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Yew Meng Khaw, Amir Abiri Jahromi, Member, IEEE, Mohammadreza F. M. Arani, Member, IEEE, Scott

Sanner, Deepa Kundur, Fellow, IEEE, and Marthe Kassouf

Abstract—The digitalization of power systems over the past
decade has made the cybersecurity of substations a top priority
for regulatory agencies and utilities. Proprietary communication
protocols are being increasingly replaced by standardized and
interoperable protocols providing utility operators with remote
access and control capabilities at the expense of growing cy-
berattack risks. In particular, the potential of supply chain
cyberattacks is on the rise in industrial control systems. In this
environment, there is a pressing need for the development of
cyberattack detection systems for substations and in particular
protective relays, a critical component of substation operation.
This paper presents a deep learning-based cyberattack detection
system for transmission line protective relays. The proposed
cyberattack detection system is first trained with current and
voltage measurements representing various types of faults on
the transmission lines. The cyberattack detection system is then
employed to detect current and voltage measurements that are
maliciously injected by an attacker to trigger the transmission
line protective relays. The proposed cyberattack detection system
is evaluated under a variety of cyberattack scenarios. The results
demonstrate that a universal architecture can be designed for the
deep learning-based cyberattack detection systems in substations.

Index Terms—Cyberphysical systems, transmission protective
relays, cyberattack detection systems, deep learning, operational
technology.

I. INTRODUCTION

C
RITICAL infrastructures including electric power sys-

tems are undergoing a digital transformation and their

dependence on information technology is expected to signifi-

cantly increase in the coming years. The integration of infor-

mation technology (IT) with operational technology (OT) in

critical infrastructures improves efficiency, sustainability and

consumer-centricity at the expense of increased cyberattack

vulnerability [1], [2]. The high-profile cyberattacks against
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critical infrastructures in recent years like cyberattacks against

the Ukrainian power grid illustrate the increasing exposure

of these critical infrastructures to cyberattacks [3], [4]. These

have promoted the detection and mitigation of cyberattacks to

a top priority for governments and regulatory agencies as well

as utilities [5].

Substations are at the forefront of digital transformation in

electric power systems. The deployment of the IEC 61850

protocol in substations is expected to revolutionize the substa-

tion automation system by improving reliability, reducing costs

and allowing interoperability between intelligent electronic

devices (IEDs) while facilitating the realization of Internet of

Things through remote access to substation assets and IEDs

[6], [7]. Despite the unquestionable benefits of substation dig-

italization in automating and streamlining protection, control

and asset management, it introduces complex cybersecurity

concerns that need to be appropriately addressed [8]. This is

mainly because the substation communication protocols are

insecure as they must operate under the limited processing

capability of intelligent electronic devices (IEDs) as well as

various operational considerations such as speed, reliability,

user-friendliness and openness [9]. Moreover, the security-

by-obscurity philosophy that has traditionally been used as

a defensive strategy for proprietary information and commu-

nication technologies (ICT) in substations no longer applies

to emerging standards and interoperable communication pro-

tocols like IEC 61850 [10]. At the same time, the possibility

of supply chain cyberattacks against industrial control systems

(ICS), such as Stuxnet [11], [12], is a growing concern in the

utilities and regulatory agencies.

In order to address the growing cybersecurity concerns

in electric utilities, different standards and initiatives have

been launched by standards organizations like the International

Society of Automation (ISA) [13]–[15] and International Elec-

trotechnical Commission (IEC) [16], research institutes like

Electric Power Research Institute (EPRI) [17] and government

agencies including U.S. Department of Energy [18], [19] to

develop cybersecurity measures and tools for cyber-assets

in power systems. Moreover, the North American Electric

Reliability Corporation (NERC) has established and enforced

Critical Infrastructure Protection (CIP) standards to identify,

categorize and protect cyber-assets that are essential to the

reliable operation of the bulk electric system [20].

Transmission line protective relays are one of the most crit-

ical protection and control devices in substations. Coordinated

cyberattacks targeting these relays have the potential to cause

simultaneous tripping of multiple transmission lines and a
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widespread blackout [21]. As such, it is crucial to enhance the

cybersecurity of transmission line protective relays. Existing

research to address this problem can be classified as proposing

either novel relay logic, anomaly detection or rule-based

detection methods. Cyber-resilient logic designs have been

proposed in [22] and [23] respectively for distance protection

and line differential protective relays. A rule-based intrusion

detection system has been presented in [24] for the IEC

61850 protocol. In [25], anomaly detection systems have been

proposed for substation automation systems. An integrated

host- and network-based anomaly detection system has been

presented in [26] for substations. The semantics of sampled

value (SV) and Generic Object Oriented Substation Event

(GOOSE) messages have been employed in [27] to identify

intrusions, anomalies, or abnormal behaviors in the IEC 61850

protocol. The aforementioned anomaly detection systems can

successfully detect and mitigate some cyberattacks against

IEC 61850 GOOSE and SV communication packets as well

as IEDs by examining the logs of intruders’ footprints. Yet,

they are unable to detect new cyberattacks that continuously

evolve. A cyberattack can target the payload of communication

packets through a supply chain attack or a combined man-

in-the-middle (MITM) and false data injection (FDI) attack

that modify the sensor readings of current and voltage mea-

surements to trigger unwanted relay action while aiming to

maintain stealth. We assert that detection of such complex

attacks are better addressed through advanced data analytics.

