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1 RESEARCH PROBLEM

When looking at multi-agent systems (MAS), we can

define them as a collection of agents, physical or vir-

tual, which have shared responsibilities within the do-

main they are working within. These systems have

the potential to be utilised in a myriad of different

settings, such as defence, industry, agricultural, and

more (Fan et al., 2011). These systems can be com-

posed of a range of different agents, from complex

heterogeneous robotic teams (Rizk et al., 2019) to ho-

mogeneous ariel drones (Yasin et al., 2020), the diver-

sity of the construction of these systems allows them

to be used in a wide range of problem domains.

There is a clear advantage to using these systems

over their single-agent counterparts, one of these be-

ing their ability to scale to complex problem domains,

in which, single agents would be inefficient within, in

several ways. When viewing these systems from a

safety engineering standpoint, they have great poten-

tial within safety-critical domains, and with complex

agents being used within these systems, even have the

ability to replace humans, who otherwise would have

to be put in a position of risk to carry out jobs.

There are examples of these systems within

safety-critical domains, such as within search and res-

cue operations(Gregory et al., 2016), and within situ-

ations that see agents within irradiated places. It has

been seen during the disaster at the Fukushima nu-

clear power plant that these systems have been used

for this exact purpose cite (Schwager et al., 2017)

However, with added functionality brings added

complexity to the systems themselves, and the be-

haviours that they can exhibit as a system. This added

complexity, within complex domains, can be incred-

ibly time consuming and complicated for program-

mers to work with, causing issues with performance

and reliability. Therefore, a substantial research area

has emerged which focuses upon the pairing of MAS

with a machine learning technique known as rein-

forcement learning (RL), to allow systems to learn to

work together efficiently (Boutilier, 1996).

RL is a promising technique which enables agents
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to learn how to achieve system objectives effi-

ciently (Patel et al., 2011), specifically within se-

quential decision-making problems. Agents with no

knowledge of the problem environment will use a

mixture of exploration (choosing an action at ran-

dom), and exploitation (choosing the action with

the largest reward), to find state action pairings that

amount to an optimal policy. An optimal policy is

the groupings of state-action pairs that maximise a re-

ward.

There are many works which focus upon MAS

and RL, otherwise known as multi-agent reinforce-

ment learning (MARL). These works discuss the ben-

efits of MARL, such as efficiency, and robustness

through the division of labour. While also detailing

the challenges, such as ensuring reliable communi-

cations, and increased complexity (Buşoniu et al.,

2010).

MARL has been proposed to be a solution to a

wide range of problems; this includes being used

within the inspection of nuclear power plant (Bogue,

2011), and other hazardous environments, removing

the need for humans. One large deterrent in the prac-

tical use of MARL in safety-critical scenarios is due

to the inherent nature of RL and MARL, which is

stochastic. There will be hazards within any prob-

lem domain that is classed as safety-critical, and these

hazards must be given the highest of attention, failing

to do so could lead to damage being sustained to hu-

mans, valuable resources, or the system itself.

This lack of concern for hazards is a continued

issue with traditional RL, as guarantees of the learn-

ing agent needlessly performing risky behaviours are

not provided. This concern comes from the fact that

RL is used to maximise a reward function, and of-

ten safety concerns will be counter-productive to this

aim, meaning they will not be considered (Garcia and

Fernández, 2012). The lack of consideration dramat-

ically limits the potential for these systems to be used

in practical applications, as without guarantees of the

agent avoiding needlessly risky actions, they can po-

tentially cause harm. Merely trying to mitigate this

issue by attempting to capture the safety concerns

within a reward function is not sufficient, it is not pos-

sible to capture such complex safety demands within



a simple numerical reward function.

This problem has been addressed in multiple

pieces of work. However, minus recent work by (Ma-

son et al., 2017), there are very limited comprehen-

sive solutions to the problem (Garcia and Fernández,

2012), often these solutions involve completely re-

moving behaviours from the agents that can lead to

risk, in a safety-critical environment, this could be

highly counter-productive. These largely theoretical

solutions also have scalability issues, are unable to

express non-trivial safety properties, and do not fully

satisfy the objective of securing guarantees that cer-

tain requirements will be met.

In multi-agent reinforcement learning, there are

even fewer pieces of work focusing on a general,

non-problem-specific method of guaranteeing safety

properties are met. Often this work focuses on spe-

cific aspects of safety, or problems, such as col-

lision avoidance (Wang et al., 2016), autonomous

cars (Shalev-Shwartz et al., 2016a), or does not sat-

isfy this project’s desired outcomes. Meaning at the

time of writing there is not a comprehensive approach

to safe MARL, as has been introduced to safe RL.

