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The contribution of potatoes to the global food supply is increasing—consumption more

than doubled in developing countries between 1960 and 2005. Understanding climate

change impacts on global potato yields is therefore important for future food security.

Analyses of climate change impacts on potato compared to other major crops are rare,

especially at the global scale. Of two global gridded potato modeling studies published

at the time of this analysis, one simulated the impacts of temperature increases on

potential potato yields; the other did not simulate the impacts of farmer adaptation

to climate change, which may offset negative climate change impacts on yield. These

studies may therefore overestimate negative climate change impacts on yields as they

do not simultaneously include CO2 fertilisation and adaptation to climate change. Here

we simulate the abiotic impacts of climate change on potato to 2050 using the GLAM

crop model and the ISI-MIP ensemble of global climate models. Simulations include

adaptations to climate change through varying planting windows and varieties and CO2

fertilisation, unlike previous global potato modeling studies. Results show significant

skill in reproducing observed national scale yields in Europe. Elsewhere, correlations

are generally positive but low, primarily due to poor relationships between national

scale observed yields and climate. Future climate simulations including adaptation to

climate change through changing planting windows and crop varieties show that yields

are expected to increase in most cases as a result of longer growing seasons and

CO2 fertilisation. Average global yield increases range from 9 to 20% when including

adaptation. The global average yield benefits of adaptation to climate change range

from 10 to 17% across climate models. Potato agriculture is associated with lower green

house gas emissions relative to other major crops and therefore can be seen as a climate

smart option given projected yield increases with adaptation.

Keywords: adaptation, climate change, climate smart agriculture (CSA), yields, potato

1. INTRODUCTION

Potato is the most important non-grain crop and 4th most important crop in terms of global
production (FAO, 2019). Global potato production has increased by about 20% since 1990,
although production is still 50% below that of wheat, maize, and rice (FAO, 2019). Global
production is skewed toward the northern hemisphere and especially Europe, which has around
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50% of global growing area and relatively high yields (Birch et al.,
2012; FAO, 2019). Asia is now catching Europe up as a major
global producer, with India, Bangladesh, and China increasing
potato yields and area grown (FAO, 2019). Africa has also seen an
increase in potato growing areas since 1990 (FAO, 2019). These
regions rely on potatoes for a growing proportion of calories,
meaning that potatoes have increasing potential to combat food
insecurity, especially given their relatively high nutrient content
(Lutaladio and Castaldi, 2009; Devaux et al., 2014).

Given the increased importance of potatoes globally there
is an ever-growing need to understand the impacts of climate
change on potato agriculture. Temperature can limit potatoes
to being grown at higher elevations in hotter countries, with it
being a common lowland crop only in temperate areas—tuber
growth is inhibited above 33◦C (Ingram and McCloud, 1984;
Wolf et al., 1990; Timlin et al., 2006). For respectable yields, over
500mmof water is required over a typical growing season of 120–
150 days (FAO, 2019). Therefore, without farmer management
adaptations to climate change such as shifting planting dates
or varieties potato yields may fall in areas already marginal for
potato growth due to water limitations or rising temperatures
(Raymundo et al., 2018).

Most Potatoes have indeterminate growth—i.e., crop maturity
is not driven solely by environmental and genetic factors.
Management decisions are also key to when potatoes are
harvested. Temperature is the most important climatic variable
determining duration, but the relationship of climate variables to
duration of developmental stages weakens after tuber initiation
(Kooman et al., 1996). Typically, potatoes are harvested when
senescence has taken place for some time, allowing canopy
die back, and depending on management decisions the crop
haulm is cut back using mechanical or chemical methods and
left for several days. Skin hardening of tubers takes place
during this time (Wilcockson et al., 1985). Management factors
include the desired starch or dry matter content of tubers
(Noda et al., 2004), time taken for skin hardening (Wilcockson
et al., 1985), local pest and disease pressures, level of soil
moisture (excessively dry or wet soilsmaking harvest impractical)
and market prices for different varieties (Burton, 1989; Harris,
1992).

Crop management must not only adapt to climate change to
maintain sufficient production but do so in a way that reduces
green house gas emissions as much as possible—i.e., cropping
systems must be climate smart (FAO, 2010). Transformative
changes for climate smart agriculture can include changes to
crops that cope with climate change impacts and emit relatively
low emissions (Lipper et al., 2014). Potatoes have relatively low
agricultural emissions compared to other crops (Flynn et al.,
2005; Haile-Mariam et al., 2008; Nemecek et al., 2012; Clune
et al., 2017). For example, CO2 emissions have been shown
to be lower for potato than sweet corn (Haile-Mariam et al.,
2008), nitrous oxide emissions are lower for potato than cereal
crops (Flynn et al., 2005) and in general, root crops have lower
global warming potential than cereals, other vegetables and fruit
crops (Nemecek et al., 2012; Clune et al., 2017). Clune et al.
(2017) conducted a meta-analysis of life cycle assessment and
associated global warming potential for 168 food crops and

livestock products, with potato having the third lowest average
global warming potential.

Despite the importance of understanding the potential of
potatoes to contribute to a climate smart future, there has been
a lack of previous potato modeling studies compared to other
crops, especially at the global scale. Hijmans (2003) is one of
very few examples, but this study only examined the impacts of
temperature changes on potential yields, not including changes to
CO2 and precipitation. Being a C3 crop, potato yields are likely
to increase with elevated CO2 due to CO2 fertilisation (Finnan
et al., 2005; Fleisher et al., 2008). Including these impacts is
especially important as some studies suggest rising CO2 to be
more important than other mean climatic changes (Haverkort
et al., 2013) and that CO2 fertilisation for potatoes could be
higher than for other C3 crops (Magliulo et al., 2003). Raymundo
et al. (2018) include a CO2 parameterisation in global potato
simulations but do not consider adaptations of variety and
planting date changes in the future. Raymundo et al. (2018)
project global yield decreases by the mid twenty-first century of
2–6% and Hijmans (2003) decreases of 9–18% when considering
adaptation to climate change but not CO2 fertilisation.