In recent years, there has been a growing focus on the ap-

plication of machine learning for the detection and mitigation

of cyberattacks against power systems [28]–[30]. Nevertheless,

the application of machine learning for cybersecurity enhance-

ment of protective relays has received little or no attention.

Both misuse-based and anomaly-based techniques can be used

for cyberattack detection. The misuse-based methods employ

known signatures of cyberattacks; typically, such approaches

have the advantage that they can detect such known cyber-

attacks with high recall rates, but demonstrate limitations in

detecting previously unseen attacks. This is while anomaly-

based approaches rely on learning and baselining the normal

behaviour of power systems. The main merit of anomaly-

based techniques is their capability to detect zero-day attacks

[31]. Moreover, it is possible to obtain training data for

dynamic behaviors of power systems than the evolving and

clandestine signatures of cyberattacks. A machine learning-

based anomaly detection approach also removes the need to

manually enumerate specifications and rules based on the

communication protocol, as is required in specification-based

detection techniques.

Support vector machine and principal component analysis

have been used in [32] to detect stealthy attacks against state

estimation. The compromised meters have been detected in

[33] using an artificial intelligence-based method. In [34],

conditional deep belief network is applied to recognize be-

haviour patterns of FDI attacks using historical measurement

data. False data injection attacks against phasor measurement

units (PMU) have been detected in [35] using deep learning.

A semi-supervised method has been employed in [36] for

anomaly detection in an IEC 61850-based smart distribution

substation. A non-nested generalized exemplar and state ex-

traction method has been used in [37] for intrusion detection.

Machine learning-based data analytics have been employed in

[38] to identify the root causes of the transmission protection

mal-operation such as cyberattacks. Nevertheless, the method

presented in [38] has not been designed to detect or prevent

cyberattacks against transmission line protection in real-time.

This paper expands on the novel deep learning-based cy-

berattack detection system that we presented in [39] which

was limited to distance protective relays and symmetrical

three-phase faults. In this paper, we present a novel deep

learning-based cyberattack detection system for transmission

line protective relays including distance protective relays, over-

current protective relays and differential protective relays and

for multiple fault scenarios. A 1-dimensional convolutional

based autoencoder is used for cyberattack detection, leveraging

the strength of unsupervised learning to detect previously

unseen attacks. The proposed cyberattack detection system is

trained with current and voltage datasets representing different

types of faults occurring on the protected transmission line.

The cyberattack detection system is then employed to detect

current and voltage measurements that are tampered with by

an attacker to trigger the transmission protective relays. The

proposed cyberattack detection system is evaluated for various

cyberattacks including combined MITM and FDI attack, at-

tacks on instrument transformer tap settings and replay attack.

It is demonstrated that a well-tuned deep learning-based cy-

berattack detection system performs well for different types of

transmission protective relays which highlights the possibility

of designing a universal architecture for the deep learning-

based cyberattack detection systems in substations, eliminating

the need for the costly and time-consuming process of tuning

a model architecture for every combination of fault and relay

element types.

The main contributions of this paper are as follows:

• A novel deep learning-based cyberattack detection system

with a universal architecture is proposed for detection and

mitigation of false tripping cyberattacks against transmis-

sion line protective relays in substations.

• The performance and validity of the proposed cyberattack

detection system is examined for the following:

– Various transmission line protective relays including

distance protective relays, overcurrent protective re-

lays and differential protective relays.

– Different types of faults including three-phase-

to-ground, two-phase-to-ground, single-phase-to-

ground, and phase-to-phase faults.

– Different cyberattack scenarios including 1) com-

bined MITM and FDI attack, 2) attacks on instru-

ment transformer tap settings, and 3) replay attack.

It is worth noting that the proposed method is different

from deep learning-based fault detection systems. The deep

learning-based fault detection systems replace the protective

relay logics for fault detection and isolation. This is while the

proposed method is used in conjunction with protective relay

elements to detect and mitigate false tripping cyberattacks

against protective relays using operational technology data.
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Fig. 1. Architecture of IEC61850 substation automation system for transmis-
sion line protection.

The remainder of this paper is organized as follows. The

modeling of cyberattacks against transmission line protective

relays is described in Section II. Section III presents the

proposed cyberattack detection system. The training, valida-

tion and testing steps of the proposed cyberattack detection

system are presented in Section IV. The simulation results are

provided in Section V. A brief discussion about the challenges

facing the development of machine learning-based cyberattack

detection systems for protective relays and directions for future

research are provided in Section VI before concluding the

paper in Section VII.

II. THE MODELING OF CYBERATTACKS AGAINST

TRANSMISSION LINE PROTECTIVE RELAYS

Transmission lines are normally protected by primary/main

and back-up protections in power systems using the principles

of distance, overcurrent and differential relaying. High-speed

protection is an essential requirement for transmission lines be-

cause it preserves system stability, reduces damage to critical

assets, improves power quality, and simplifies protective relay

coordination. This has motivated the use of communication-

assisted protection including current differential and pilot

protection as the primary/main protection for transmission

lines. This is while the step-distance and overcurrent protection

remain as the widely used back-up protection for transmission

lines.

