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Introduction

The association between periodontal disease and cardiovascu-

lar disease is well established. (Friedewald et al. 2009; Sanz  

et al. 2020). Periodontal disease has been found to increase the 

risk of both cardiovascular disease and coronary heart disease 

(Chhibber-Goel et al. 2016; Masi et al. 2019; Gustafsson et al. 

2020). Nonetheless, the biological mechanisms through which 

this occurs are still unknown. Increasing evidence suggests 

that in cases of extreme gingivitis or periodontitis, the anaero-

bic periodontal pathogen, Porphyromonas gingivalis, can enter 

the bloodstream through inflamed and ulcerated periodontal 

tissue, an area coined the porte d’entrée (Loos 2005; Castillo  

et al. 2011). Here, loss of tissue integrity and increased bleed-

ing facilitate movement of bacteria from the periodontal pocket 

into the bloodstream (Loos 2005; Schenkein and Loos 2013), 

with P. gingivalis repetitively detected in diseased vascular tis-

sue (Kozarov et al. 2005; Gaetti-Jardim et al. 2009; Marcelino 

et al. 2010; Szulc et al. 2015), as well as disease-free femoral 

and coronary arteries (Mougeot et al. 2017).

P. gingivalis harbors several virulence factors that have 

been attributed to causing its pathogenic effects both locally 

and systemically. This includes gingipains, lysine, and  

arginine-specific cysteine proteases that cause virulence by 

their ability to cleave host proteins (Hočevar et al. 2018), not 

only avoiding immune response by degradation of cytokines 

and proinflammatory molecules (Nassar et al. 2002) but also 

mediating cell surface protein and extracellular matrix disrup-

tion, facilitating the loss of cellular and tissue integrity (Tada et 

al. 2003; Yun et al. 2005; Ruggiero et al. 2013). We recently 

showed that P. gingivalis dramatically increases the morbidity 

and mortality of zebrafish in a gingipain-dependent manner 

when injected systemically (Widziolek et al. 2016), suggesting 

that these proteases may play a key role in mediating vascular 

damage.

Like most Gram-negative organisms, P. gingivalis produces 

outer membrane vesicles (OMVs) that appear to retain many of 

the virulence factors of the parent cell, including lipopolysac-

charide (LPS) (Haurat et al. 2011), fimbrae (Mantri et al. 

2015), and gingipains (Haurat et al. 2011; Nakao et al. 2014). 

OMV-derived virulence factors have been shown to drive oral 

epithelial cell responses (Nakao et al. 2014; Cecil et al. 2016) 
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Abstract

Periodontitis is increasingly associated with increased risk of cardiovascular and other systemic diseases. The Gram-negative anaerobe, 

Porphyromonas gingivalis, is a key periodontal pathogen, and several lines of evidence link the presence of this bacterium in the circulation 

with vascular disease. The outer membrane vesicles (OMVs) produced by P. gingivalis have been shown to play a role in periodontitis, 

although, to date, little is known about their interaction with the vasculature; therefore, this study assessed the effects of P. gingivalis 

OMVs on the endothelium. OMVs were isolated from wild-type strain W83 and the gingipain-deficient strain ΔK/R-ab. Immunoblotting 

along with cryo-EM showed gingipain expression in W83 but not ΔK/R-ab-derived OMVs, where gingipains were localized to the cell 

wall surface. Confluent endothelial cell monolayers infected with either W83 or W83-derived OMV displayed significantly increased 

dextran permeability over those infected with ΔK/R-ab or its OMV. Moreover, W83-derived OMVs induced significantly more vascular 

disease in a zebrafish larvae systemic infection model over 72 h compared to those injected with gingipain-deficient OMVs or controls. 

In line with these data, human microvascular endothelial cells (HMEC-1) displayed an OMV-associated, gingipain-dependent decrease 

in cell surface levels of the intercellular adhesion molecule PECAM-1 (CD31) when examined by flow cytometry. These data show, for 

the first time, that OMVs from P. gingivalis mediate increased vascular permeability, leading to a diseased phenotype both in vitro and in 

vivo. Moreover, these data strongly implicate gingipains present on the OMV surface in mediating these vascular events, most likely via a 

mechanism that involves proteolytic cleavage of endothelial cell-cell adhesins such as PECAM-1. These data provide important evidence 

for the role of bacterial-derived OMVs in mediating systemic disease.