Climate change impact studies may lose accuracy if they
do not include at least some autonomous adaptation measures
(Challinor et al., 2018). Of the 91 published analyses on
climate change impacts on crop yields included in The
Intergovernmental Panel on Climate Change 5th Assessment
report, 33 included adaptation measures (Porter et al., 2014).
These measures were limited to changes in planting date,
irrigation, crop variety, and fertiliser (Challinor et al., 2014b). In
reality many adaptation measures exist that are not included in
crop modeling studies due to current model limitations or a lack
of knowledge of specific place-based processes (Beveridge et al.,
2018), especially at the global scale.

Crop-climate impacts studies increasingly examine yield
changes when allowing planting dates and varieties to vary in
the future climate, rather than using so-called “dumb farmer”
planting dates and varieties that do not vary in the future climate
(Deryng et al., 2014; Rosenzweig et al., 2014). Previous global
gridded modeling studies have featured simulations that allow
planting dates and crop phenologies to vary as well as simulations
that keep these fixed to those used in the historical climate
(Deryng et al., 2014; Müller et al., 2017).

Changing planting dates and varieties in the future may not
be straightforward due to factors not typically taken into account
in modeling studies, including market pressures, pests and
diseases, other crops, and irrigation water availability (Hijmans,
2003). Many adaptation scenarios can be envisaged, ranging
from the so-called “dumb farmer” who does not react at all to
climate change, to the “clairvoyant farmer,” who reacts with no
restrictions to resources for adaptation—for example complete
access to alternative crop varieties (Schneider et al., 2000; Füssel,
2007). The most realistic adaptation scenario will be context
specific, depending on regional constraints such as variety
availability or the growing seasons of alternative crops. For this
reason, global studies necessarily make assumptions that will not
apply to all regions—an example of global studies losing regional
skill (Challinor et al., 2014a). Some studies preferentially avoid
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a dumb farmer scenario, assuming that farmers will adapt in
some ways to climate change and if not including adaptation the
impacts of climate change will be inaccurate (e.g., Mendelsohn
et al., 2000; Hijmans, 2003).

Here we simulate climate change impacts on potato
yields globally, taking into account CO2 fertilisation alongside
adaptation to climate change, unlike previous global potato
climate change modeling studies (Hijmans, 2003; Raymundo
et al., 2018). In accordance with the overarching objectives
of this speciality section of Frontiers in Sustainable Food
Systems (Whitfield et al., 2018), we assess future climate impacts
on potato yields and comment on the climate-smartness of
these projections.

2. MATERIALS AND METHODS

We firstly evaluate the ability of the potato model to simulate
potato yields globally in the historical period of 1980–2009. After
this assessment of model skill, simulations are used to assess
the impacts of climate change on yields, simulating yields both
in the baseline period (1990–2010) and in the future (2040–
2060) with adaptations to climate change. “Adaptation” in model
simulations refers to changes to planting windows and varieties.
Technology trends on yields are not accounted for.

Non-adaptation simulations are included as a point of
reference to adaptation simulations, which are seen as more
realistic as they avoid the “dumb farmer” bias (Schneider
et al., 2000; Füssel, 2007). We are assuming that farmers have
complete access to the varieties simulated which is seen as more
realistic than assuming constant planting dates and varieties
between now and 2050 (Mendelsohn et al., 2000). Given the
relatively low emissions associated with potato agriculture, if
yields are projected to be maintained/increase then these potato
adaptations are deemed climate smart, given that changes to
planting windows and varietal durations will not by themselves
lead to increased emissions.

2.1. The GLAM-Potato Crop Model
The General Large Area Model for annual crops (GLAM;
Challinor et al., 2004) is a process-based crop model, designed to
operate at the spatial scale of global and regional climate models
(Challinor et al., 2003).

The modeling philosophy of GLAM can be summarised as
“appropriate model complexity.” Less complex models may omit
important processes, potentially leading to poor model skill.
More complex models do not necessarily result in improved
model performance, however. If the quality of the input data
required by complex models is poor, results could also be poor
(Jamieson et al., 1998; Jagtap and Jones, 2002). Some studies have
suggested that on larger spatial scales some processes become
less important (Hansen and Jones, 2000; Challinor et al., 2004),
allowing a less complex model to perform equally well. The
relatively low number of parameters in GLAM reduces model
sensitivity to poor quality input data (Challinor et al., 2004)
and means that less extensive calibration is necessary, reducing
the risk of “overtuning” the model to data at certain sites
(Cox et al., 2006).

GLAM was originally developed for groundnut simulation as
described by Challinor et al. (2004). Being modular, it is relatively
easy tomodify for other crops and has since been used to simulate
spring wheat (Koehler et al., 2013), winter wheat (Li, 2008), maize
(Bergamaschi et al., 2013), soybean (Osborne et al., 2013), and
sorghum (Nicklin, 2013). See Supplementary Section 1.1 for a
complete description of modifications made to the model for
the simulation of potatoes. A brief description of the model is
given here.

The crop is planted within a specified planting window
when soil moisture and temperature are sufficient (see
Supplementary Section 1.1.1), or at the end of the planting
window if these conditions are not met (this is referred to
as “emergency planting”). The length of the potato growing
season is dependent on the accumulation of thermal time and
photoperiod. Daily thermal time is calculated as the amount by
which daily mean temperature exceeds a base temperature up
to an optimum temperature, at which development is fastest.
Temperatures above the optimum lead to a gradual decline
in development rate up to a maximum temperature, above
which development is halted. For potato, tuber initiation is
also sensitive to photoperiod—this is parameterised using a
photoperiod response function (Streck et al., 2007) which is
multiplied by the thermal time calculated for each day during
this developmental stage. The four growth stages for potato
are: (i) planting to emergence, (ii) emergence to tuber initiation
(sensitive to photoperiod), (iii) tuber initiation to senescence,
and (iv) senescence to harvest.