The architecture of IEC 61850 substation automation system

for transmission line protection is illustrated in Fig. 1. The

merging units (MU) collect the analog measurements from

the current transformers (CT) and voltage transformers (VT)

and perform the analog-to-digital conversion. The MUs then

transmit the measurements to the IEDs over the IEC 61850

substation LAN using SV messages. The transmission line pro-

tection logics for distance, overcurrent and differential relaying

are implemented in the IEDs. The current differential and pilot

protection logics receive the required information from the

remote substation through the inter-substation communication

network by GOOSE and SV messages.

It is worth noting that IEC 62351, a family of standards on

data and communications security for power system manage-

ment, was introduced to address the cybersecurity concerns

associated with the IEC 61850 protocol [16]. Specifically,

the implementation of IEC 62351 will enhance the overall

cybersecurity of the substation automation system by incor-

porating confidentiality and integrity measures like role-based

access control that restricts unnecessary permissions, message

level authentications and encryption mechanisms. Yet, no en-

cryption mechanism was specified in the IEC 62351 standard

for SV messages because of the time critical nature of these

messages [40]. Instead, according to the IEC 62351-6 standard,

the cybersecurity for information exchange of these time-

critical messages relies on the supposition that SV messages

are restricted to a logical substation LAN. Consequently, a

breach on the substation LAN is sufficient to compromise

power system applications that utilize SV messages. Moreover,

the majority of the cyberattacks considered in our paper target

operational technology data rather than information technol-

ogy data. Authentication or other security measures proposed

in the IEC 62351 standard would not prevent cyberattacks that

are considered in the paper as discussed below.

The objective of the cyberattacker in this paper is to cause

the false tripping of transmission lines through falsifying the

measurements from the instrument transformers to the trans-

mission line protective relays. In other words, the particular

type of cyberattack considered is one that aims to deceive

protective relays into incorrectly assessing that a fault exists

leading to unwanted breaker action. That is, no fault actually

exists, but the attack induces the protection system to pick

up as if there is. Hence, we aim to distinguish the presence

of actual faults from these cyberattacks that attempt to mimic

and fabricate the presence of faults that do not exist. Three

scenarios are considered here to achieve this objective. The

first scenario is executed through the process bus while the

remaining two scenarios are executed by compromising a

merging unit as illustrated in Fig. 1.

A. Attack Scenario 1

In the first scenario, we assume that a cyberattacker has

remote access to the substation automation system through

a malicious device which is connected to the process bus.

The cyberattacker is assumed to recruit a substation employee

who has authority to access communication devices in the

substation to install the malicious device. The cyberattacker

with access to the process bus through the malicious device

disrupts the flow of SV packets from the merging unit to the

IEDs and forwards the SV packets with falsified payloads

to the IEDs using a combination of MITM and FDI attack.

Specifically, the attacker injects random false data with the

appropriate magnitude, thus, coercing the transmission line

protective relays to issue false tripping commands. When

targeting an overcurrent relay, the attacker injects random

current measurements with large magnitude to mimic a fault

condition. Similarly, with a differential relay as a target,

the attacker injects random current measurements with large

magnitude while also ensuring the differential relay receives

current measurements of different magnitude from both termi-

nals of the transmission line. For the false tripping of distance

relay, the attacker injects both current measurements of high

magnitude and voltage measurements of low magnitude.

B. Attack Scenario 2

In the second scenario, we assume that the attacker has

remote or physical access to the merging unit and modifies the
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settings of the CT/VT through the merging unit. The attack

is assumed to be executed by an insider with access to the

substation automation system or through a remote access to

the process bus similar to the first scenario. The attacker could

have recruited a disgruntled internal employee or may have

obtained stolen or leaked legitimate operator credentials that

allow remote access to the substation communication network.

The tap settings of the instrument transformers allow users

to change the voltage and current ratios between the primary

and secondary windings of the transformers. For example, an

attacker can change the tap settings of a current transformer

such that a larger current is observed downstream to the

current transformer. The attacker can also tamper with the tap

settings of a voltage transformer such that the protective relays

receive voltage measurements of lower magnitude, mimicking

the voltage behaviour in a fault condition.

C. Attack Scenario 3

In the third scenario, we assume that a malware installed on

the merging unit is used to perform a replay attack by replacing

measurements from the CT/VT with previously recorded fault

measurements to cause false tripping of the transmission line

protective relays. The malware can be installed on the merging

unit through a supply chain attack or a threat agent with

physical or remote access to the substation automation system.

The malware can then eavesdrop and disrupt the information

exchange between the instrument transformer and merging unit

as well as between the merging unit and IED. This allows the

attacker to record current and voltage measurements during

fault scenario, which can be injected at a later time as a replay

attack.

III. THE PROPOSED CYBERATTACK DETECTION SYSTEM

The objective of the proposed cyberattack detection system

is to detect patterns in the measurements from instrument

transformers, i.e., CTs and VTs, that do not conform to the

normal behavior of measurements. Note that the notion of

normal behavior of measurements in this paper includes both

power system fault-free dynamics and dynamics during power

system faults. One distinction of the proposed approach is that

patterns in OT data are harnessed for the purpose of anomaly

detection. Hence, in contrast to typical IT intrusion detection

approaches that make use of communication packet semantics

or logs of intruder footprints, we make use of data closer to the

physical impacts of the attacks. Hence, time-series current and

voltage measurements at the process bus level of substations

are the inputs employed for data analytics.