Keywords: endothelial cells, periodontal disease, cardiovascular disease, infection, zebrafish, vascular disease
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and influence the differentiation and calcification of smooth 

muscle cells in vitro (Yang et al. 2016), suggesting that OMVs 

may affect cells of the vasculature. Interestingly, the presence 

of P. gingivalis–derived OMVs has been detected in the periph-

eral blood and cerebrospinal fluid in animal models with severe 

bacterial infections (Bai et al. 2015; Jia et al. 2015), indicating 

that OMVs may be widespread within the circulation and 

access areas of tissue not accessible to whole bacteria. 

However, the effects of OMVs on endothelial cells remain to 

be determined and require further research. Using an in vitro and in 

vivo approach, we show for the first time that P. gingivalis–

derived OMVs significantly affect endothelial permeability in 

a gingipain-dependent manner, a process that may be mediated 

by cleavage of cell-to-cell adhesion molecules. These novel 

data demonstrate that P. gingivalis OMVs may play a pivotal 

role in disrupting the vasculature, a process that may drive or 

markedly increase the risk of cardiovascular disease.

Materials and Methods

Bacterial Culture and OMV Preparation

Wild-type P. gingivalis strain W83 and its isogenic gingipain-

deficient mutant ΔK/R-ab (kgpΔ598-1732::TcR rgpA-::CmR 

rgpBΔ410-507::EmR; provided by Prof. Jan Potempa, 

Jagiellonian University, Kraków, Poland) were maintained on 

Fastidious Anaerobe agar (NeoGen) supplemented with  

5% v/v oxalated horse blood and 1 µg/mL tetracycline. Bacteria 

were inoculated into brain-heart infusion broth (Oxoid) con-

taining 5 mg/mL yeast extract, 250 µg/mL L-cysteine, 1 mg/mL 

hemin, and 1 mg/mL vitamin K and incubated anaerobically 

(37°C, 80% N
2
, 10% CO

2
, and 10% H

2
). For OMV isolation, 

freshly grown bacterial cultures (OD
600

 = 1, equivalent to 9 × 

109 colony-forming units [CFUs]) were centrifuged (8,000 g, 

4°C, 5 min) and the pellet collected. The supernatant was fil-

tered (0.2 µm) and further centrifuged for 1 h at 100,000 g, 

4°C. The resulting OMV pellet was washed once with  

phosphate-buffered saline (PBS), ultracentrifuged again, resus-

pended in PBS, and characterized using nanoparticle-tracking 

analysis (ZetaView).

Immunoblot Analysis

Protein concentrations of bacterial cell pellets and OMV were 

measured by a bicinchoninic acid (BCA) protein assay. 

Samples (10 µg protein) were run on 4% to 12% NuPAGE gels, 

transferred to nitrocellulose membranes, and then blocked with 

5% w/v milk protein in Tris-buffered saline (TBS). Following 

washing with TBS–Tween-20 (0.1%), membranes were incu-

bated with either rabbit Rb7 antiserum (Aduse-Opoku et al. 

2006) or mouse monoclonal antibody 1B5 (Curtis et al. 1999) 

(gifts from Professor Mike Curtis, King’s College London, 

London, UK). Immunoreactive bands were visualized using 

horseradish peroxidase–conjugated IgG antibody followed by 

ECL substrate (Thermo Scientific).

Immunogold Cryo–Electron Microscopy

Immunogold cryo–electron microscopy (EM) was performed 

as described by Chen et al. (2011) with modifications. Briefly, 

exponential phase-grown W83 and ΔK/R-ab were adjusted to 

OD
600

 = 1, pelleted by centrifugation (10 min, 6,000 g at 10°C), 

washed, and resuspended in PBS. Cell suspensions were 

blocked with 3% bovine serum albumin (BSA) at 4°C, then 

incubated with MAb 1B5 (1/100 dilution) in 1% BSA for 1 h. 