GLAM-potato parameterised crop growth using transpiration
efficiency (TE) and radiation use efficiency (RUE) approaches
(Osborne et al., 2013). Parameterisation of CO2 fertilisation is
achieved through increases in these parameters as described in
section 2.3. Each day the biomass assimilated is the minimum
of that associated with TE or RUE. Potential evapotranspiration
rates are defined as in Priestley and Taylor (1972). At harvest
maturity crop biomass is partitioned to yield using a harvest
index approach. A yield gap parameter CYG accounts for factors
not explicitly simulated in the model such as pests, diseases, and
non-optimal management (including the level of fertiliser use).
Heat stress around tuber initiation is parameterised according to
the methods of Osborne et al. (2013).

2.2. Input Data
2.2.1. Climate Data
GLAM requires daily minimum and maximum temperature,
precipitation, and solar radiation data. The EWEMBI data set
(Lange, 2019) is used as the climate input data for evaluation
of GLAM in the historical period. The EWEMBI data set was
compiled for bias correction of climate input data for the
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP;
Frieler et al., 2017).

The EWEMBI data cover the globe at 0.5 degree spatial
and daily temporal resolution. Data sources of EWEMBI are
ERA-Interim reanalysis data (ERAI; Dee et al., 2011), WATCH
forcing data methodology applied to ERA-Interim reanalysis
data (WFDEI; Weedon et al., 2014), eartH2Observe forcing data
(E2OBS; Calton, 2016), and NASA/GEWEX Surface Radiation
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Budget data (SRB; Stackhouse, 2011). The SRB data were
used to bias-correct E2OBS shortwave and longwave radiation
(Lange, 2018).

ISI-MIP 2b bias-corrected input data are used for the climate
change analysis (Hempel et al., 2013; Frieler et al., 2017).
EWEMBI data are used for the bias-correction, as described in
Lange (2018).

Four GCMs are used (HadGEM2-ES, GFDL-ESM2M, IPSL-
CM5A-LR, MIROC5). ISI-MIP data are selected for use
as they represent a globally-coherent data set that is a
reasonable subset of the CMIP5 ensemble, as demonstrated by
McSweeney and Jones (2016).

The period 2040–2060 is chosen for the future climate
simulations as by 2050 population growth is projected to stabilise
and there is a need to understand how to feed this population
without worsening climate change by emitting more green house
gases (Foley, 2011). The RCP 8.5 scenario is used, representing
current climate change trajectories (i.e., a pessimistic future),
although there is relatively little difference in climate change
across RCPs by 2050 (Moss et al., 2010). A baseline period of
1990–2010 is used to compare to the future time period as this is
centered on the historical growing area information and contains
the same number of years as the future period.

2.2.2. Potato Growing Area, Irrigation, and Soil Data
Global growing areas and irrigation are from the MIRCA data
set (Monthly Irrigated and Rainfed Crop Areas—Portmann et al.,
2010—Figure 1), representing growing areas in the year 2000
(the center of our historical period). Grid cells are selected
for simulation if they contain potato growing area, as defined
by MIRCA. Irrigation is determined by a majority grid cell
approach. If a grid cell has >50% of its growing area irrigated,
irrigated simulations are used for that grid cell. Otherwise
simulations for the grid cell are rainfed. A supplementary
irrigation routine is used for this study; if soil moisture on a
given day falls below a threshold defined as 60% of available soil
moisture, up to 1 cm of water is added to the uppermost soil layer
until soil moisture is at field capacity (Lundstrom and Stegman,
1988; Critchley et al., 2013).

Shapefiles from the Database of Global Administrative Areas
are used to define national boundaries (http://www.gadm.org/).
Soil, area, and irrigation data required for global GLAM
simulations are gridded onto a 0.5◦ grid to match the climate
data using the statistical package R (R Core Team, 2017) and
the Geospatial Data Abstraction software Library (GDAL/OGR
contributors, 2019). In any grid cell containing two or more
countries, the grid cell is assigned to the country with the largest
fraction of area in that grid cell.

Soil data are from the Global Soil Dataset for Earth System
Modeling (Shangguan et al., 2014). The soil input parameters
required for GLAM (drained lower limit, drained upper limit,
and saturation limit) are calculated using the method of Saxton
et al. (1986). Saxton et al. (1986) use percentage values of sand
and clay to calculate these hydrological parameters. These values
are then averaged over the top seven soil layers (necessary to
include the 1 mmaximum soil depth used in GLAM-potato) and
aggregated to the 0.5◦ grid.

2.2.3. Yield Data
FAOSTAT country-level yield data (FAO, 2019) are used to
calibrate and evaluate GLAM-potato. Data examined are from
the years 1980 to 2009 to coincide with available climate data.
2010 yield data are excluded from evaluation simulations as some
simulations go into a second calendar year.

FAOSTAT define the year associated with the yield data as
that when the majority of the harvest took place. The year
associated with the yield data in GLAM is the year associated
with planting. As such, countries with the bulk of harvest taking
place in a different year to planting need to be identified so
GLAM associates the correct year with the yield data. These
countries (Angola, Argentina, Lesotho, Malawi, Mauritania,
Mali, Morocco, Mozambique, Namibia, Papua New Guinea,
Rwanda, South Africa, Swaziland, Zimbabwe, Bolivia, Brazil,
Cuba, Peru, Venezuela, Australia, Timor-Leste, Bangladesh,
India, Pakistan, Fiji, Indonesia, Sri Lanka, UAE, and Vietnam)
are predominately in the southern hemisphere. Information used
to identify the main growing seasons in each country is from
the World Potato Atlas provided by the International Potato
Center, Colombia (CIP, 2009), and FAO crop calendars (FAO,
2019). When this information provides no clear single main
growing season the median harvest dates from Sacks et al.
(2010) are used to determine the main growing season for
the country.