A. Configuration of the Proposed Cyberattack Detection Sys-

tem in Substations

Anomaly detection systems using machine learning ap-

proaches have received considerable attention in recent years

in various application domains including cybersecurity [41]–

[43]. Several factors such as the nature of the input data, the

availability of the labeled datasets as well as the constraints

and requirements induced by the application domain determine

the choice of the machine learning approaches for anomaly
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Fig. 2. The configuration of the proposed cyberattack detection system (CDS)
in a substation.

detection. As stated above, time-series current and voltage

measurements at the process bus level of substations are the

inputs employed for in the CDS. Moreover, traditional IEDs

and automation devices in substations are resource constrained

devices with just enough memory and computational power to

perform their tasks. This prevents the implementation of the

power and resource demanding cyberattack detection systems

that use machine learning-based methods within the IEDs and

automation systems in substations. Yet, IEDs and automation

devices with more powerful processors may emerge in the

coming years with the ability to implement machine learning-

based methods in order to respond to the growing need of

power utilities to leverage machine learning techniques in their

system operations. Finally, the evolving and clandestine nature

of cyberattacks as well as their rarity against protective relays

limit the possibility of obtaining and effectively modeling

these anomalous behaviour in contrast to normal behaviour

in substations for which there is significantly more data and

more predictable characteristics. In this environment, semi-

supervised and unsupervised machine learning approaches are

in a superior position for cyberattack detection in contrast to

supervised machine learning approaches.

Considering the aforementioned factors, we propose a

centralized deep learning-based cyberattack detection system

(CDS) for transmission line protective relays performed by ad-

ditional physical devices with sufficient computational power

separate from the IEDs as illustrated in Fig. 2. The cyberattack

detection system is external to the IEDs and MUs within

the substation and is connected to them via the process bus

and inter-substation communication network. The proposed

cyberattack detection system functions in two steps: 1) the

offline training, validation and testing step and 2) the real-

time operational step. In the offline training, validation and

testing step, the proposed model learns the normal behaviour

of the current and voltage measurements during transmission

line faults. The cyberattack detection system will go live

within the substation when calibration through the offline

training, validation and testing step is finalized. In the real-time

operational step, the cyberattack detection system identifies

anomalous measurements that do not conform to the normal

behavior of measurements. The cyberattack detection system

has two modes of operation in real-time: 1) cyberattack detec-

tion mode, and 2) cyberattack detection and mitigation mode.

In the detection mode, the cyberattack detection system only
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generates an alarm after detecting anomalous measurements

and does not intervene with the functionality of the protective

relays in the IED. This is while, in the detection and mitigation

mode, the cyberattack detection system sends commands to the

IEDs to block the anomalous measurements in order to avoid

transmission line false tripping.

It is worth noting that the proposed cyberattack detection

system classifies any anomalous measurement as a cyberat-

tack. This means that in detection mode, an alarm is generated,

or in detection and mitigation mode, commands are sent

to the IEDs to block anomalous measurements. In typical

anomaly detection frameworks, the type of anomaly is not

distinguished because they are not explicitly modeled. There

are advantages to this treatment because new cyberattacks

previously unknown can be accounted for as long as they

involve anomalous measurements. If the source of anomalous

measurements is to be distinguished, offline post forensic

analysis like the one proposed in [38] is required.

B. A Deep Learning Autoencoder-based Cyberattack Detec-

tion System

We now outline an unsupervised deep learning approach to

anomaly detection using an autoencoder. Such an approach

allows for the detection of zero-day attacks and removes the

need to manually enumerate specifications and rules based

on a specific communication protocol and cyberattack type.

A deep learning approach also allows us to leverage the

availability of a large volume of high-fidelity data that can be

obtained for model training. The autoencoder consists of two

parts; encoder and decoder. The encoder, f , compresses the

input data, x, to a latent space, z, with dimensions typically

smaller than the input data. The decoder, g, reconstructs an

estimate of the input data from the latent space z. As the

autoencoder is trained to be an identity system, the latent

space z of smaller dimensionality must necessarily capture

the most salient features of the input. Since the latent space

is particular to the type of training data, inputs deviating from

the training dataset will result in high reconstruction errors

and flagged as anomalous data. The reconstruction error is

computed from the mean squared error (MSE) between the

reconstructed output and the input data to the autoencoder.

Different types of models can be used in the autoencoder

such as a fully-connected network, recurrent neural network

and convolutional neural network. The reader should note that

autoencoders are generally considered unsupervised methods

because although labels of the normal training data are known,

they are not explicitly incorporated during the training process

as the original voltage and current input itself is also employed

in the role of the labels. The objective of the autoencoder

is to build a model of the normal data with the reasoning

that data which is abnormal cannot be properly reproduced

(i.e., autoencoded) by an autoencoder trained on only the

normal data. As the autoencoder itself does not explicitly

predict normal or abnormal labels, the autoencoder is generally

considered unsupervised.

In this paper, a 1-dimensional convolutional based autoen-

coder is used for the cyberattack detection system. Here,

both the encoder and decoder make use of 1-dimensional
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Fig. 3. A 1-dimensional convolution operation on 10 measurement samples
with a convolution filter F of length M = 4.

convolution stages that consist of sliding a filter kernel over

the data set and applying a dot product. The output of the

convolution operation is given in (1).