This project, influenced by recent works in safe

single-agent RL (Mason et al., 2017), aims to produce

an approach to safe MARL, which will provide solu-

tions which are guaranteed to meet a myriad of safety

requirements, while learned producing behaviour that

adequately meets the functional requirements of the

problem.

2 OUTLINE OF OBJECTIVES

The use of MARL within safety-critical environ-

ments, and safe MARL, has several issues with its

current state. The first of these include a lack of ap-

proaches that can be applied to a broad range of sys-

tems and domains, many papers which could be de-

fined as perusing safe MARL, focus on specific is-

sues, domains, or agent types. The second issue is

a lack of ability to describe non-trivial safety require-

ments to the MARL system accurately; it is not possi-

ble to describe complex requirement within a reward

function, which is commonly used within MARL.

The third issue involves the lack of guarantees which

can be currently made about successfully following

safety requirements, while the system learns to reach

the functional requirements of the domain.

This project aims to mitigate these issues by intro-

ducing an approach which is depicted in figure one.

This approach offers a solution to these issues by in-

troducing a multi-step, interchangeable method for

producing assured MARL policies. The main objec-

tives which this approach are as follows.

1. Assured MARL should be applicable to a broad

range of problems, domains, and systems, allow-

ing users to follow the steps of the approach while

altering the tools and techniques used freely, with-

out compromising the integrity of the approach.

2. Assured MARL should be capable of allowing

domain experts to express and implement a myr-

iad of non-trivial safety and functional require-

ments to guide the MARL system.

3. Lastly, assured MARL should produce guaran-

tees that the safety requirements will not be vi-

olated, while still allowing the MAS to complete

the functional requirements efficiently, in regard

to the constraints set by the safety requirements.

The aforementioned approach is shown in figure

one; it is comprised of three main stages. The first

stage all unneeded information is abstracted away

from the problem in the form of an abstract Markov

decision process (AMPD). This is done to ensure that

the model is small enough for effective QV by ab-

stracting out all unneeded information a model which

is small enough for effective and efficient QV whilst

retaining sufficient knowledge for meaningful poli-

cies can be obtained. The abstraction of MDPs is a

well-known approach and is well established within

safety engineering for reducing problems complex-

ity (Cizelj et al., 2011).

In order for this stage to be done effectively,

all properties which inform on the agents’ safety

and functional requirements must be included in the

model, for example, states, actions or events, rewards,

or costs. It is also necessary for this stage for the

domain expert to define the safety and functional

constraints which are desired to be met. This can

be done with relative flexibility with the constraints

being defined with probabilistic computational tree

logic (PCTL) (Ciesinski and Größer, 2004).

PCTL, as the name suggests, is a temporal logic

and can be used to express functional and safety spec-

ifications which need to be met as concise formulae.

The second stage involves analysing the AMDP

that was obtained in step one using QV. Using a

model checker such as PRISM, the domain expert can

describe the AMDP in a state-based language (Parker

and Norman, 2014). The QV tool will be able to ver-

ify the AMDP and make guarantees based on func-

tional and safety constraints we defined previously.

If the AMDP has been described correctly, the QV

tool will synthesis a policy or multiple policies, that

will govern the MARL in the domain.

It may be necessary to return to stage one, if a pol-

icy cannot be found, as the description of the problem



Figure 1: The three stages of our assured MARL approach

or the abstraction of the MDP may have contained

flaws. It is also important to note if the AMDP is in-

sufficient the guarantees made by the QV tool may

not hold. It is vital, therefore that the problem is ab-

stracted appropriately.

This ability to derive policies for which guaran-

tees are possible is significantly different to other

forms of RL and MARL, and also most other forms

of safe RL, minus (Mason et al., 2017), a paper for

safe single-agent RL, by which this project is largely

influenced.

The final part of this approach sees the policy,

which was synthesised in stage two, implemented

into the actual domain problem in the form of be-

haviour constraints and task partitions, disallowing

agents from performing needlessly risky actions.

The agents will learn within their partitioned task

spaces, overlapping with each other when the respon-

sibility of tasks should be shared and will be unable

to enter risky situations unnecessarily.

Learning under these constraints will allow the

agents to enter into risky situations, but with the use

of QV, it is guaranteed that this risk will be bounded.

This learning stage does not aim for optimality as it

is common in safety engineering for the optimal strat-

egy to be removed due to added constraints. This ap-

proach, however, does guarantee a degree of safety

while also, in many cases, increasing the speed of

learning.

