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Demystifying robust standard errors 

 

Abstract 

A standard error is a measure of uncertainty around a sample estimate (such as the mean of a 

set of observations, or a regression coefficient). All estimates have uncertainty due to sampling 

variability. Standard errors are usually calculated based on assumptions underpinning the 

statistical model used in the estimation. However, there are situations where some assumptions of 

the statistical model including the variance or covariance of the outcome across observations are 

violated which leads to incorrect standard errors. One simple remedy is to use robust standard 

errors which are robust to violations of certain assumptions of the statistical model. Robust 

standard errors are frequently used in clinical papers (e.g., to account for clustering of 

observations), however the underlying concepts behind robust standard errors and when to use 

them are often not well understood. In this paper, we demystify robust standard errors using several 

worked examples in simple situations where model assumptions involving the variance or 

covariance of the outcome is misspecified. 
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All statistical analyses are based on a statistical model involving one or more quantities in the 

population, known as parameters.(1) The model may not always be explicit, but it is always 

present. As a simple example, most statistical tests (e.g., independent t test) are based on models that 

assume independent and identically distributed observations. In practice, parameter estimates (e.g., 

mean differences) will vary from one sample to the next. The variation in estimates across multiple 

samples is quantified by the standard error, which is simply the standard deviation of the estimates 

in hypothetical repeated samples of the population.(2) Standard errors can be derived using various 

methods. The most common approach is based on the underlying model—that is, to assume 

sampling variation in the parameter estimates is fully captured by the statistical model. However, 

when certain model assumptions are violated, the model-based standard errors can be incorrect 

because they are calculated based on the assumptions intrinsic to the model being used. One simple 

remedy is to use robust standard errors which are robust to certain violations of the statistical 

model.  

 

Robust standard errors 

Robust standard errors, also known as Huber-White standard errors, essentially adjust the 

model-based standard errors using the empirical variability of the model residuals which are the 

difference between observed outcome and the outcome predicted by the statistical model. For 

example, in estimating the mean difference between two groups, the residuals are simply the 

difference between observed outcome and the mean in each group.  

The robust standard error is sometimes called the sandwich standard error due to its 

mathematical formulation: the “bread” of the sandwich is the variance based on the statistical 

model and the “meat” is the empirical variance based on the residuals. By adjusting the model-

based standard errors, the robust standard errors can sometimes give a better assessment of the 

sample-to-sample variability of the estimates when the statistical model assumptions are violated. 

We will discuss their use in three situations where i) the assumption of equal variances is wrong, 

ii) the assumptions about the variance function is wrong, and iii) the assumption of the 

independence of the outcomes is wrong. Stata and R code for all analyses are presented in the 

Appendix 1. 
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Robust standard errors for heteroscedasticity 

Robust standard errors can be used when the assumption of uniformity of variance, also known as 

homoscedasticity, in a linear regression model is violated. This situation, known as 

heteroscedasticity, implies that the outcome’s variance is not constant across observations. In the 

case of an independent t test (a special case of linear regression the independent variable simply 

taking values 0 and 1 for the two groups), the model-based standard error for the mean difference 

exploits the assumptions of independence of the observations and homogeneity of variance.  

The model-based standard error equals √(S2
p(1/n1 + 1/n2)) where S2

p is the pooled variance estimate 

i.e., the weighted average of sample variances S2
1 and S2

2: (S
2

1(n1 – 1) + S2
2(n2 – 1)) /(n – 2) where 

n=n1+n2. However, under a heteroscedastic outcome distribution, the model-based standard error 

would be biased, resulting in incorrect test statistics, p-values, and confidence intervals. This bias 

is especially important when the sample sizes in the two groups are substantially different, as 

pooling the variances suggests that the smaller sample contributes less to the standard error, though 

it really contributes more to the variation of the mean difference. One remedy is to use following 

robust standard error referred to as, HC0 (HC=Heteroscedasticity consistent), which is based on 

the square of the residuals (as the mean of the residuals is zero one estimate of the variance, σ2 for 

an observation is its squared residual):  

𝐻𝐶0 = √𝑆12 [𝑛1 − 1𝑛12 ] + 𝑆22 [𝑛2 − 1𝑛22 ]                                                                                                                (𝑒𝑞 1) 

