosis. a transcranial magnetic

stimulation study Brain 121 1099–108

22


	Modelling and analysis of electrical impedance myography of the lateral tongue   
	1. Introduction
	2. Methods
	2.1. Data collection in human participants
	2.2. Grouping patients by symptoms
	2.3. Building the FEM-based model
	2.3.1. Model parameterisation

	2.4. Disease classification and symptom correlation

	3. Results
	3.1. Model fit
	3.2. Robustness analysis of patient measurements
	3.2.1. FEM assessment of edge and rotation effects
	3.2.2. Variability of measurement configurations
	3.2.3. Measurement reliability

	3.3. Classification performance and symptom correlation assessment

	4. Discussion
	5. Conclusion
	Acknowledgments
	Appendix A. Outlier removal algorithm
	Appendix B. Tables
	Appendix C. Figures
	References


