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Abstract. We provide constructions of multilinear groups equipped with natural hard

problems from indistinguishability obfuscation, homomorphic encryption, and NIZKs.

This complements known results on the constructions of indistinguishability obfus-

cators from multilinear maps in the reverse direction. We provide two distinct, but

closely related constructions and show that multilinear analogues of the DDH assump-

tion hold for them. Our first construction is symmetric and comes with a κ-linear map

e : G
κ −→ GT for prime-order groups G and GT . To establish the hardness of the

κ-linear DDH problem, we rely on the existence of a base group for which the κ-strong

DDH assumption holds. Our second construction is for the asymmetric setting, where

e : G1 ×· · ·×Gκ −→ GT for a collection of κ +1 prime-order groups Gi and GT , and

relies only on the 1-strong DDH assumption in its base group. In both constructions, the

linearity κ can be set to any arbitrary but a priori fixed polynomial value in the security

parameter. We rely on a number of powerful tools in our constructions: probabilistic

indistinguishability obfuscation, dual-mode NIZK proof systems (with perfect sound-

ness, witness-indistinguishability, and zero knowledge), and additively homomorphic

encryption for the group Z
+
N

. At a high level, we enable “bootstrapping” multilinear

assumptions from their simpler counterparts in standard cryptographic groups and show

the equivalence of PIO and multilinear maps under the existence of the aforementioned

primitives.

∗This paper has been handled by Ivan Bjerre Damgård as acting editor in chief and communicated by Alon
Rosen.
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1. Introduction

1.1. Main Contribution

In this paper, we explore the relationship between multilinear maps and obfuscation.

Our main contribution is a construction of multilinear maps for groups of prime order

equipped with natural hard problems, using indistinguishability obfuscation (IO) in

combination with other tools, namely NIZK proofs, homomorphic encryption, and a base

group G0 satisfying a mild cryptographic assumption. This complements known results

in the reverse direction, showing that various forms of indistinguishability obfuscation

can be constructed from multilinear maps [17,24,45]. The relationship between IO

and multilinear maps is a very natural question to study, given the rich diversity of

cryptographic constructions that have been obtained from both multilinear maps and

obfuscation, and the apparent fragility of current constructions for multilinear maps.

More on this below.

We provide two distinct but closely related constructions. One is for multilinear maps

in the symmetric setting, that is, non-degenerate multilinear maps e : G1
κ −→ GT for

groups G1 and GT of prime order N . Our construction relies on the existence of a base

group G0 in which the κ-SDDH assumption holds—this states that, given a (κ +1)-tuple

of G0-elements (g, gω, . . . , gωκ
), we cannot efficiently distinguish gωκ+1

from a random

element of G0. Under this assumption, we prove that the κ-MDDH problem, a natural

analogue of the DDH problem as stated below, is hard.

(The κ-MDDH problem, informal) Given a generator g1 of G1 and κ + 1

group elements g
ai

1 in G with ai←$ ZN , distinguish e(g1, . . . , g1)
∏κ+1

i=1 ai from

a random element of GT .

This problem can be used as the basis for several cryptographic constructions [7], includ-

ing by now the classic example of multiparty non-interactive key exchange (NIKE) [23].

Our other construction is for the asymmetric setting; that is, for multilinear maps

e : G1 ×· · ·×Gκ −→ GT for a collection of κ groups Gi and GT all of prime order N .

It uses a base group G0 in which we require only that the 1-SDDH assumption holds.

For this construction, we show that a natural asymmetric analogue of the κ-MDDH

assumption holds.

At a high level, then, our constructions are able to “bootstrap” from rather mild assump-

tions in a standard cryptographic group to much stronger multilinear assumptions in a

group (or groups, in the asymmetric setting) equipped with a κ-linear map. Here, κ is

fixed up-front at the time of setup, but is otherwise unrestricted. Of course, such con-

structions cannot be expected to come “for free,” and we need to make use of powerful

tools including probabilistic IO (PIO) for obfuscating randomized circuits [17], dual-

mode NIZK proofs enjoying perfect soundness (for a binding CRS), perfect witness-

indistinguishability (for a hiding CRS), and perfect zero knowledge, and additive homo-

morphic encryption for the group (ZN ,+) (or alternatively, a perfectly correct FHE
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scheme). We note that all these tools can be constructed from a (pair of) pairing-friendly

groups (in which, e.g., the SXDH assumption holds), subexponentially secure one-way

functions, and subexponentially secure IO. It is an important open problem arising from

our work to weaken the requirements on, or remove altogether, these additional tools.