Y (i) = (X ∗ F )(i)

=

M−1
∑

m=0

FmXi+m (1)

where Y denotes the output of the convolution operation, X

denotes the 1-dimensional data input, F denotes the convolu-

tion filter of length M, ’∗’ denotes the convolutional operator

and i denotes the input data index. The convolution operation

is illustrated in Fig. 3. The CNN model allows for parameter

sharing in F which reduces the total number of trainable

parameters, resulting in computational savings during model

training with less memory requirements and higher statistical

efficiency [42].

For the encoder section of the cyberattack detection sys-

tem that embeds the input into a low-dimensional latent

space where similar inputs should embed near each other,

we use a neural network consisting of interleaved layers of

convolutional operations followed by a nonlinear activation

and max pooling [42]. An example of a common nonlinear

activation function is the rectified linear unit (ReLU) which is

a piecewise linear function as defined in (2).

σ(x) = max(x, 0) (2)

The pooling layer has the effect of reducing the input dimen-

sion by downsampling the input. Common approaches include

average pooling and max pooling layers which slide a small

window at a given stride, taking the average and maximum

value respectively within the window to produce a downsized

dataset. In the decoder section of the autoencoder, the data

in the latent space is expanded back to the original input

dimensions. Our decoder consists of convolution operations

interleaved with 1-dimensional upsampling layers [45]. We

provide an example of a 1-dimensional upsampling operation

with an upsampling factor of 2 in Fig. 4.

IV. TRAINING, VALIDATION AND TESTING OF THE

CYBERATTACK DETECTION SYSTEM

Different types of faults including three-phase-to-ground

faults, two-phase-to-ground faults, single-phase-to-ground

faults and phase-to-phase faults may occur on transmission
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Fig. 5. The IEEE PSRC D6 benchmark test system.

lines. Naturally, the signatures of each of these faults are

distinct. Moreover, the types of input data used by different

protective relays such as distance, overcurrent and differential

protective relays are different. For instance, distance relays

make use of both current and voltage measurements while

overcurrent and differential relays rely solely on current mea-

surements.

The differences between the types of faults and inputs to

the protective relays render it impossible to train a single deep

learning model for all types of faults and protective relays. Yet,

we posit that a universal architecture can be designed for the

deep-learning model in the cyberattack detection system. The

implementation of a universal architecture in the cyberattack

detection system eliminates the cumbersome need for opti-

mizing the architecture for every variety and combination of

faults and protective relays. Hence, in this paper, we consider

a universal architecture for the deep-learning model and train

it for each type of fault and protective relay separately. This

approach results in a deep-learning model with the universal

architecture, with different model weights for each combina-

tion of faults and protective relays. Each of the deep learning

models becomes active by the activation of the corresponding

protective relay element and remains inactive for the activation

of all other protective relay elements. Note that the training,

validation and testing steps are conducted offline. Therefore,

the computational complexity and execution times are not

limiting factors.

A. Transmission Test System

Fig. 5 illustrates the IEEE power system relaying committee

(PSRC) D6 benchmark test system [46]. The test system

connects a power plant with four 250 MVA generator units

to a 230 kV transmission network through two parallel 500

kV transmission lines. The test system is comprised of three

substations. Substation A connects the power plant to the 500

kV transmission lines. Substation B is a switching substation

and is located 280 km from substation A. Substation C is

located 220 km from Substation B and models the connection

to a 230 kV transmission system that is modeled as an infinite

bus. The transmission lines are protected by the principles of

distance, overcurrent and differential protection.

B. Training Dataset

The transmission test system in Fig. 5 is simulated in OPAL-

RT HYPERSIM to generate training datasets. The simulations

are performed for a duration of 200 milliseconds with the

fault initiating randomly between t=100 ms to t=120 ms. The

starting time of the fault is varied between t=100 ms to t=120

ms in the simulations to ensure fault occurs at different parts

of the current and voltage waveforms. Note that the period

of one cycle is approximately 16.7 ms in a 60 Hz power

system. Moreover, the generation levels and fault locations

on the transmission line L1 are changed in each simulation

to generate datasets under different operating conditions and

fault location scenarios. The generation levels of G1-G2 and

G3-G4 are varied in unison between 300 MW to 400 MW

with a step size of 10 MW. The fault location is changed

along the transmission line L1 with a step size of 10 km.

The simulations are performed for three-phase-to-ground, two-

phase-to-ground, single-phase-to-ground, and phase-to-phase

faults. The fault impedance is assumed to be zero. In total,

50,820 simulations are performed to generate training datasets

for each type of fault.

The measurements are collected for all three-phases. The

current measurements are collected from CT1 and CT2 in

Fig. 5 and the voltage measurements are collected from VT1.

The measurements are collected at the sampling rate of 4800

samples per second to comply with IEC 61850-9-2 standard

for SV packet specifications [47]. As such, each simulation

run contains 960 samples per measurement per phase.

C. Training and Optimization of the Autoencoder Architecture

The 1-dimensional convolutional based autoencoder de-

scribed in Section III-B is trained with three-phase measure-

ments corresponding to the inputs of the associated protective

relay. The autoencoder associated with the overcurrent pro-

tective relay is trained with three-phase current measurements

from CT1. The autoencoder associated with the distance relay

is trained with three-phase current and voltage measurements

from CT1 and VT1 and the autoencoder associated with the

differential relay is trained with three-phase current measure-

ments from CT1 and CT2.