Yield data trends could be due to factors not accounted for
in the model (e.g., technology changes) or due to changes in
climate during a time series. Both simulated and observed yields
are detrended when evaluating the model—this ensures that any
trends are removed from both observed and simulated yields to
compare like-with-like.

Before this process, each time series is examined to identify
any sudden large changes in mean yield levels across the
time series that show large changes to growing area or other
fundamental significant shifts in yield observations thatmodeling
would not account for. These are deemed to be such “multi-
state” time series if upon visual inspection they exhibit large
changes in mean yields that are sustained for three or more
years. Such time series are excluded from the analysis. Countries
excluded for exhibiting such multi-state time series are in
Supplementary Table 1. An exception is made for China—which
shows some multi-state yield data—as it produces the most
potatoes globally. The longest of the two distinct sections of yield
data is selected to evaluate the model in China. Data are also
dropped from each time series if there are consecutive years with
identical yields, these being deemed unrealistic.

The yield time series are detrended using the R function lowess
in the gplots package. Lowess is described in Cleveland (1979).
The parameter f is set to 0.8 as Cleveland (1979) state that values
between 0.2 and 0.8 are suitable for most applications; higher
f -values provide greater smoothing of data without distorting
variability. Very little difference was found when testing values
across this range so 0.8 was chosen to give greater smoothing.

Lastly, any country with fewer than 5 years of data is excluded.
A total of 102 countries are simulated. Details of which countries
are simulated and years simulated for each country can be seen in
Supplementary Table 1.
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FIGURE 1 | (A) Growing areas per grid cell in hectares. (B) Percentage of potato area that is irrigated per grid cell.

2.3. Model Parameter Configuration
GLAM-potato is used to simulate the abiotic impacts of climate
change. Future simulations assume the same growing area,
irrigation, and CYG as the baseline, meaning that pest and disease
and technology impacts are assumed to not change. The same
methods to calculate planting windows and varieties are used
in the baseline and future climates, enabling us to calculate
the benefits of adaptation (Lobell, 2014). For non-adaptation
simulations, the baseline planting dates and varieties are fixed
in the future climate. If these combinations are no longer viable
given the conditions used to select planting dates and varieties
they are excluded from non-adaptation simulations.

Table 2 lists all crop-specific parameter values used in
GLAM-potato. Specific information on crop growth parameters
is not available across different regions, therefore these are
kept constant at mid-points from reported ranges rather than
optimising parameters locally. Exceptions are the maximum rate
of change of leaf area index, the maximum rate of change

of harvest index and the maximum normalised transpiration
efficiency, which are set to the maximum of the values reported
in the literature in order to potentially simulate the highest yields.

The combination of variety and planting window that returns
the highest yield in initial simulations is used in each grid cell,
similarly to the methods of Osborne et al. (2013), Dawson et al.
(2016), Rose et al. (2016), and Hijmans (2003). As shown in
Table 1, Varieties T1-T5 consist of progressively higher thermal
time requirements for harvest maturity. Cardinal temperatures
are fixed at a mid-point from across the reported range (see
Table 2). Along with the five hypothetical varieties of potato, 12
possible planting windows are simulated at every grid cell. The
combination of variety and planting window that results in the
highest mean simulated yield along with realistic crop durations
(<180 days) and a majority of years without emergency planting
is chosen for each grid cell. These caps are imposed to simulate
realistic crop phenology and as potato harvesting is a complex
process involving climatic and non-climatic factors (Kooman
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TABLE 1 | Thermal times and critical photoperiods used for the different

varieties (◦C).

Variety T1 T2 T3 T4 P

1 100 100 200 100 13

2 175 150 275 175 12.425

3 250 200 350 250 11.85

4 325 250 425 325 11.275

5 400 300 500 400 10.7

Numbers 1–4 refer to the 4 developmental stages—planting to emergence (T1),

emergence to tuber initiation (T2), tuber initiation to senescence (T3), and senescence

to harvest (T4). P, photoperiod hours.

et al., 1996), with the majority of potato seasons not being longer
than 180 days.

The parameter CYG is used to calibrate to mean observed
yield levels to account for spatial differences in crop management
that are not explicitly included in GLAM. One value of CYG is
calibrated for each country as country-level observed yield data
are available for this global analysis (as also used in Raymundo
et al., 2018). A simulated national-level yield time series is
calculated for each country for calibrating CYG by dividing total
country production (calculated using the simulated yields in each
grid cell and the potato growing area for that grid cell) by total
area for each year. This provides a simulated yield time series for
calibration of CYG.

One half of each observed yield time series is used for
calibration and the other half for model evaluation (the lengths
of time series varying, depending on the data available in
each country). The half of the time series with the most
significant correlations between observed yields and temperature
and rainfall was chosen for evaluation, as GLAM is specifically
designed to simulate these relationships. The relative root mean
square error (RRMSE) is used to assess the accuracy of mean
simulated yield levels and correlation coefficients are used to
determine the skill of the model in simulating interannual
observed yield variability.