1.2. General Approach

Our approach to obtaining multilinear maps in the symmetric setting is as follows (with

many details to follow in the main body).1 Let G0 with generator g0 be a group of prime

order N in which the κ-SDDH assumption holds.

We work with redundant encodings of elements h of the base group G0 of the form

h = g
x0
0 (gω

0 )x1 where gω
0 comes from a κ-SDDH instance; we write x = (x0, x1) for

the vector of exponents representing h. Then, G1 consists of all strings of the form

(h, c1, c2, π) where h ∈ G0, ciphertext c1 is a homomorphic encryption under public

key pk1 of a vector x representing h, ciphertext c2 is a homomorphic encryption under

a second public key pk2 of another vector y also representing h, and π is a NIZK

proof showing consistency of the two vectors x and y, i.e., a proof that the plaintexts

x, y underlying c1, c2 encode the same group element h. Note that each element of the

base group G0 is multiply represented when forming elements in G1, but that equality of

group elements in G1 is easy to test. An alternative viewpoint is to consider (c1, c2, π) as

being auxiliary information accompanying element h ∈ G0; we prefer the perspective of

redundant encodings, and our abstraction in Sect. 3 is stated in such terms. When viewed

in this way, our approach can be seen as closely related to the Naor–Yung paradigm for

constructing CCA-secure PKE [37].

Addition of two elements in G1 is carried out by an obfuscation of a circuit CAdd

that is published along with the groups. It has the secret keys sk1, sk2 hard-coded in; it

first checks the respective proofs, then uses the additive homomorphic property of the

encryption scheme to combine ciphertexts, and finally uses the secret keys sk1, sk2 as

witnesses to generate a new NIZK proof showing equality of encodings. Note that the

new encoding is as compact as that of the two input elements.

The multilinear map on inputs (hi , ci,1, ci,2, πi ) for 1 ≤ i ≤ κ is computed using

the obfuscation of a circuit CMap that has sk1 and ω hard-coded in. This allows CMap to

“extract” full exponents of hi in the form (xi,1 +ω · xi,2) from ci,1 and thereby compute

the element g

∏
i (xi,1+ω·xi,2)

0 . This is defined to be the output of our multilinear map e,

and so our target group GT is in fact G0, the base group. The multilinearity of e follows

immediately from the form of the exponent.

In the asymmetric case, the main difference is that we work with different values ωi

in each of our input groups Gi . However, the groups are all constructed via redundant

encodings, just as above.

This provides a high-level view of our approach, but no insight into why the approach

achieves our aim of building multilinear maps with associated hard problems. Let us

give some intuition on why the κ-MDDH problem is hard in our setting. We transform

1This version fixes a flaw that we found in the proof of Theorem 1 in the conference version of the paper.

The construction of Sect. 4 has been slightly modified, but it does not make use of stronger assumptions and

has comparable efficiency.
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a κ-MDDH tuple h = ((g
ai

1 )
i≤κ+1, gd

T ), where d is the product of the ai ∈ ZN , g1 is

in the “encoded” form above, and thus, g1 = (h1, c1, c2, π), and gT is a generator of

GT = G0, into another κ-MDDH tuple h′ with exponents a′
i = ai +ω for i ≤ κ+1. This

means that the exponent of the challenge element in the target group d ′ =
∏κ+1

i=1 (ai +ω)

can be seen as a degree κ + 1 polynomial in ω. Therefore, with the knowledge of the ai

and a κ-SDDH challenge, with ω implicit in the exponent, we are able to switch gd ′

T to

a uniformly random value.

Nevertheless, in the preceding simplistic argument, we have made two assumptions.