After washing, cells were incubated with 12 nm gold- 

conjugated goat anti-mouse antibody (Abcam; 1/20 dilution) 

for 1 h and then washed with PBS. For cryo-EM, a 5-µL sam-

ple was applied onto a Quantifoil R3.5/1 holey carbon film 

mounted on a 300-mesh copper grid (Quantifoil MicroTools 

GmbH), rendered hydrophilic by glow discharge in a reduced 

atmosphere of air for 30 s. The grid was then frozen in liquid 

ethane and imaged under cryogenic temperatures using a 

Tecnai Artica (FEI Co.) at 200 kV, equipped with a Falcon 3 

Camera (Gatan). Micrographs were recorded under low-dose 

conditions with underfocus values of 4 to 10 µm.

Gingipain Activity

Arg- and Lys-gingipain proteinase activity was determined 

using a fluorescence-based substrate activity assay as described 

previously (Naylor et al. 2017). For Arg-proteinase activity, 

100 µL PBS containing 1 mM L-cysteine and 200 µM αN-

benzoyl-L-arginine-7-amido-4-methylcourmarin was added to 

50 µL (4.5 × 108 CFUs) of each sample. Lys-proteinase activity 

was quantified using 100 µL PBS containing 1 mM L-cysteine, 

10 µM D-ab-Leu-Lys-7-amido-4-methylcourmain, and 50 µL 

of sample. After a 10-min incubation, the reaction was termi-

nated by the addition of 200 µM or 500 µM N-α-tosyl-L-

phenylalanine chloromethyl ketone for Arg and Lys activity, 

respectively. In both assays, released 7-amido-4-methylcour-

marin was measured spectrophotometrically at a 365-nm exci-

tation and a 460-nm emission.

Cell Culture, Infection, and Flow Cytometry

Immortalized human microvascular endothelial cells (HMEC-

1) (Ades et al. 1992) were grown in MCDB131 supplemented 

with 10 ng/mL epidermal growth factor, 1 µg/mL hydrocorti-

sone, 10% fetal calf serum, and 2 mM L-glutamine. For flow 

cytometry, confluent HMEC-1 cultured in 6-well plates were 

infected with W83, ΔK/R-ab (multiplicity of infection [MOI] 

of 100), or OMVs (2.8 × 1010 particles/mL) derived from these 

bacteria for 1.5 h at 37°C in serum-free medium. For inhibition 

of gingipain activity, OMVs were pretreated with 2 µM KYT-1 

and KYT-36 for 30 min in anaerobic conditions prior to isola-

tion. Medium alone was used as control. Following infection, 

HMEC-1 were washed, removed from plates using 0.02% eth-

ylenediaminetetraacetic acid for 20 min, and resuspended in 

100 µL FACS buffer (0.1% BSA, 0.1% sodium azide in PBS). 

Phycoerythrin-Cyanine7-conjugated anti-human CD31 (clone 

MW59) or isotype-conjugated IgG control was added for  
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45 min on ice. Cells were washed and resuspended in FACS 

buffer and analyzed using a LSRII flow cytometer (BD 

Biosciences). FlowJo software (TreeStar) was used to calculate 

the normalized median fluorescence index (nMFI).

Fluorescent Dextran Permeability Assay

A fluorescent dextran permeability assay was performed as 

previously described (Wang and Alexander 2011). Fibronectin-

coated (10 µg/mL) 0.4-µm pore, hanging cell culture inserts 

(Millicell) were seeded with HMEC-1 until confluent and then 

incubated with W83 or ΔK/R-ab whole cells (MOI 100) or 

OMVs (2.8 × 1010 particles/mL) derived from these bacteria 

for 1.5 h at 37°C in serum-free medium. Inserts without cells or 

HMEC-1 alone were used as controls. Solutions were removed, 

inserts were transferred to a new plate containing 500 µL sup-

plemented MCDB131, and 450 µL supplemented MCDB131 

containing 65 µg/mL 70 kDa fluorescent dextran (Molecular 

Probes) was added to the insert. Dextran leakage through the 

cell monolayer to the bottom well was monitored hourly for a 

5-h period by aspirating 250 µL medium from the bottom well 

and measuring dextran fluorescence at a 494-nm excitation and 

521-nm emission. The aspirated volume was replaced with 

supplemented MCDB131 for further readings.

Systemic Injection into Zebrafish Larvae

Zebrafish maintenance and experimental work was performed 

in accordance with UK Home Office regulations and the UK 

Animals (Scientific Procedures) Act of 1986 and under project 

license P1A4A7A5E using larvae under 5 d postfertilization 

(dpf). London wild-type inbred zebrafish larvae were main-

tained in E3 medium at 29°C according to standard protocols. 