3 STATE OF THE ART

3.1 Preliminaries

Reinforcement learning (RL) is a branch of machine

learning that allows an agent to learn which action to

choose in relation to the current state it is within. The

premise of RL is the use of past experiences to influ-

ence an agent’s behaviour within the future. As the

agent moves around the problem space, it will receive

numerical rewards based on the effectiveness of the

action it has taken.

Domains which house these problems which RL

aims to solve are described as the well established

Markov Decision Process. The problem is broken

down into states and actions that are available within

those states. As the agent makes its way through

the domain, it may choose between using an action

known to be beneficial (exploitation) and those ac-

tions about which little is known (exploration).

When an agent takes action in a state, depending

on the effectiveness of this action towards the end

goal, the agent will receive a reward or punishment

which will be associated with the state action pair

Q : (s,a)→ R. A widespread algorithm used to find

the optimal value for these state action pairs is known

as Q-learning (Patel et al., 2011).

This agent will continue to learn in this way until

it has created a policy which will satisfy the objec-

tive, and if left to learn for long enough, will find the

optimal policy.

A policy, in the case of RL, is a mapping of ac-

tion to states with the most efficient mapping of these

actions and states being known as an optimal pol-

icy. Traditional RL algorithms, such as QL, are solely

concerned with finding the optimal policy within a

problem. However, due to this, the traditional RL is

not adequately equipped for safety constraints, and

therefore, the optimal policy may not be safe.

Multi-agent reinforcement learning, an extension

of RL, is an area of research which focuses on multi-

ple agents working together within a system. These

systems will learn to solve problems together in a



shared environment (Boutilier, 1996). As with RL,

MARL has an expansive amount of literature detail-

ing the challenges and the benefits that they can of-

fer (Buşoniu et al., 2010). Some of these benefits,

which is driving the research to be able to use these

systems practically and safely, include robustness,

division of labour, and efficiency. However, with

these benefits come the issues of increased complex-

ity, which is why this project includes an abstraction

stage, as well as issues with ensuring reliable com-

munication. There are three main types of algorithms

which have been created for MARL, and these are

as follows, independent learners, joint action learn-

ers, and gradient-descent algorithms (Buşoniu et al.,

2010; Bloembergen et al., 2015).

3.2 Safe RL

The majority of approaches found within single-

agent safe RL revolve around several types of ap-

proach depending on whether they are focus on ex-

ploration or optimisation features of learning (Gar-

cia and Fernández, 2015). Many of these approaches

which are relevant to the approach’s aims fall under

optimisation focus. Here many pieces of work have

pushed towards the tailoring of reward functions, and

also the restriction or manipulation of the rewards re-

ceived (Serrano-Cuevas et al., 2019; Kroening et al.,

2020).

Within the optimisation focus, there are three

main areas of research, these being, worst-case cri-

terion, risk-sensitive criterion, and constrained cri-

terion (Garcia and Fernández, 2015). The types

of works that tailor reward functions, as mentioned

above often fall into the scope of worst-case crite-

rion, and risk-sensitive criterion, however, the most

promising work which complements the aims of the

approach that this project proposes, falls into the con-

strained criterion.

The constrained criterion approaches are based on

the premise of constraints being places on which be-

haviours and agent can act out, and which ones they

may not, this can be seen being utilised in (Moldovan,

2012), to avoid irreversible actions, amongst others

(Moldovan, 2012; Biyik et al., 2019). One piece of

work introduced a novel approach to the constrained

approach, this being the approach completed in (Ma-

son et al., 2017), known as Assured RL.

The combination of a QV stage to the RL pro-

cesses made by (Mason et al., 2017)introduced a

multi-step approach to safe RL, allowing the verifi-

cation of requirements to a single-agent domain. This

work produced highly promising results and validated

the research direction of creating approaches based on

this premise to new areas.

3.3 Safe MARL

The research area of safe MARL appears less directed

than that of safe RL, but certain trends can be found

to have formed. When looking at recent advance-

ments within safe MARL, there is a clear focus to-

wards anti-collision of MARL systems, which is war-

ranted given the nature of MAS (Zhang et al., 2019;

Cheng et al., 2020; Khan et al., 2019). Also, there

is a focus upon automated vehicles, as a large push

in a research effort that could open many changes

to the world (Shalev-Shwartz et al., 2016b), among

some other domains, most notably traffic based do-

mains (Rasheed et al., 2020; Guo, 2020; Lemos et al.,

2018). However, much like Safe RL until recently,

this work has been focused on specific domains prob-

lems, and specific techniques, such as specific al-

gorithmic approaches, which may be restricting in

broader use. It should also be noted that the reinforce-

ment learning technique, known as deep learning, has

become a large focus within this research area.