The first is that we are able to provide an obfuscation of a circuit C ′
Map that has the same

functionality as CMap over G1 without the explicit knowledge of ω. We resolve this by

showing a way of evaluating the κ-linear map on any elements of G1 using only the

powers gωi

0 for 1 ≤ i ≤ κ , and vectors extracted from the accompanying ciphertexts,

and then applying IO to the two circuits.2

The second assumption we made is that we can indeed switch from h to h′ without

being noticed. In other words, that the vectors xi , yi representing gai can be replaced

(without being noticed) with vectors h′
i whose second coordinate is always fixed. Intu-

itively, this is based on the IND-CPA security of the FHE scheme, but in order to give

a successful reduction, we also have to change the circuit CAdd (since CAdd uses both

decryption keys) and apply probabilistic indistinguishability obfuscation [17] to the

circuit.

We note that in this work, we do not construct graded encoding schemes as in [23]. That

is, we do not construct maps from Gi ×G j to Gi+ j . On the other hand, our construction

is noiseless and is closer to multilinear maps as defined by Boneh and Silverberg [7].

1.3. The Current State of Multilinear Maps Constructions

Multilinear maps have been in a state of turmoil, with the discovery of attacks [9,13,14,

30,36] against the GGH13 [23], CLT [15], and GGH15 [26] proposals, and a sequence

of countermeasures and fixes [12,16], which since have been broken, too. Hence, our

confidence in constructions for graded encoding schemes (and thereby multilinear maps)

has been shaken. On the other hand, recently, several constructions of IO from increas-

ingly weaker assumptions have been proposed (see, for example, [1,3,24,33–35,45]),

culminating in the construction [35] that requires only trilinear (non-graded) multilinear

maps.

Hence, currently it is perhaps more plausible to assume that IO exists than it is to

assume that secure (multi-level) multilinear maps exist. However, we stress that more

cryptanalysis of IO constructions is required to investigate what security they provide.

Moreover, even though current constructions for IO rely on graded encoding schemes,

it is not implausible that alternative routes to achieving IO without relying on multilinear

maps will emerge in due course. Furthermore, multilinear maps, and more generally

graded encoding schemes, have proven to be very fruitful as constructive tools in their

own right (cf. [7,40], resp., [5,8,22,25,27,31,42]). This rich set of applications coupled

with the current uncertainty over the status of graded encoding schemes and multilinear

2This is not trivial since the new method should not lead to an exponential blowup in κ .
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maps provides additional motivation to ask what additional tools are needed in order

to upgrade IO to multilinear maps. As an additional benefit, we upgrade (via IO) noisy

graded encoding schemes to clean multilinear maps—sometimes now informally called

“dream” or “ideal” multilinear maps.

1.4. Related Work

The work that is technically closest to ours is that of Yamakawa et al. (see [43,44]);

indeed, their work was the starting point for ours. Yamakawa et al. construct a self-pairing

map, that is, a bilinear map from G×G to G; multilinear maps can be obtained by iterating

their self-pairing. Their work is limited to the RSA setting. It uses the group of signed

quadratic residues modulo a Blum integer N , denoted QR+
N , to define a pairing function

that, on input elements gx , gy in QR+
N , outputs g2xy . In their construction, elements of

QR+
N are augmented with auxiliary information to enable the pairing computation—in

fact, the auxiliary information for an element gx is simply an obfuscation of a circuit for

computing the 2x th power modulo ord(QR+
N ), and the pairing is computed by evaluating

this circuit on an input gy (say). The main contribution of [43] is in showing that these

obfuscated circuits leak nothing about x or the group order.

A nice feature of their scheme is that the degree of linearity κ that can be accommo-

dated is not limited up-front in the sense that the pairing output is also a group element

to which further pairing operations (derived from auxiliary information for other group

elements) can be applied. However, the construction has several drawbacks. First, the

element output by the pairing does not come with auxiliary information.3 Second, the

size of the auxiliary information for a product of group elements grows exponentially

with the length of the product, as each single product involves computing the obfusca-

tion of a circuit for multiplying, with its inputs already being obfuscated circuits. Third,

the main construction in [43] only builds hard problems for the self-pairing of the com-

putational type. (In fact, they show the hardness of the computational version of the

κ-MDDH problem in QR+
N assuming that factoring is hard.) Still, this is sufficient for

several cryptographic applications.