To take into account CO2 fertilisation, GLAM is
parameterised to match yield responses as recorded by Free
Air CO2 and Free-Air Carbon dioxide Enrichment (FACE)
(Kimball, 2016), showing potato yield increases of 22–33%.
These FACE responses are representative of a 353 ppm
concentration in the baseline (c. year 1990) and a 550 ppm
concentration of CO2 in the future—the equivalent of year 2053
for RCP 8.5. Initial simulations are conducted where parameters
are varied to choose a combination that gives sensible global
yield increases and reductions in transpiration to match FACE
data. These simulations were conducted on the first half of the
time series to match baseline CO2 conditions.

GLAM parameters concerned with biomass growth (radiation
use efficiency RUE, transpiration efficiency TE, and the
maximum normalised transpiration efficiency TENMAX)
are increased incrementally, and the physiologically-limited
potential transpiration PTM is decreased, ensuring that
reductions in transpiration are driven by physiological (stomatal
closure) and not energetic limitations (Challinor et al., 2005;

Challinor and Wheeler, 2008). The combination of parameters
that best matched FACE yield response ratios globally and
achieve a decrease in transpiration was an increase in RUE, TE,
and TENMAX by 20% and a decrease in PTM by 50%. This
resulted in a mean global yield increase of 23% and the desired
global mean decrease in transpiration.

3. RESULTS

Results sections are presented below firstly for the global GLAM
evaluation in the baseline (section 3.1), and secondly for the
impacts of climate change on potatoes (section 3.2).

Variables used in maps represent averages over the years of
simulation, with data taken from across the simulated growing
seasons (i.e., simulated planting to harvest maturity). Climate
variables are the mean daily values over the growing season.

3.1. Global Model Evaluation
The mean country-level relative root mean square error
(RRMSE) is 24%, meaning that mean yields are well captured
(see Supplementary Figure 3 for plots showing mean observed
and simulated yields). The observed yield standard deviation,
averaged across countries, is 0.32 T/Ha. The simulated mean
standard deviation is 0.43 T/Ha, meaning that simulated yield
variability is similar in magnitude to observations although
slightly overestimated. Correlations between observed and
simulated yields for the baseline period are shown in Figure 2.
The majority of countries have positive correlation coefficients.
Most significant yield correlations are in Europe where stronger
relationships between observed yields and climate inputs exist.
The 18 countries with positive correlations and p-values <

0.1 are Argentina, Australia, Austria, Belarus, Belgium, Costa,
Czech Republic, France, Germany, Hungary, Latvia, Macedonia,
Mauritania, Netherlands, Poland, Slovakia, United Kingdom,
and Uzbekistan.

Low model skill occurs when relationships between observed
yields and climate variables are not well-captured, or more
commonly when these observed relationships are weak (see
Supplementary Figures 4–6). Only four of 102 countries showed
significant correlations between observed yields and both rainfall
and temperature.

Simulated growing season durations are shown in Figure 2B.
These are typically 120–140 days in the northern hemisphere
and higher in subtropical and tropical regions. The start of the
planting window and varieties chosen for the baseline evaluation
are shown in Figure 3. Planting windows typically begin in the
first half of the year in Europe and North America. In subtropical
and tropical regions planting tends toward the latter half of the
year, although there is variation, as expected given the varied
potato growing seasons in these regions. Observed planting dates
from experimental sites across 17 countries in Raymundo et al.
(2017) are significantly correlated with mean planting dates in
GLAM (correlation of 0.77, p-value < 0.001).

Important potato growing countries of the USA, India, and
China show poor correlation coefficients between observed
and simulated yields. These countries show different signs of
temperature correlations in the two halves of the time series

Frontiers in Sustainable Food Systems | www.frontiersin.org 6 December 2020 | Volume 4 | Article 519324

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Jennings et al. Global Potato Yield Climate Impacts

TABLE 2 | Parameters used in GLAM-potato, with ranges and units where applicable.

Parameter Value References

Critical sowing soil moisture Csow 0.5 Challinor et al., 2004

VPD constant CV 0.7 Tanner and Sinclair, 1983

Thermal time requirements (◦days; stages 1, 2, 3, 4) 100–400, 100–300, 200–500, 100–400 Streck et al., 2007

Paula et al., 2005

Jefferies and Mackerron, 1987

Van Keulen and Stol, 1995

Cardinal temperatures (◦C), base, optimum, maximum 4, 18, 29 Manrique and Hodges, 1989

Sands et al., 1979

Critical photoperiod Pcrit (hours) 10.7–13 Ewing and Wareing, 1978

Streck et al., 2007

Photoperiod sensitivity Ps 0.0645 Streck et al., 2007

Maximum potential transpiration (cm/day) 1.25 Campbell et al., 1976

Root length density at the extraction front lv(z = zef ) (cm/cm3 ) 0.575 Lesczynski and Tanner, 1976

Parker et al., 1989

Stalham and Allen, 2001

Root length density by leaf area at surface ∂ lv (z=0)
∂L

(cm/cm3 ) 3.25 Iwama et al., 1993

Extraction front velocity VEF (cm day−1) 1.75 Smit and Groenwold, 2005

Critical value of leaf area index 2.8 (m2/m2) Tanner and Jury, 1976

Soil water stress factor critical value Scr 0.6 Ejieji and Gowing, 2000

Maximum rate of change in leaf area index ∂L
∂t max

(m 2 / m 2 per day) 0.14 Hay and Porter, 2006

Jones and Allen, 1983

Allen and Scott, 1980

Number of days of SLA control ND 5 Challinor and Wheeler, 2008

Max value of SLA allowed if SLA control is turned on Smax (cm) 500 Vos and Biemond, 1992

Fasan and Haverkort, 1991

Radiation Use Efficiency (g/MJ) 2.7 Zhou et al., 2016

Timlin et al., 2006

Khurana and McLaren, 1982

Jefferies and MacKerron, 1989

Transpiration efficiency (Pa) 2.7 Jefferies, 1993

Kaminski et al., 2015

Tanner, 1981

Vos and Groenwold, 1989

Maximum value of normalised transpiration efficiency (g/kg) 11.31 Vos and Groenwold, 1989