The autoencoder is trained with 70% of the 50,820 simu-

lations. The validation and test datasets each comprises 15%

of the 50,820 simulations. An important parameter for autoen-

coder training is the input data length, i.e., the number of input

samples fed to the autoencoder. In this paper, a sliding window

of 50 ms, i.e., 240 samples of current/voltage measurements

for each phase, is fed to the autoencoder as input. As such,

each window consists of 3 cycles of measurements. Thus,

the 200 ms simulation data is split into sliding windows of

50 ms data. As the sliding window slides over the entire

simulation sample, the autoencoder is trained. Note that data

standardization is performed before the data is fed to the

autoencoder. Consider a training dataset D that contains the
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measurement points, x1, x2, ..., xN . In data standardization,

the data for each measurement type is scaled to unit variance

and zero mean as given in (3)-(5) where the mean, µ, and

standard deviation, σ, is calculated across the entire training

dataset.

µ =

N
∑

i=1

xi

n
(3)

σ =

√

√

√

√

√

N
∑

i=1

(xi − µ)2

n
(4)

xstand =
x− µ

σ
(5)

The cyberattack detection system is further trained to reduce

the loss function, which is the MSE between the input and the

reconstructed output of the autoencoder as given in (6).

L = ||g(f(x))− x||22 (6)

ADAM, a state-of-the-art stochastic gradient-based optimiza-

tion algorithm [48], is used for model training to minimize the

loss function. ADAM employs an adaptive learning rate and

momentum via a moving average of the gradients and squared

gradients, for faster convergence over a straightforward gradi-

ent descent algorithm.

A universal architecture is used in this paper for the cy-

berattack detection system as discussed in Section IV. The

architecture is optimized via grid search for different number

of layers, number of convolution filters and pooling size. The

architecture is optimized in this paper to obtain the highest

recall rate for the replay attack scenario instead of the lowest

loss value. This is because the lowest loss value does not nec-

essarily result in the best cyberattack detection performance.

The final architecture is chosen based on the highest recall rate

observed in the validation dataset. Using labelled replay attack

measurement samples during the validation step allows the

selection of a better tuned model architecture at the expense of

slightly biasing the performance of the cyberattack detection

system towards the replay attack scenario. Nevertheless, the

cyberattack detection system is observed to perform well in

all other attack scenarios considered in this paper.

The final architecture is summarized in Table I and il-

lustrated in Fig. 6. In all convolutional layers, we used a

convolution filter size of 10, convolutional stride length of

1 and used ReLU as the activation function. When choosing

the final model weights, we chose the weights at the epoch

that results in the highest recall rate within 100 epochs.

For example, in the three-phase-to-ground fault scenario, we

used 80 epochs for the overcurrent relay, 70 epochs for the

distance relay and 60 epochs for the differential relay. This is

commonly known as early stopping. Again, this choice of the

final model weights is done based on the validation dataset.

The deep learning model is implemented with Keras with a

Tensorflow backend [49].

TABLE I
AUTOENCODER ARCHITECTURE

Encoder Decoder

1. Convolution 32 filters 13. Convolution 256 filters

2. Convolution 32 filters 14. Convolution 256 filters

3. Max Pooling Pool Size 2 15. Upsampling Factor 6

4. Convolution 64 filters 16. Convolution 128 filters

5. Convolution 64 filters 17. Convolution 128 filters

6. Max Pooling Pool Size 4 18. Upsampling Factor 5

7. Convolution 128 filters 19. Convolution 64 filters

8. Convolution 128 filters 20. Convolution 64 filters

9. Max Pooling Pool Size 5 21. Upsampling Factor 4

10. Convolution 256 filters 22. Convolution 32 filters

11. Convolution 256 filters 23. Convolution 32 filters

12. Max Pooling Pool Size 6 24. Upsampling Factor 2

25. Convolution 3 filters

26. Convolution 3 filters

V. SIMULATION RESULTS

In this section, we examine the performance of the pro-

posed deep learning-based cyberattack detection system. Three

cyberattack scenarios including 1) combined MITM and FDI

attack, 2) attack on instrument transformer tap settings, and 3)

replay attack are considered. In each scenario, we investigate

the performance of the cyberattack detection system for dif-

ferent types of faults and different protective relay principles.

Anomalous or attack data are data that deviates from

normal behavior as recognized by the cyberattack detection

system during model training. These attack cases represent

rare occurrences resulting in an imbalanced dataset with

very small number of positive cases. Using accuracy as our

performance metric is therefore inapt. Consider a dataset with

1000 measurement samples with only 1 attack sample. A naive

cyberattack detection system that always classifies an input

as negative or normal will achieve an accuracy of 99.9%. As

such, the precision and recall metrics are employed to measure

the performance of the proposed cyberattack detection system.

precision =
# True Positive

# True Positive + # False Positive
(7)

recall =
#True Positive

# True Positive + # False Negative
(8)

True Positive represents cyberattacks that are correctly

detected by the cyberattack detection system. False Positive

represents measurements with normal behaviour that are in-

correctly classified as a cyberattack. False Negative repre-

sents cyberattacks that are not detected by the cyberattack

detection system. True Negative represents measurements with

normal behaviour that are correctly classified as legitimate

measurements. # represents the count of each event. Therefore,

precision is the fraction of attack classifications made by

the cyberattack detection model that is correct. Recall is the

fraction of actual attacks that are ”recalled”, i.e., correctly

classified as attacks by the cyberattack detection system.