The 30-h postfertilization (hpf), Tricaine-anesthetized, decho-

rionated zebrafish larvae were injected with PBS, 5 × 104 CFU 

W83, or OMVs (1.15 × 105 particles) derived from W83 or 

ΔK/R-ab via direct systemic inoculation into the common car-

dinal vein (Widziolek et al. 2016). Zebrafish viability was 

assessed by examining the presence of a heartbeat and blood 

flow within the circulation. Live imaging was performed using 

a stereomicroscope (WILD) equipped with a camera.

Statistical Analysis

Data are presented as mean ± standard deviation (SD) from at 

least 3 independent experiments carried out in triplicate except 

for flow cytometry data where nMFI was used. Differences 

between 2 groups were assessed using either Student’s t test or 

Mann-Whitney U test, while differences between group data 

were assessed using 1-way analysis of variance (ANOVA) fol-

lowed by Tukey’s post hoc multiple comparison test for para-

metric or nonparametric data, respectively, following a 

normality test. Survival data were evaluated using the Kaplan-

Meier method, and comparisons between individual curves 

were made using the log-rank test. Statistical analysis was per-

formed using GraphPad Prism v8.4.0 (GraphPad Software), 

and statistical significance was assumed at P < 0.05.

Results

Characterization of Wild-Type W83  

and ΔK/R-ab-Derived OMVs

Our aim was to investigate whether P. gingivalis OMVs and 

their associated gingipains might mediate endothelial damage. 

We first characterized OMVs from wild-type W83 and its iso-

genic gingipain-negative (ΔK/R-ab) strain. Nanoparticle anal-

ysis showed that numbers of OMVs produced from these 2 

strains were comparable (Appendix Fig. 1A). Overall, wild-

type W83 OMVs were 24% larger in size (P < 0.05, Appendix 

Fig. 1B, C) than those from ΔK/R-ab (144 ± 23 nm). As 

expected, immunoblotting with the RgpA/B-specific antisera 

Rb7 produced immunoreactive bands of 45 kDa for whole 

W83 cells and W83-derived OMVs, whereas this band was 

absent from counterpart ΔK/R-ab samples (Fig. 1A). Similar 

immunoblot data were obtained when using the monoclonal 

antibody 1B5 that binds to a shared glycan epitope between 

Rgp and the minority A-LPS of P. gingivalis (Appendix Fig. 

2). Furthermore, the presence of gingipains on the bacterial 

surface and periphery of purified W83-derived OMVs was 

confirmed by cryo-EM using 1B5 monoclonal antibody immu-

nogold labeling, whereas ΔK/R-ab OMV did not show any 

immunoreactivity (Fig. 1B). Cryo-EM did not reveal any mor-

phological differences between whole cells and OMVs from 

either strain (Fig. 1B). Finally, W83 whole cells and OMVs 

displayed the expected gingipain enzyme activity for both 

lysine- and arginine-based substrate that was absent in the 

ΔK/R-ab strain (P < 0.001; Fig. 1C–F).

Gingipains Mediate Increased Endothelium 

Permeability In Vitro

Since increased vascular permeability has been linked to car-

diovascular risk (Chistiakov et al. 2015), we performed a fluo-

rescent dextran-based in vitro permeability assay on confluent 

HMEC-1 monolayers to determine the influence of OMV-

expressed gingipains on endothelial permeability. Confluent, 

untreated endothelial monolayers proved an effective barrier 

with little of the applied 70-kDa fluorescent dextran permeat-

ing the cell layer after 5 h (Fig. 2A). In contrast, the endothe-

lium displayed significantly increased dextran permeability 

upon treatment with whole-cell W83 (Fig. 2B; P < 0.01) or 

W83-dervied OMVs (Fig. 2C; P < 0.05) compared to counter-

part ΔK/R-ab-treated or noninfected controls, suggesting that 

altered vascular permeability is gingipain dependent. Notably, 

endothelium permeability was significantly higher (P < 0.05) 

in the presence of W83 whole cells (4.8% dextran/h) compared 

to OMVs (2.5% dextran/h).