 

The robust standard error HC0 is downwardly biased in small to moderately large samples. A 

simple bias adjustment multiplier is n/(n-1), which gives HC0m: 

𝐻𝐶0𝑚 = √ 𝑛𝑛 − 1 (𝑆12 [𝑛1 − 1𝑛12 ] + 𝑆22 [𝑛2 − 1𝑛22 ])                                                                                             (𝑒𝑞 2) 

 

Under the assumption of homoscedasticity and Normality and for more than one parameter 

estimated, n/(n-k) is a better multiplier than n/(n-1) where k is the number of parameters estimated. 
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The robust standard error using the multiplier n/(n-k) is known as HC1 (k=2 in our example 

because the mean in each of two groups were estimated): 

𝐻𝐶1 = √ 𝑛𝑛 − 2 (𝑆12 [𝑛1 − 1𝑛12 ] + 𝑆22 [𝑛2 − 1𝑛22 ])                                                                                                 (𝑒𝑞 3) 

 

Another problem with HC0 which also holds for its modifications including HC0m and HC1 is 

that it underestimate the true variance when there are observations with high leverage i.e., with an 

extreme values of the predictor variables (X). The reason is that the squared residuals for high 

leverage observations tend to be small and hence the true variance using HC0, HC0m and HC1 

which are based on squared residuals will be underestimated. A remedy is to inflate the squared 

residuals by (1-h) where h is the leverage. Using this modification and noting that the leverage in 

our example equals 1/n1 for the first sample and 1/n2 for the second, the robust standard error will 

be the following: 

𝐻𝐶2 = √(𝑆12 [𝑛1 − 1𝑛12 ]1 − 1𝑛1 ) + (𝑆22 [𝑛2 − 1𝑛22 ]1 − 1𝑛2 )                                                                                                   (𝑒𝑞 4) 

 

HC2 is unbiased under the assumption of homoscedasticity because expected value of the squared 

residuals equals σ2(1-h). Note that the average value of h is k/n so that 1-h has an average value of 

(n-k)/n .Thus HC0m divides the squared residuals by the average of 1-h. Another robust standard 

error formula reduces the impact of leverage data on the inference even more than HC2 using the 

squared residuals divided by (1-h)2: 

𝐻𝐶3 = √(𝑆12 [𝑛1 − 1𝑛12 ](1 − 1𝑛1)2 ) + (𝑆22 [𝑛2 − 1𝑛22 ](1 − 1𝑛2)2 )                                                                                                   (𝑒𝑞 5) 

HC3 is the most conservative, and is recommended when the sample size is less than 250.(3) 

However, with large sample sizes in both groups, all five formulas simplify to HC2 which is the 
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same as the standard error used in the Normal approximation i.e., S2
1/n1 + S2

2/n2. Recently several 

other robust standard error estimators, HC4, HC4m and HC5, have been proposed which are based 

on scaling the squared residuals by specific powers of (1-h) and have been shown to have better 

performance than HC3 using leverage data. The formulas for the robust standard error HC4, HC4m 

and HC5 are presented in the Appendix 2. We note that using a robust standard error is not a 

remedy for the violation of Normal distribution assumption for the outcome which sometimes 

produces unequal variances.(4) 

To illustrate the impact of different standard errors, we use the data on child asthma to 

compare the mean dead space (ml) between asthmatics and non-asthmatics.(4) The dead spaces 

(ml) in people with asthma (n1 = 8) were 43, 44, 45, 56, 56, 57, 58, and 64 and in people without 

asthma (n2 = 7) were 31, 78, 79, 88, 92, 101, and 112. The mean dead space in asthmatic and non-

asthmatic groups are 52.9 ml and 83.0 ml, respectively and the mean difference is 30.1 ml. The 

standard deviations of the two groups are S1= 7.8 ml and S2 = 25.9 ml, however S2/S1 is much 

larger than 1, suggesting unequal variances (see Figure 1). The model-based standard error for the 

difference in mean dead space between asthmatics and non-asthmatics (based on Sp) is 9.6, and the 

two-sample t test assuming equal variances gives P=0.008 and 95% CI: (9.5, 50.8). The robust 

standard errors using HC0, HC0m, HC1, HC2, HC3, HC4, HC4m and HC5 are 9.41, 9.74, 10.11, 

10.16, 10.96, 10.21, 11.01, and 9.80. Using the robust standard error HC3 gives P=0.017 and 95% 

CI: (6.4, 53.8) suggesting that P-value using two-sample t test assuming equal variances is too 

small and the resulting 95% confidence interval is too narrow. 