Extinction coefficient 0.55 Haverkort et al., 1991

Jongschaap and Booij, 2004

Monteith and Unsworth, 2007

Albedo A 0.2 Monteith and Unsworth, 2007

Soil heat flux constant CG 0.4 Choudhury et al., 1987

Uptake diffusion coefficient kDIF (cm2/day) 0.175 Lesczynski and Tanner, 1976

Reference value of VPD Vref (kPa) 1 Steiner et al., 1991

Maximum senescence rate −0.14 Hay and Porter, 2006

Jones and Allen, 1983

Priestley-Taylor constant α 1.26 Priestley and Taylor, 1972

Number of soil layers NSL 25 Challinor et al., 2004

Maximum root depth zmax (cm) 100 Stalham and Allen, 2001

Maximum value of harvest index zmax 0.8 Moriondo et al., 2005

Hay and Porter, 2006

Maximum rate of change of harvest index ∂HI
∂t

(per day) 0.012 Moriondo et al., 2005

Upper limit for heat stress Tlim (◦C) 33 Timlin et al., 2006

Ingram and McCloud, 1984; Wolf et al., 1990

Critical temperature for heat stress Tcrit (
◦C) 24 Timlin et al., 2006

Ingram and McCloud, 1984; Wolf et al., 1990

For the thermal time requirements, stage 1 (i 1) corresponds to the planting to emergence stage, stage 2 (i 2) to the emergence to tuber initiation stage, stage 3 (i 3) to the tuber initiation

to senescence stage, and stage 4 (i 4) to senescence to crop harvest.
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FIGURE 2 | (A) Correlation coefficient between simulated and observed national yields. (B) Mean simulated duration of growing season.

used for model calibration and evaluation, making evaluation
difficult as the model is calibrated on a section of time series
with a drastically different relationship to temperature. In some
countries (Angola, Ukraine, Russia, and China) model skill is
poor when the time series being evaluated on is short (often
only 9 years); there are limits to the inferences that should
be made on correlations based on such short time series,
and when relationships between observed yields and climate
variables change so drastically in different sections of the time
series. In China, for example, climate-yield relationships are
not well simulated and model skill is poor. Two agri-ecological
zones dominate potato agriculture: the northern region and
the south western region (CIP, 2009). The northern region
contains the most potato production, and here planting is most

commonly in the spring (Zhao et al., 2018). GLAM also simulates
spring planting dates in China, and captures mean yields well.
Correlations between observed yield and temperature are not
well-simulated, although the second half of the time series has
an opposite (positive) relationship between observed yields and
temperature which GLAM simulates accurately.

Correlations between observed yields and temperature and
rainfall are low in most areas of the USA. Planting windows and
durations are sensible however, being in the northern hemisphere
spring and harvesting in late summer, and mean yields are
accurately represented.

In India, the most important areas for potato cultivation
are across the Indo-Gangetic plain. Potato is a winter crop
here, sown from October to November (CIP, 2009). Year-round
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FIGURE 3 | (A) Start of selected planting window. (B) Variety chosen for each grid cell in the baseline climate.

production occurs in high altitude southern areas. Simulations
match these observed planting dates. A negative correlation
between rainfall and observed yields is not picked up in GLAM
in these areas, although durations, planting dates andmean yields
are well captured in the country, as is the magnitude of observed
yield variability.

3.2. Global Future Yield Changes
Global median yield increases range from 9 to 20%
with adaptation to climate change (see Figure 4 for
mean yield changes across climate models globally and
Supplementary Figures 10–13 for yield changes associated with
each climate model). Standard deviations of simulated yields

change marginally from 0.45 to 0.50 T/Ha in the baseline to 0.50
to 0.62 T/Ha in the future adaptation simulations (ranges across
climate models).

When taking into account only the grid cells that contain
both adaptation and non-adaptation future climate simulations,
median benefits of adaptation simulations over non-adaptation
simulations range from 10 to 17% (depending on the climate
model). This is slightly less than the global benefit of CO2
fertilisation in this analysis of 23% (see section 2.3). In the non-
adaptation future climate simulations over half of grid cells are
excluded (see Supplementary Figure 14B), meaning that at least
some change to baseline sowing windows or varieties is necessary
in order to fulfill selection criteria of durations <180 days and
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FIGURE 4 | Yield percentage change from baseline climate to 2040–2060. Values shown are mean values across climate models. (A) Non-adaptation simulations.

(B) Adaptation to future climate.

a majority of years successfully planting the crop within the
chosen planting window.Without removing these grid cells a fair
comparison across adaptation and non-adaptation simulations
cannot be made given these model selection criteria. Yield
gains of 6–14% are seen on average globally in non-adaptation
simulations for the grid cells that are remaining.

Figures 5, 6 show positive and negative yield changes by
country for the adaptation and non-adaptation simulations,
respectively. Most countries show yield increases in adaptation
simulations, and more high area countries show yield increases
than decreases (therefore contributing a greater amount to global
production). Yield increases are primarily driven by the length
of the growing season being maintained or increasing in the
adaptation simulations as well as CO2 fertilisation.

Planting dates and varieties selected in the future climate are
shown for one of the four climate models in Figure 7 (other
model planting dates and varieties are similar and are shown
in Supplementary Figures 7–9). The adaptation simulations
that allow planting dates and varieties to shift in the future
climate show that in the northern hemisphere in particular,

planting takes place later (into the autumn) or earlier (into the
spring) in the growing season to take advantage of the warmer
conditions in parts of the year that contain sufficient rainfall
(Supplementary Figure 15B). Climate model projections show
similar warming in most growing areas but shifting growing
seasons mean there are lower temperatures in south east USA
and China (Supplementary Figure 15B). Durations usually do
not vary substantially, as is expected in adaptation simulations
(Supplementary Figure 17B). Tropical regions in Africa and
South America show yields sometimes decreasing due to sharp
reductions in rainfall and duration.