As discussed in Section III-B, the deep learning-based

cyberattack detection system is capable of reconstructing mea-

surements with low reconstruction error when applied to data

exhibiting normal characteristics. This is while reconstruction

error is high for anomalous measurements that deviate from

the training data. Hence, a threshold for the reconstruction

error can be set for cyberattack detection. The threshold for

cyberattack detection is set at 1.5 times of the maximum MSE
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Fig. 6. The architecture of the proposed cyberattack detection system where the input/output dimensions depend on the type of the protective relay.

TABLE II
PERFORMANCE OF THE CDS: RANDOM FDI ATTACK

Fault Scenario Relay Type Precision Recall

Single-Phase-to-Ground (A-G) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

Two-Phase-to-Ground (A-B-G) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

Three-Phase-to-Ground (A-B-C-G) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

Phase-to-Phase (A-B) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

Three-Phase (A-B-C) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

between the input and the reconstructed output observed with

the training dataset. This conservatively high threshold ensures

low false positive rates.

A. Combined Man-In-The-Middle and Random False Data

Injection Attack

In this scenario, we assume that a cyberattacker has remote

access to the substation automation system through a malicious

device which is connected to the process bus. We further

assume that the cyberattacker understands the principles of

transmission line protective relays but does not have knowl-

edge about the dynamics of the transmission network under

attack. Thus, the cyberattacker injects random measurements

to the process bus to trigger the transmission line protective

relays. In the case of the overcurrent relay, the cyberattacker

injects current measurements with large magnitudes to the

process bus. In the case of the distance relay, the cyberattacker

injects current and voltage measurements with high and low

magnitudes respectively to the process bus to represent a fault.

In the case of the differential relay, the cyberattacker injects

different current measurements with high magnitudes to the

process bus. The performance of the cyberattack detection

system considering different types of faults and protective

relay principles for the combined MITM and FDI attack is

summarized in Table II. A sample of measurements during a

combined MITM and FDI attack on the overcurrent relay is

illustrated in Fig. 7. As illustrated in Fig. 7, the autoencoder

reconstructs the injected false data with high error.

Fig. 7. Reconstruction of the measurements during a combined MITM and
random FDI attack on the overcurrent relay.

B. Tampering of Instrument Transformer Tap Settings

In the second scenario, we assume that the attacker has

remote or physical access to the merging unit and modifies

the settings of the CT/VT through the merging unit. In the

case of overcurrent relay, the attacker changes the tap setting

of the current transformer CT1 such that a large current

magnitude is seen by the overcurrent relay. In the case of

the distance relay, the attacker changes the tap settings of

current transformer CT1 and voltage transformer VT1 such

that it triggers the distance relay. In the case of differential

relay, the cyberattacker changes the tap settings of the current

transformers CT1 and CT2 to trigger the differential relay. The

performance of the cyberattack detection system considering

different types of faults and protective relay principles for

the attacks against the instrument transformer tap settings is

summarized in Table III. A sample of measurements during

a cyberattack on the instrument transformer tap settings to

trigger a differential protective relay is illustrated in Fig. 8.

As illustrated in Fig. 8, the autoencoder poorly reconstructs

the measurements resulting in successful detection of the

cyberattack due to significant deviation of the attack data from

normal behavior.

C. Replay Attack

In the third scenario, we assume that a malware inside

the merging unit performs a replay attack by replacing the

measurements from CT/VT with previously recorded measure-

ments to cause false trippings of the protective relays. We

considered various scenarios ranging from unsynchronized to
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TABLE III
PERFORMANCE OF THE CDS: ATTACKS AGAINST INSTRUMENT

TRANSFORMER TAP SETTINGS

Fault Scenario Relay Type Precision Recall

Single-Phase-to-Ground (A-G) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

Two-Phase-to-Ground (A-B-G) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

Three-Phase-to-Ground (A-B-C-G) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

Phase-to-Phase (A-B) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

Three-Phase (A-B-C) Overcurrent 100% 100%

Differential 100% 100%

Distance 100% 100%

Fig. 8. Reconstruction of the measurements during an attack against the
instrument transformer tap settings to trigger the differential protective relay.

fully synchronized injection of the actual fault measurements

to cause false line tripping. Note that the replay attack assumes

a very strong capability on the part of the attacker. The

performance of the cyberattack detection system considering

different types of faults and protective relay principles for the

replay attack is summarized in Table IV. A sample of the

measurements during a replay attack against the distance relay

is illustrated in Fig. 9. As illustrated in Fig. 9, the autoencoder

poorly reconstructs the measurements resulting in successful

detection of the cyberattack. It should be noted that in the case

of a fully-synchronized replay attack, the proposed cyberattack

detection system was not able to detect the attacks. In such

attack scenarios, the measurements received is essentially the

same as measurements received in real-fault conditions.

TABLE IV
PERFORMANCE OF THE CDS: REPLAY ATTACK

Fault Scenario Relay Type Precision Recall

Single-Phase-to-Ground (A-G) Overcurrent 100% 95.2%

Differential 100% 91.0%

Distance 100% 96.1%

Two-Phase-to-Ground (A-B-G) Overcurrent 100% 92.4%

Differential 100% 82.1%

Distance 100% 95.4%

Three-Phase-to-Ground (A-B-C-G) Overcurrent 100% 91.7%

Differential 100% 88.8%

Distance 100% 94.5%

Phase-to-Phase (A-B) Overcurrent 100% 93.3%

Differential 100% 88.5%

Distance 100% 87.4%

Three-Phase (A-B-C) Overcurrent 100% 93.8%

Differential 100% 88.4%

Distance 100% 95.7%

Fig. 9. Reconstruction of the measurements during a replay attack on the
distance relay.