 

Robust standard errors for incorrect variance function 

Robust standard errors can also be used when the variance function is misspecified. Usually with 

a binary exposure on a binary outcome, one would use logistic regression. However this results in 

an odds ratio and one may wish to estimate a risk ratio as its interpretation is easier. If the outcome 

is not rare we cannot assume the odss ratio is a good estimate of the relative riskThe natural model 

to use is the log-binomial regression model. While the left-side of the log-binomial regression 

model is the logarithm of risk (π) which takes a negative value, the right-side of the model includes 

the sum of coefficient(s)×predictor(s) which is unbounded. When there are many predictors, or 

when the sum of the coefficients×predictors is large, the sum of these values can yield a risk that 
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is greater than one. Therefore, the log-binomial regression suffers from a structural problem which 

results in nonconvergence of the model and failure to estimate the adjusted risk ratio.(5-7)  

One remedy is to use a log-Poisson regression model. Hence, it is possible to so the left-side which 

is the logarithm of mean is unbounded.(8) The point estimate of the adjusted risk ratio from the 

log-Poisson regression model is valid as the latter model resembles log-binomial regression. But 

because the mean of Poisson distribution can take any positive number (i.e., is not bounded 

between 0 and 1), the standard error of the estimate will be overestimated. To see why, note that 

the variance of a binomial outcome is π(1-π). However, using the Poisson distribution, we assume 

that the variance is equal to the mean i.e., π. Instead, the robust standard error can be used to correct 

the standard error obtained from the Poisson model. In summary, to estimate the adjusted risk 

ratio, we use log-Poisson regression model instead of log-binomial regression model along with 

robust standard error.(8) 

 

We illustrate the application of robust standard error using unadjusted (crude) risk ratio for the 

study of the association between printers’ versus farmers’ wives and breastfeeding less than 3 

months versus more than 3 months.(4) The data have been displayed in the BMJ statistics at square 

one.(9) In this study, the exposure X = 1 for wives of printers and 0 for wives of farmers. The 

outcome Y = 1 for breastfeeding for less than 3 months and 0 for breastfeeding for more than 3 

months. There were n1 = 50 printers’ wives, of whom a = 36 breastfed for less than 3 months. 

There were n2 = 55 farmers’ wives, of whom c = 30 breastfed for less than 3 months. The total 

sample size n=n1+n2 was 105. The risk ratio for breastfeeding less than 3 months is 1.32 for 

printers’ wives relative to farmers’ wives. A log-binomial model regressing Y against X gives an 

estimated risk ratio of 1.32 (95% CI: 0.98, 1.78; P=0.07). The model-based standard error is 0.151. 

Furthermore, using the square root of (1/a + 1/c -1/n1 – 1/n2) provides an approximate large-sample 

estimate of the standard error of the logarithm of risk ratio. 

Note that a log-binomial model converges in this example, as there is just one binary predictor (X) 

in the model. A log-Poisson regression model yields a similar risk ratio (1.32 with 95% CI of 0.81, 

2.14; P=0.26). However, the reported model-based standard error for the log-risk ratio (based on 

the Poisson distribution), 0.247, is calculated as the square root of (1/a + 1/c). This estimate of the 

standard error is clearly an overestimate leading to a P-value which is too large and 95% 

confidence interval which is too wide. We can use the same robust standard error formulas for 
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heteroscedasticity mentioned above to correct the standard (see Appendix 2 for the formulas of 

HC4, HC4m and HC5): 

 

𝐻𝐶0 = √(1𝑎 − 1𝑛1) + (1𝑐 − 1𝑛2)                                                                                                                         (𝑒𝑞 6) 

 

𝐻𝐶0𝑚 = √ 𝑛𝑛 − 1 (1𝑎 − 1𝑛1 + 1𝑐 − 1𝑛2)                                                                                                              (𝑒𝑞 7) 