Climate projections show that temperatures over the growing
season will increase in most of Europe by approximately 2◦C
by 2050 (Supplementary Figure 15A). Growing season total
rainfall is projected to decrease in many growing areas in
Europe, although it increases in parts of Russia and strong
yield gains are projected as a result (Supplementary Figure 16A).
South Asian countries show yield decreases even when
including adaptation to climate change. This is due to rising
temperatures and decreases in growing season duration (see
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FIGURE 5 | Countries associated with the 20 largest increases in mean yields across climate models from the baseline to 2040–2060, with ranges across climate

models, for the adaptation simulations. Boxplots show medians, interquartile ranges and the whiskers extend to 1.5 times the interquartile range. Dark red boxes

show top 10 countries for growing area, light red = top 25, orange = top 50%, and yellow = bottom 50%. Numbers next to country names refer to the normalised

growing area for each country, with a value of 1 indicating the largest growing area in one country, which is 4,394,406 ha in China.

Supplementary Figures 15, 17). In these countries, temperatures
rise to the point where growth and development of potato
become adversely impacted in model simulations.

4. DISCUSSION

This analysis shows that potato yields are likely to increase
globally by 2050 due to CO2 and adaptation benefits—even with
the more pessimistic RCP8.5 scenario simulated in this study.
The range of global average yield increases shown across climate
models is 9–20% with adaptation. The benefits of adaptation
simulations over non-adaptation simulations range from 10 to
17% globally, depending on the climate model. Hijmans (2003)
reported similar benefits to potato yields from adaptation—from
about 10–15% globally, as do Challinor et al. (2014b), although
for other major crops. These projected adaptation benefits
are substantial, although less than yield increases due to CO2

fertilisation (Kimball, 2016). The importance of adaptation is also
highlighted by the many grid cells that do not meet duration
and planting window conditions in future non-adaptation

simulations. These simulations suggest that changes to potato
growing seasons are needed in order to realise yield benefits.

The yield gains reported in this study are higher than
those reported by Hijmans (2003) and Raymundo et al.
(2018), although neither of these studies incorporate both
CO2 fertilisation and gains from adaptation. When including
the level of adaptation benefit reported in this study and in
Hijmans (2003), similar yield increases can be inferred from the
projections of Raymundo et al. (2018), given the 5.6% decrease
for RCP8.5 by 2055 they report without adaptation. If including
the 22–33% yield increases from CO2 fertilisation as reported by
Kimball (2016), the global yield decreases projected by Hijmans
(2003) of 9–18% would also be positive. Fleisher et al. (2017)
show that uncertainty across currently available potato models
can be large, highlighting the need for more global potato yield
impacts studies that need to include both CO2 fertilisation and
climate change adaptation for more detailed comparisons to
be made.

In section 3.1, we evaluate GLAM model performance,
concluding that observed yield variability is adequately captured
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FIGURE 6 | Countries associated with the 20 largest decreases in mean yields across climate models from the baseline to 2040–2060, with ranges across climate

models, for the non-adaptation simulations. Boxplots show medians, interquartile ranges and the whiskers extend to 1.5 times the interquartile range. Dark red boxes

show top 10 countries for growing area, light red = top 25, orange = top 50%, and yellow = bottom 50%. Numbers next to country names refer to the normalised

growing area for each country, with a value of 1 indicating the largest growing area in one country, which is 4,394,406 ha in China.

when it is driven by climate variables and that mean yields and
the magnitude of yield variability are well-captured. Correlations
between observed and simulated yields are insignificant in most
cases however (18 countries showing significant correlations).
This is due to most relationships between observed yields
and climate variables also being insignificant in most cases at
the national scale—only four of 102 countries had significant
relationships between yields and both rainfall and temperature.
Crop models that simulate only direct climate influences on yield
(such as the model used in this study as described in section
2.1) cannot be expected to simulate observed yield variability
when this is due to non-climatic factors. Given that when strong,
consistent relationships between observed yields and climate
inputs exist the model performs well, we have confidence in
model projections of future yields, especially given the sensible
planting dates selected in important growing areas.

Past global potato modeling studies do not report correlation
coefficients for assessing observed yield interannual variability or
model outputs such as growing season length. Previous global

crop modeling studies for other crops show skill in some cases
at representing mean yield levels and interannual variability
(e.g., Müller et al., 2017). Müller et al. (2017) however found
poor model skill for Chinese wheat and soybean, illustrating
the difficulties in evaluating crop models in these important
growing regions using national scale yield data. Raymundo et al.
(2018) show mixed results in representing the variability and
mean of FAO national yields across the globe. Their results
showed higher simulated than observed yield variability and
high RRMSE (56% on average globally), especially in China
and Russia.

In India and China, correlations are poor between observed
and simulated yields. In India, it is possible that the lack
of a flooding parameterisation in GLAM is hampering model
skill. In both of these countries however, correlations between
temperature and observed yields change drastically in the two
halves of the time series used for calibration and evaluation,
making evaluation with correlations challenging. Planting dates
are in general satisfactorily simulated in the important potato
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FIGURE 7 | (A) Start of the planting window. (B) Varieties chosen for 2040–2060 using the HadGEM2-ES model.

growing regions in these two countries, giving us confidence in
the model’s predictive potential.