OMV-Associated Gingipains Are Responsible 

for Systemic Symptoms in a Zebrafish Larvae 

Infection Model

We have previously shown that zebrafish larvae display 

increased mortality (death) and morbidity (cardiac and yolk 
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edema) when systemically injected with P. gingivalis 

(Widziolek et al. 2016). The presence of gingipain on the sur-

face of OMV suggests that these may contribute to systemic 

disease. Kaplan-Meier survival plot analysis showed that both 

whole-cell W83 and W83-derived OMVs caused significantly 

more zebrafish mortality than PBS-injected controls (P < 

0.001; Fig. 3A). In contrast, morbidity in zebrafish larvae 

injected with ΔK/R-ab-derived OMVs was not significantly 

different from controls. To interrogate the OMV data further, 

we stratified the fish into viable or diseased (nonviable + 

edematous) groups. A significant increase in the number of dis-

eased zebrafish treated with W83-derived OMVs was observed 

when compared to ΔK/R-ab-derived OMVs in a time- 

dependent manner (Fig. 3B–D). W83 OMV-treated zebrafish 

larvae displayed marked cardiac edema and enlarged yolk 

sack, whereas those injected with ΔK/R-ab-derived OMV or 

PBS-treated controls displayed mild or no edema (Fig. 4E), 

providing further evidence that gingipains present on the sur-

face of OMVs can cause systemic disease in vivo.

OMV-Expressing Gingipains Cleave Endothelial 

Cell Adhesion Molecules

PECAM-1 is a major endothelial adhesion molecule responsi-

ble for maintaining vascular integrity at cell-cell junctions, 

with its loss leading to increased vascular leakage (Privratsky 

and Newman 2014). Previous studies have shown that gin-

gipains can cleave recombinant PECAM-1 (Yun et al. 2005; 

Sheets et al. 2006; Widziolek et al. 2016). We therefore exam-

ined if OMV-associated gingipains could cleave intercellular 

PECAM-1. Treatment of HMEC-1 monolayers with W83 or 

W83 OMVs did not alter endothelial viability (Fig. 4A, B). In 

contrast, PECAM-1 cell surface abundance was significantly 

(P < 0.001) decreased following infection with whole-cell 

W83 (Fig. 4C, D) and W83-derived OMVs (Fig. 4E, F) com-

pared to both untreated controls and the ΔK/R-ab equivalents. 

To confirm these findings, W83-derived OMVs were pre-

treated with the gingipain-specific protease inhibitors KYT1 

and KYT36 before incubation with HMEC-1 monolayers. 

Figure 1. Presence and activity of wild-type and ΔK/R-ab Porphyromonas gingivalis gingipains on whole bacteria and outer membrane vesicles (OMVs). 
(A) Immunopositive bands of 45 kDa were observed in the W83 whole-cell and OMV samples but not in the gingipain-null ΔK/R-ab equivalents when 
protein extracts were analyzed by immunoblotting using the Rb7 antigingipain antiserum. (B) Cryo–electron microscopy (EM) micrographs showing 
mAb 1B5 immunogold-labeled W83 bacteria and OMV. The gingipain expression is mainly located to the cell wall in both W83 whole cells and OMVs 
(black arrows) but is absent in ΔK/R-ab equivalents (scale bar: whole bacteria = 100 nm; OMV = 50 nm). (C–F) Gingipain fluorometric enzyme activity 
assays showing the higher levels of activity of arginine-specific (Arg, C, E) and lysine-specific (Lys, D, F) protease in W83 whole cells and OMVs 
compared to ΔK/R-ab mutant equivalents. In C–F, data are mean ± SD of 5 independent experiments with each individual experiment performed in 
triplicate. Statistical significance was determined by 1-way analysis of variance, ***P < 0.001.
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Here, inhibition of gingipain activity significantly (P < 0.05) 

prevented OMV-mediated cleavage of PECAM-1 (Fig. 5), 

indicating that loss of cell surface PECAM-1 by W83 OMV is 

gingipain mediated.

Discussion

Periodontal disease is one of the most common diseases world-

wide and a major public health issue (Tonetti et al. 2017). It is 

frequently associated with several systemic conditions, leading 

to the notion of the now commonly phrased “oral health sys-

temic connection” (Tonetti et al. 2013). Like many bacteria, 

P. gingivalis produces abundant OMVs (Xie 2015), although 

there are limited data as to their effects in host-pathogen inter-

actions. Here, we show for the first time that P. gingivalis 

OMVs dramatically increase vascular permeability in vitro and 

potentiate vascular edema and mortality in vivo in a gingipain-

dependent manner, suggesting that they may act in concert 

with whole bacteria to affect cardiovascular disease risk.