 

𝐻𝐶1 = √ 𝑛𝑛 − 2 (1𝑎 − 1𝑛1 + 1𝑐 − 1𝑛2)                                                                                                                  (𝑒𝑞 8) 

 

𝐻𝐶2 = √(1𝑎 − 1𝑛11 − 1𝑛1) + (1𝑐 − 1𝑛21 − 1𝑛2)                                                                                                                     (𝑒𝑞 9) 

 

𝐻𝐶3 = √( 1𝑎 − 1𝑛1(1 − 1𝑛1)2) + ( 1𝑐 − 1𝑛2(1 − 1𝑛2)2)                                                                                                       (𝑒𝑞 10) 

Note that HC0 is the same as the model-based standard error of the logarithm of risk ratio. In this 

example all HCs estimate are equal in two decimals, 0.15 which is not supervising given the 

moderate sample size. For example fitting a log-Poisson regression model with robust standard 

error HC0m gives the estimate of 0.28 (95% CI: -0.02, 0.58; P=0.07) for log-risk ratio (1.32 with 

95% CI of (0.98, 1.78) for risk ratio).  

Robust standard errors for clustering 
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The so-called cluster-robust standard error is a generalization of the robust standard error for 

clustered data e.g., cluster randomized trial data in which treatments are randomly assigned to 

clusters of participants (e.g., hospitals),(10) or repeated outcome measurements in longitudinal 

data whereby each unit is a group of observations (cluster), where the outcomes within each unit 

are correlated.(11) A cluster-robust standard error does not make any assumptions about 

independence within cluster but does assume between-cluster independence and so is appropriate 

for analysis of clustered data. A cluster-robust standard error is based on the cluster-level residuals 

which are simply the sum of individual-residuals in each cluster. The cluster-robust standard error 

uses the empirical variability of the cluster-level residuals to adjust the biased ordinary standard 

error ignoring clustering. Using the ordinary standard error ignoring clustering will lead to 

confidence intervals which are too narrow and P-values which are too small.  

We illustrate cluster-robust standard errors using the following cluster randomized trial example 

in which 10 practices were randomly assigned to two treatment groups (patient centred care and 

normal care) and BMI at year 1 was assessed as the outcome(4): 

 

 

 

 

 

 

 

 

 

 

Subject BMI (kg/m2) treatment practice 

1 26.2 1 1 
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2 27.1 1 1 

3 25.0 1 2 

4 28.3 1 2 

5 30.5 1 3 

6 28.8 1 4 

7 31.0 1 4 

8 32.1 1 4 

9 28.2 1 5 

10 30.9 1 5 

11 37.0 0 6 

12 38.1 0 6 

13 22.1 0 7 

14 23.0 0 7 

15 23.2 0 8 

16 25.7 0 8 

17 27.8 0 9 

18 28.0 0 9 

19 28.0 0 10 

20 31.0 0 10 

 

 

A measure of clustering is the intra-cluster correlation(12) coefficient which is the proportion 

of the total variance explained by cluster membership, i.e. the between-cluster variance divided by 

the sum of the between-cluster variance and the within-cluster variance. Using a one-way analysis 



10 

 

of variance(13) of BMI over practice, we can verify that the intracluster correlation coefficient 

estimate is 0.87 indicating high levels of clustering by practice.   

The mean BMI (kg/m2) in treatment groups 1 and 2 are 28.81 kg/m2 and 28.31 kg/m2, respectively. 

A two-sample t test (assuming equal variances) which ignores clustering by practice gives a mean 

difference estimate of 0.42 kg/m2 with 95% CI of (-3.6, 4.4) and P=0.83 based on the ordinary 

standard error estimate of 1.9. To estimate the cluster-robust standard error which accounts for 

clustering we should first calculate the cluster-level residuals. For example, the residuals for the 

first and second subjects in the first practice equals 26.2 – 28.81 = -2.61 and 27.1 – 28.81 = -1.71, 

respectively. The cluster-level residual for the first practice is the sum of individual-residuals: -

2.61 + (-1.71) = -4.32. We can verify that the variance of cluster-level residuals in treatment groups 