4 METHODOLOGY

In order to achieve the objectives of this project, we

must progress through the steps which are listed be-

low.

1. To begin with relevant literature must be explored,

primarily around the research areas of safe RL,

safe MARL, and MARL. In this way we can lo-

cate the limitations that are currently troubling the

progression of MARL being used within safety-

critical scenarios. With this knowledge we can

more accurately determine the direction that our

research and approach will take.

2. It is then possible for us to develop a theoretical

approach to mitigating these limitations, and see

how this approach compares to the current litera-

ture.

3. We can then begin developing a practical ap-

proach to solve the limitations based in a theo-

retical design, the two changing as needed based

on practical limitations.

4. Evaluate our approach in two vastly different case

studies, making use of unconstrained RL as a

benchmark for our constrained RL produced by

our approach. Our focus within the evaluation

stages will be primarily on the safety require-

ments and how each type of RL manages to deal



with the problem space in regards to them, while

still being able to complete the functional require-

ments.

5. Extend the scope of the approach by including

advanced RL techniques, such as deep learning

and evaluating how well the approach can scale

to this.

6. Increasingly test the scalability of our approach,

with different system sizes, more complex do-

mains.

The approach will be evaluated using two do-

mains created within simulators. The first of these

is a patrolling simulator which allows many agents

to navigate around problem spaces (Portugal et al.,

2019). This ROS simulator, with the addition of

RL strategies will allow us to evaluate our approach

in a popular MAS problem with traditional RL.

The second simulator is a physics simulator which

is very widely used within the Deep RL commu-

nity (Todorov et al., 2012). Here a case study will be

extended to allow the approach to be used as a safety

domain for Safe Deep RL.

The QV section of the approach will be dealt with

using the model checker known as PRISM (Parker

and Norman, 2014). This model checker supports

the verification of reward-extended PCTL properties

which can be used for the purposes of the proposed

approach. PRISM has been used in previous works

involving unmanned agents (Calinescu et al., 2017;

Gerasimou et al., 2017; Gerasimou et al., 2018), and

should be more than capable of being used within the

proposed approach.

5 EXPECTED OUTCOME

The expected outcome of the project is to produce an

assured MARL approach that will enable multiple re-

inforcement learning agents to navigate a plethora of

domains, and problems, while complying to a myriad

of safety requirements. This approach will introduce

the ability to both express and satisfy diverse, com-

plex, and sometimes conflicting safety requirements

to MARL systems that can then reliably learn to meet

functional requirements to an acceptable level of effi-

ciency.

Our approach guarantees that safety requirements

will be satisfied by making use of QV. This guarantee

comes from the constraints placed onto the system,

which are verified with QV to ensure the system will

meet safety requirements without removing the abil-

ity to meet functional requirements.

As mentioned previously, this approach is in-

tended to be used across many domains, but also with

different system sizes, different RL algorithms, and

in varying domain complexity.

In order for the approach to be capable of this,

there are key prerequisites that must be supplied by

the domain expert before learning can begin, these

being the safety and functional requirements which

will be expressed within PCTL, and also a high-level

abstract model of the problem domain. The nature of

these prerequisites supports flexibility in the safety re-

quirements expressed, as well as the problem domain,

as they can be crafted to the needs of the domain.

To this end, it is expected that the system’s agents

will be restricted in what actions they can and can-

not perform within certain states of the system, while

they are learning, and after learning is completed. It

is also likely, by the nature of the domain space, and

MAS, that states within the domain will be divided

between agents within the system, potentially reduc-

ing the search space for each agent.

Agents learning within these constraints are guar-

anteed not to violate the safety requirements while

also learning the optimal policy to solving the prob-

lem, the definition of optimal, in this case, being sub-

jected to the effect the constraints have on the prob-

lem domain.

This approach will contribute largely to safe

MARL, offering a way to express and satisfy complex

and sometimes conflicting safety constraints, while

still completing functional requirements with an ac-

ceptable level of efficiency.

6 STAGE OF THE RESEARCH

At this stage steps (1-3) have been completed, with

substantial progress made in step (4), the approach

has been implemented and successfully evaluated on

one domain, showing promising initial results, these

results, as well as the work, achieved so far can be

found in (Riley et al., 2020). The aim which is be-

ing worked towards at the time of writing is expand-

ing the approach to a separate domain, and poten-

tially showcasing the approach using deep learning

techniques to bridge the gap to the current projection

within MARL research, which is heavily influenced

by deep learning.