Gingipains are key virulence factors of P. gingivalis. As 

well as functions in bacterial coaggregation, biofilm forma-

tion, and heme acquisition, they also cleave soluble and cell 

surface human proteins (Hočevar et al. 2018). Since both 

RgpA/B and Kgp gingipains have been previously detected in 

P. gingivalis–derived OMVs by mass spectrometry (Haurat  

et al. 2011), we reasoned that gingipain-expressing OMVs 

might be a key mediator of endothelial cell surface receptor 

degradation, leading to increased vascular permeability. This 

may be important in the context of systemic disease as their 

small size and abundance are likely to allow OMVs to pene-

trate host tissue micro-niches that may not be readily accessi-

ble to P. gingivalis whole cells. To test our hypothesis, we 

generated OMVs from wild-type W83 and its isogenic gin-

gipain-deficient counterpart, ΔK/R-ab, and confirmed pres-

ence or absence of gingipains on these strains/OMVs as 

previously observed using W50 and other P. gingivalis strains 

(Curtis et al. 1999; Aduse-Opoku et al. 2006; Naylor et al. 

2017). Immunogold labeling followed by cryo-EM also 

showed that gingipains were located to the OMV cell surface. 

Although no structural abnormalities were visibly observed by 

cryo-EM, nanoparticle-tracking analysis showed that W83-

derived OMV were larger in size than their gingipain-deficient 

counterparts. It is plausible that this size difference is due to 

changes in the molecular structure within the cell wall owing to 

loss of gingipain-mediated cell wall processing.

Very few studies have examined the role of P. gingivalis 

OMVs on vascular biology. Bartruff et al. (2005) showed that 

P. gingivalis ATCC33277-derived OMVs inhibited human 

umbilical vein endothelial cell (HUVEC) proliferation by up to 

80% as well as capillary tubule formation in an OMV dose-

dependent manner. These effects were inhibited by heat treat-

ment but not by protease inhibitors, suggesting that these 

effects were protein but not protease mediated, although no 

specific factor was identified (Bartruff et al. 2005). Using the 

same P. gingivalis strain, Jia et al. (2015) observed that OMVs 

suppressed endothelial nitric oxide synthase (eNOS) transcript 

and protein expression in HUVECs via activation of the 

Figure 2. Increased endothelium permeability in vitro following 
treatment with Porphyromonas gingivalis whole cells and outer membrane 
vesicles (OMVs) is gingipain dependent. (A) Movement of fluorescently 
labeled 70 kDa dextran from the upper well to the lower well in a 
Transwell assay increased in a time-dependent manner in the absence of 
human microvascular endothelial cells (HMEC-1; insert only), whereas 
this movement was almost abolished when a confluent endothelium 
was cultured on the insert surface (monolayer). Endothelial monolayers 
were treated with (B) whole bacteria or (C) OMVs from either W83 or 
ΔK/R-ab for 1.5 h, and then dextran permeability across the endothelium 
was measured for up to 5 h; phosphate-buffered saline (PBS)–treated 
endothelium was used as controls. Increased endothelial permeability 
was significantly increased in a time-dependent manner following 
exposure to W83 when compared to ΔK/R-ab equivalents and untreated 
controls for both whole bacteria and OMVs. No significant differences 
were observed between ΔK/R-ab-treated and uninfected controls. Data 
are presented as mean ± SD of 3 independent experiments and were 
analyzed by 1-way analysis of variance followed by Tukey’s post hoc 
multiple comparisons test. *P < 0.05. **P < 0.01.



P. gingivalis Outer Membrane Vesicles Increase Vascular Permeability 1499

ERK1/2 and p38 MAPK signaling pathways in a Rho-

associated protein kinase-dependent manner. This study pro-

vides good evidence that OMVs may regulate vascular 

oxidative injury, although the OMV factors driving this effect 

were not examined. P. gingivalis–derived OMVs have recently 

been shown to promote vascular smooth muscle cell differen-

tiation and calcification by increasing the activity of runt-

related transcription factor 2 that is crucial in driving 

osteoblastic differentiation and mineralization of vascular 

smooth muscle cells (Yang et al. 2016).