D. Computational Complexity of the Proposed Cyberattack

Detection System

The proposed cyberattack detection system was able to

detect the cyberattacks approximately 25 ms after the starting

point of the cyberattack i.e., after receiving 120 samples of

falsified current/voltage measurements. Moreover, it takes the

autoencoder slightly under 4 ms to reconstruct the measure-

ments using i7-9700K CPU with RTX2080 GPU. This sums

up to a minimum real-time delay of 29 ms in processing the

data, slightly less than 2 cycles. It is worth noting that the op-

erating time of the cyberattack detection system may become

larger than the operating time of commercial protective relays

[50]. Thus, further investigation is needed to ensure that the

sensitivity of protective relays will not be compromised by the

proposed cyberattack detection system.

As discussed previously in Section IV-C, a sliding win-

dow of 50 ms (or 3 cycles) equivalent to 240 samples of

current/voltage measurements for each phase, is consecutively

fed in real-time to the autoencoder as input for possible cy-

berattack detection after the system becomes active. Moreover,

the proposed cyberattack detection system needs less than two

cycles of processing time to distinguish a cyberattack from a

legitimate fault. Therefore, a buffer with a capacity to capture

5 cycles (400 samples per phase) of current and voltage

measurements,which is practical and reasonable, would be

sufficient to enable real-time operation.

VI. DISCUSSION

The development of deep learning-based cyberattack de-

tection systems for improving the cybersecurity of protective

relays in substations is at its embryonic stage. Despite the

promising results obtained in this paper, several open chal-

lenges should be addressed before it can be applied to real

systems. The first is related to the scarcity of fault data in

substations that is required to train the cyberattack detection

system. One can overcome this challenge by developing dy-

namical models that represent the real substations in time-

domain simulators and validating the dynamical models with

data from the fault recorders in substations. We emphasize that

it is impossible to develop machine learning-based cyberattack

detection systems for protective relays without access to high

fidelity training datasets. Thus, the development of accurate

time-domain dynamical models of substations is the essential
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first step for the advancement of machine learning-based

cyberattack detection systems.

There are numerous scenarios and practical considerations

that should be taken into account before implementing the

proposed model in practice. For instance, one needs to in-

vestigate the impact of scenarios such as current transformer

saturation, the existence of short lines, in-feeds, out-feeds,

different fault impedances, varying penetration of distributed

energy resources to see how these scenarios would impact the

performance of the proposed model. Moreover, several con-

siderations such as different transmission network topologies,

communication packet loss and noise should be taken into

account. For digital substations, an IEC 61850-9-2 merging

unit publishes 80 SV packets per cycle in a 60 Hz power

system, which means that measurements are transmitted every

208.3 microseconds. Protective relays are designed such that

they transition to an offline status if more than two consecutive

SV packets are missed [51]. This means packet loss will not

be the limiting factor as the protective relays will no longer

be in service under these conditions. Moreover, digital com-

munication systems are designed such that noise is minimized

with various filters commonly employed in industrial devices

like IEDs and MUs to further reduce any effect of noise on

the data [52]. Hence, the impact of noise and packet loss are

neglected in this paper.

Another interesting research direction is to examine the

cybersecurity of the proposed cyberattack detection system.

While the proposed cyberattack detection system addresses the

cybersecurity vulnerabilities of protective relays, its addition

may present an additional attack surface which needs further

investigation. An attacker may target the proposed cyberattack

detection system through the process bus to perform attacks

against protective relays and IEDs. Yet, cyberattackers with

access to the process bus can directly target the protective re-

lays without the need to compromise the proposed cyberattack

detection system. Moreover, authentication can be used for the

output signals of the proposed cyberattack detection system to

improve cybersecurity [53]. This is while it is impossible to

use authentication for SV packets considering the large number

of SV packets that should be processed by an IED in each

cycle, i.e., 80 packets per cycle in a 60 Hz system.

Last but not least, it is important to highlight that there

is no one-size-fits-all solution to the cybersecurity challenges

of industrial control systems like substation protection and

control. The cybersecurity challenges in these systems can

only be overcome by considering a holistic approach and

implementing layered protective measures and defence-in-

depth models.

VII. CONCLUSION

This paper presented a deep-learning based cyberattack

detection system for transmission line protective relays. The

proposed cyberattack detection system is trained with mea-

surements representing different types of faults. Moreover,

the cyberattack detection system is trained with different

sets of inputs depending on the principle of the protective

relay under study such as distance, overcurrent or differential

protective relays. The simulation results verified the capability

of the proposed cyberattack detection system in identifying

different types of cyberattacks including 1) combined MITM

and FDI attack, 2) tampering of instrument transformer tap

settings, and 3) replay attack. The simulation results further

highlighted that a universal architecture can be designed for

the deep-learning model in the cyberattack detection system.

The implementation of such a universal architecture eliminates

the cumbersome need for optimizing the architecture for each

type of fault and protective relay and significantly facilitates

the development of the cyberattack detection system for the

protective relays in substations. The challenges facing the

development of machine learning-based cyberattack detection

systems for protective relays and directions for future research

have been further discussed.
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