6.1 Completed Work

In order to evaluate the approach that has been pre-

sented, a domain has been created that tackles an

issue that has been the focus of a number of pa-



Figure 2: Nuclear reactor map within the simulator, over-
laid with states and possible routes.

pers (Bogue, 2011). This domain is a robotic team

working within a nuclear power plant. Two robots

must learn to navigate the nuclear power plant, pa-

trolling each main area, as shown in Figure 2, which

is a view of the ROS simulator which this domain is

housed within, with red lines showing the actions the

robots have available to them between rooms.

The robots must meet the following constraints:

• C1: Visit each room a minimum of three times

• C2: Complete all tasks without exhausting their

batteries

Looking at these constraints, we can see that C1,

is a functional requirement of visiting each room in

the power plant three times. In comparison, C2 can be

seen as a safety requirement, as the robots using too

much of their batteries could lead to a human having

to come into the hazardous domain to collect them. At

the same time, C2 can be seen as a functional require-

ment, to finish the patrol with the maximum amount

of battery remaining. In our example, each action has

a corresponding battery cost.

The part of this domain which makes which cate-

gorises it as a hazardous domain is the room labelled

with the number 4. We suggest that this room is

highly irradiated, and while this room should be vis-

ited three times, the amount of time that the robots

spend within this room should be minimised. There-

fore, an additional safety constraint can be added as

C3:

• C3: The amount of time spent in room 4 should

be minimised

Radiation is a serious safety hazard, that can be detri-

mental to robotic agents, and human agents alike,

given our domain, minimising radiation exposure is

a natural safety constraint.

As previously stated, each action has a corre-

sponding value; for example, if a robot were in room

three, it would have six available actions available to

it. These all being movements to the other rooms via

Table 1: Options for entering and leaving room 4 and the
corresponding risk of damage.

Entrance Exit Exposure Time Risk
Hallway A Hallway A 30 (seconds) 0.03

Hallway A Hallway D 34 (seconds) 0.04

Hallway D Hallway D 46 (seconds) 0.07

Hallway D Hallway A 34 (seconds) 0.04

different paths. These paths will be more or less en-

ergy efficient based on the distance of travel.

As previously stated, room four has risk associ-

ated with it in the form of radiation exposure. The

risk associated with these actions relates to the time

the robots will spend within the room according to

the distance of the path chosen. This is shown in Ta-

ble 1 and along with the battery costs, were created as

reward structures within the PRISM language.

This domain was abstracted into an AMDP, which

is common practice within safety engineering, as

stated previously. From this abstraction, the rooms,

movement actions between rooms, battery usage, and

information on risk was left untouched, while every-

thing else was removed from the model.

The functional constraints, C1 and C2 and safety

constraints C3 were formally expressed using PCTL

and were then used to verify the abstracted MDP us-

ing the probabilistic model checker known as PRISM.

After running QV on the AMDP expressed within

PRISM, a single policy was synthesised that satisfied

both the functional and safety constraints.

This policy was then used to constrain the MAS

within the constructed domain, with tasks divided be-

tween the agents within the system based on this pol-

icy, with the two agents sharing the responsibility of

two rooms, and having two rooms each which they

are solely responsible. As well as actions being con-

strained, which stopped the agents needlessly moving

around the domain, actions were also constrained ac-

cording to the policy which caused the agents to need-

lessly enter into the hazardous area.

The evaluation experiments that were run within

this domain were very promising, with the assured

MARL constrained approach satisfying all of the con-

straints, with significantly less battery usage than

the experiments run without the assured MARL ap-

proach, and in significantly fewer learning episodes.

6.2 Ongoing Work

Work which is presently being undertaken is the con-

tinued adaption of the approach to a different domain

problem with greater complexity. This will be tak-

ing place within the physics engine known as Mu-

joco (Todorov et al., 2012). This will likely take the



form of a domain which will be ideal for deep learn-

ing, fulfilling steps (4 and5). This will allow extensive

evaluation of the approach, adding to the validity of

all of the objectives which this project aims to com-

plete.

6.3 Future Work

Future work will involve more extensive experimen-

tation of the approach under different circumstances.

This will be an ideal way to test how well the ap-

proach scales, to different domain sizes and complex-

ity, different system sizes, and learning techniques.

These additional experiments will be able to deter-

mine to what extend objective one has been achieved.
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