Our study provides further evidence that OMVs can signifi-

cantly perturb endothelial homeostasis. In vitro, W83-derived 

OMVs not only cleaved PECAM-1 on endothelial cell (HMEC-

1) monolayers but also increased their permeability. Moreover, 

cleavage of PECAM-1 was significantly reduced when W83-

derived OMVs were either preincubated with the gingipain 

protease inhibitors KYT1 and KYT36 or infected with  

gingipain-deficient OMVs. Not only do these data show that 

P. gingivalis OMVs mediate vascular damage but also that this 

is via a gingipain-dependent mechanism, the first time that this 

has been documented for P. gingivalis OMVs. We confirmed 

some of these in vitro observations in vivo using a systemic 

zebrafish infection model. Although zebrafish larvae have 

been used extensively to examine systemic host-pathogen 

interactions (Sullivan et al. 2017), only a few studies have 

examined the role of bacterial OMVs in systemic disease, and 

to our knowledge, none have been performed using P. gingiva-

lis OMVs. OMVs derived from W83 but not ΔK/R-ab caused 

significant edema and mortality in zebrafish larvae, although 

the effects were less extreme than those observed with injec-

tion of whole-cell W83. These in vitro and in vivo data further 

confirm that OMVs have the potential to cause disease in the 

absence of whole-cell bacteria from which they are derived 

and augment current evidence that OMVs are able to exert 

their effects beyond that of the periodontal pocket.

Our data lead to the speculation that gingipains on OMVs as 

well as whole bacteria cleave endothelial intercellular junction 

proteins such as PECAM-1 and likely other adhesion mole-

cules (VE-cadherin, CD99), thereby loosening cell-to-cell con-

tacts to permit increased endothelial cell permeability. This 

Figure 3. W83 outer membrane vesicles (OMVs) induce systemic disease in zebrafish larvae in a gingipain-dependent manner. (A) Kaplan-Meier 
survival plots of zebrafish larvae infected 30-h postfertilization (hpf) with phosphate-buffered saline (PBS) control, Porphyromonas gingivalis (Pg) W83 
whole cells (WCs), Pg W83 OMVs, or ΔK/R-ab OMVs. Comparison of survival curves using the log-rank test shows significant differences between 
W83 whole cell–injected and W83 OMV-injected zebrafish compared to PBS controls. Survival curves of zebrafish larvae injected with ΔK/Ra-b OMVs 
were not statistically different from the PBS control (ns = no significant difference, ***P < 0.001). (B–D) Percentage live, edematous, and dead zebrafish 
larvae at (B) 24, (C) 48, and (D) 72 hpi showing that the percentage of diseased (dead + edematous) zebrafish was significantly increased following 
systemic infection with W83 OMVs compared to ΔK/R-ab OMVs at all time points (*P < 0.05, **P < 0.01 by 1-way analysis of variance with Tukey’s 
post hoc multiple comparisons test). (E) Representative micrographs showing the morphology of zebrafish larvae infected with PBS control, W83 
whole cells (WCs), W83 OMVs, or ΔK/R-ab OMVs. W83 whole-cell and OMV-infected zebrafish showed marked edema around yolk sac and heart 
(black arrows). Scale bars = 500 µm. Data in A–D are mean ± SD pooled from 3 independent experiments with at least 39 zebrafish total per group.
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may have 2 consequences: first, to allow exudate from the cir-

culation into tissues leading to tissue edema, which we 

observed in vivo, and, second, to expose underlying connec-

tive tissue that may lead to platelet activation and subsequently 

foci for immune cell activation on the endothelium that would 

have dramatic implications for increased risk of systemic dis-

ease (Chistiakov et al. 2015). Moreover, the nanoscale size of 

OMVs would allow proteolytic damage to occur at vascular 

sites not accessible to whole bacteria. Although this hypothesis 

requires further evaluation, our data provide a potential mecha-

nism for the link between periodontal disease and cardiovascu-

lar disease. It also provides clear evidence that the role of 

OMVs in host-microbial pathogenesis may be as important as 

whole bacteria, a factor that needs to be taken into consider-

ation in the ongoing drive to decipher the oral health systemic 

connection.
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