1 and 2 (S2
1 and S2

2) is 18.07 and 135.01, respectively. Assuming that there are n1 subjects in m1 

clusters in the treatment group 1 and n2 subjects in m2 clusters in the treatment group 2, n=n1+n2 

and m=m1+m2, and as said before, S2
1 and S2

2 represent the variance of cluster-level residuals, the 

cluster-robust standard error is simply the square root of S2
1[(m1 – 1)/n1

2] + S2
2[(m2 – 1)/n2

2] with 

one of two possible small-sample adjustments, (asymptotic-like and regression-like formulas, 

respectively): 

 

√ 𝑚𝑚 − 1 (𝑆12 [𝑚1 − 1𝑛12 ] + 𝑆22 [𝑚2 − 1𝑛22 ])                                                                                                       (𝑒𝑞 11) 

 

√𝑛 − 1𝑛 − 2 × 𝑚𝑚 − 1 × 𝑆12 [𝑚1 − 1𝑛12 ] + 𝑆22 [𝑚2 − 1𝑛22 ]                                                                                       (𝑒𝑞 12) 

 

The cluster-robust standard error using the equation 12 for the BMI data is 2.7 which gives 95% 

CI of (-5.6, 6.5) and P=0.88. It is noteworthy that in the absence of clustering m1=n1 and m2=n2 so 

that the equation 12 will reduce to HC1 in equation 3 for heteroscedasticity. 

You might like to reference Zou and Donner (which I will attach) which nicely combines clustering 

and Poisson 
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Discussion 

Robust standard errors can be used to adjust model-based standard errors to allow for certain 

violations of the model assumptions. We have illustrated a few examples of use of robust standard 

errors in simple cases where there is one binary predictor, but they can be used in regression models 

with many covariates, as well as models not considered here such as logistic regression or Cox 

regression. Robust standard errors can also be used when the mechanism of data generation does 

not follow a theoretical distribution for example if there are sampling weights or inverse 

probability-of-exposure weights.(11, 14, 15) 

Some caution is warranted when using robust standard errors. First, using the robust standard error 

when the model assumption is not violated will lead to less precise estimate and wider confidence 

intervals than using the valid model based standard error. Second, robust standard errors perform 

poorly in small sample sizes (where sample size refers to the number of clusters for cluster-robust 

standard error) than the model based standard errors, especially with non-linear models such as 

logistic regression as they are then only approximations. In such cases, the bootstrap(4, 16, 17)  

may be a preferable alternative. Third, applying robust standard errors is not the only method to 

take into account for violations of statistical model assumptions. One can derive valid standard 

errors using more elaborate models which account for heteroscedasticity or clustering. For 

example, one can use inverse-variance (precision) weighting to accommodate unequal variances 

or random-effect models to account for clustering. Generalized estimating equations (GEEs)(18) 

use not only a working correlation structure to account for clustering but also a cluster-robust 

standard error to adjust for errors in the working correlation structure used. In clustered data, GEE 

and random-effect models are more efficient than ordinary regression models with robust standard 

errors (such as illustrated above) if the model correlation assumption is correct.  

Robust standard errors (also referred to as sandwich, or Huber-White standard errors) are 

commonly encountered in modern epidemiologic analyses. However, their precise form, strengths, 

and limitations, are not well understood by the broader epidemiologic community. We have 

provided an overview of what robust standard errors are, and how they can be used to overcome 

problems encountered with more traditional model-based approaches. Researchers should 

carefully consider when robust standard errors can be useful, and when they should be avoided. 
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Summary points 

 The standard error of an estimate can be derived using various methods. The most common 

approach is based on assumptions underpinning the statistical model used in the estimation.  

 There are situations where assumptions of the statistical model are violated leading to 

incorrect standard errors. One simple remedy is using robust standard errors.  

 Robust standard errors can be used when certain model assumptions involving the variance 

or covariance of the observations are misspecified. Common examples include unequal 

variances across observations, using a Poisson distribution instead of a binomial 

distribution, and clustered data.  

 

Figure 1. The scatter plot of dead space (ml), separately for people with asthma and people without 

asthma 

The Figure looks like there are three groups. I would plot the repeated points closer together. 
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