The larger countries simulated in this analysis usually have
poormodel skill and this is probably not a coincidence. The use of
national scale yield data is likely a part of the reason for poor skill
as the variability of the national scale yield data may not apply
to that at the level of the grid cell. The FAOSTAT yield data are
associated with the year when the majority of the harvest takes
place. Large and climatically-variable countries such as China
and India have planting dates at different times of the year in
different regions, and therefore the yield data for a given yearmay
not be representative of all grid cells. Shorter time series of yield
data are also often associated with poor model skill; again this is
probably no coincidence, as data quality could be associated with
the quantity of data available.

Further confidence can be gained by comparing model
projections for these three countries with results from other
potato yield projection studies. In China, yields are projected
to increase in Raymundo et al. (2018) and decrease in eastern
USA (Tubiello et al., 2002; Raymundo et al., 2018), as does
this analysis. India yields are projected to increase in the

Indo-Gangetic plain in Raymundo et al. (2018) unlike the
decreases projected here however. Raymundo et al. (2018) do
not go into details as to why yields change in different regions,
and do not publish plots showing e.g., temperature or rainfall
changes from which to infer such conclusions. Other studies also
show yield decreases projected in this important Indian region
however (Hijmans, 2003; Kumar et al., 2015).

Projections in this study show that CO2 fertilisation can help
to mitigate negative influences of climate change. Other studies
have shown similar results: for example. Haverkort et al. (2013)
found that increasing CO2 more than compensated for yield
losses due to rising temperatures and reduced water availability
for South African potatoes by 2050. Ozone-induced damage can
also be compensated to some extent, although the size of the
effects from CO2 fertilisation and ozone damage are uncertain
(Magliulo et al., 2003; Finnan et al., 2005; Fleisher et al., 2008;
Feng and Kobayashi, 2009; Raymundo et al., 2018). Projected
future yield losses for potato from ozone damage are estimated to
be around 12% on average across studies (Feng and Kobayashi,
2009). Decreasing the projected yield changes simulated in this
study by projected median ozone damage still leads to positive

Frontiers in Sustainable Food Systems | www.frontiersin.org 13 December 2020 | Volume 4 | Article 519324

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Jennings et al. Global Potato Yield Climate Impacts

yield change overall however. CO2 and ozone impacts on potato
tuber quality and nutrition are complex—studies have reported
losses in protein, calcium, and potassium tuber content but
impacts on tuber quality are uncertain (Vorne et al., 2002;
Högy and Fangmeier, 2009). More studies are needed to make
robust statements about the implications of nutrient loss with
climate change.

Changing planting dates and varieties may not be
straightforward due to market pressures, pests, and diseases,
other crops and water availability (Hijmans, 2003; van Bussel,
2011). There is a large diversity of potato varieties that could
be exploited by breeders to help improve tolerance to climate
change impacts (Schafleitner et al., 2011), but the access of
new varieties to farmers will likely remain problematic in some
developing countries. The realism of altering planting dates will
likely depend on factors not accounted for in this study, namely
other crops, market pressures, and pest and disease impacts.
The assumption that pests and disease impacts will remain the
same may underestimate impacts given that pests and diseases
are expected to saturate areas in which their host crops are found
(Bebber et al., 2014).

Moore and Lobell (2014) found that the rate at which farmers
adapt to warming is an important source of uncertainty in climate
impact projections. Although the representation of adaptation
used in this study is arguably optimistic as access to varieties
and planting window changes are unrestricted, other adaptations
are not included which could help in adapting to climate change
such as tolerance to excess water, low water, or heat stress. The
lack of representation of a more diverse array of adaptation
options is common in crop modeling studies (Beveridge et al.,
2018; Challinor et al., 2018). Given that the modeled yield
variability captures the magnitude of observed yield variability,
and that many regions maintain or even increase rainfall with
adaptations of changing sowing dates and varieties, it is likely
that if freely allowing changes to when potatoes are grown, then
yields can be maintained in the future. Extreme conditions are
usually avoided and therefore these adaptations can be seen as
successfully avoiding the need to adapt in other ways (although
in some cases, including other adaptation benefits will likely lead
to further yield increases).

The impacts of climate change on potato are favourable
compared to other major crops. Challinor et al. (2014b) provide
a meta-analysis of climate change impact projections and
conclude that losses are likely for maize, rice, and wheat without
adaptation, with maize likely to see yield declines even with
adaptation. Rosenzweig et al. (2014) concur that maize yields
will suffer from climate change, with wheat, soybean, and rice
yields likely to decline with warming at lower latitudes. Soybean
and wheat were also projected to mostly see yield declines by
Osborne et al. (2013). With other major crops likely to see yield
decreases due to climate change, the case for potato being a strong
future cropping option becomes stronger, especially given the
high nutrient content of potato (Lutaladio and Castaldi, 2009)
and the increase in potato growing areas in food insecure regions
(FAO, 2019).

Given the substantial contribution agricultural systems make
to global emissions it is important to consider the implications of

adaptation options for emissions (Challinor et al., 2018;Whitfield
et al., 2018). The adaptation options simulated here are not
associated with increased emissions. Other potential adaptations,
such as increasing use of fertiliser, involve increases to emissions
(Baggs et al., 2003). An assessment of climate smartness can
therefore be made without the need for direct quantification
of the kind demonstrated by Arenas-Calle et al. (2019). Given
that potato is a low emission crop (Flynn et al., 2005; Haile-
Mariam et al., 2008; Nemecek et al., 2012; Clune et al., 2017) and
that the adaptation options shown here do not lead to increased
emissions, global potato agriculture can be viewed as part of a
climate smart agricultural future.

5. CONCLUSION

This study shows that when including adaptation to climate
change, yield increases range from 9 to 20% globally depending
on the climate model input. The emissions associated with potato
agriculture are lower than most other staple crops and potato
yields show higher yield increases with adaptation by 2050 than
other major crops. We therefore suggest that potatoes are a viable
climate smart crop that can adapt to play an important role in a
sustainable future food system.
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