In contrast, our construction is generic with respect to its platform group. Further-

more, the equivalent of the auxiliary information in our approach does not itself involve

any obfuscation. Consequently, the description of a product of group elements stays

compact. Indeed, given perfect additive homomorphic encryption for (Zp,+), we can

perform arbitrary numbers of group operations in each component group Gi . It is an

open problem to find a means of augmenting our construction with the equivalent of

auxiliary information in the target group GT , to make our multilinear maps amenable

to iteration and thereby achieve graded maps as per [15,23].

3The authors of [43] state that such information can be added in their construction, but what would be

needed is the obfuscation of a circuit for computing 4xyth powers. The information available for building this

would be obfuscations of circuits for computing 2x th and 2yth powers, so an obfuscation of a composition of

already obfuscated circuits would be required. Strictly speaking then, the auxiliary information associated with

elements output by their pairing is of a different type to that belonging to the inputs, making it questionable

whether “self-pairing” is the right description of what is constructed in [43].
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Another related work is the work of Paneth and Sahai [39]. They show a near equiv-

alence between a suitable abstraction of multilinear maps and IO. Their result requires

no computational assumptions at all, but also does not consider multilinear maps in our

sense. In particular, they construct an abstraction of a multilinear map that only admits

restricted access to encodings, similar to the one in [24]. Beyond the group operation

and the multilinear map, other procedures for, e.g., uniform sampling, comparison or

rerandomization of encodings are not part of this abstraction. Our notion of a multilin-

ear map, on the other hand, contains descriptions of efficient procedures for all of these

tasks.

1.5. Follow-Up Work

The work [21] extends our approach from this work to graded encoding schemes (with

multilinear maps). They use techniques similar to ours and in particular employ a suitable

“switching theorem” (like our Theorem 1) to replace encodings of equivalent group

elements.

On the other hand, the work [2] aims to construct groups (or, rather, encoding schemes)

that support stronger computational assumptions. Specifically, [2] construct encoding

schemes in which even an adaptive variant of the so-called Uber assumption [6] holds.

The price that [2] pay is that their encoding scheme has no extraction algorithm (i.e., no

algorithm that takes an encoding and outputs a bit string that is unique for the encoded

group element). Not only such an extraction algorithm is useful to compare elements,

it can also be used to transform non-unique group elements to a unique common secret

in a Diffie–Hellman key exchange protocol. Observe that with non-unique group ele-

ments and without such an extraction algorithm, the two parties may end with different

representations of the same shared key.

In this setting, the only means to compare two group elements (given by possibly

different encodings) is an explicit comparison algorithm that takes two encodings as

input and outputs whether these encodings represent the same group element. ([2] provide

such a comparison algorithm.) The techniques that [2] use are again an extension of our

techniques.

1.6. Relation to Conference Version of This Work

Erratum. After the publication of the conference version of this work at TCC 2016-A,

we became aware of several technical problems in our work. Specifically, the conference

version of our work (and of course a previous full version) claimed (a) the validity of

the RANK assumption (a reformulation of the Un-matrix Diffie–Hellman assumption

from [19]) in our framework and (b) a variant of our construction that only uses indistin-

guishability obfuscation (instead of probabilistic indistinguishability obfuscation). We

encountered serious problems in both respective proofs, and we are currently not aware

of a way to repair these proofs.

Furthermore, we became aware of problems in the proof of the multilinear DDH

assumption in our framework (both in the symmetric and asymmetric settings). These

problems can be resolved, which in fact leads to a simpler proof from a slightly stronger

computational assumption.
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Hence, this version of our work omits the results (a) and (b) described above and

provides corrected versions of the proofs of the MDDH assumption in our framework.

Changes to conference version. Besides the corrections explained above, this version

features full proofs, and in particular a detailed and modular treatment of the central

switching theorem (Theorem 1). Our constructed group has non-unique, randomized

encodings in place of group elements, and Theorem 1 allows to replace one encoding

with another encoding, as long as both encodings are functionally equivalent.

2. Preliminaries

2.1. Notation

We denote the security parameter by λ ∈ N and assume that it is implicitly given to all

algorithms in the unary representation 1λ. By an algorithm, we mean a stateless Turing

machine. Algorithms are randomized unless stated otherwise, and ppt as usual stands for

“probabilistic polynomial-time” in the (unary) security parameter. Given a randomized

algorithm A, we denote the action of running A on input(s) (1λ, x1, . . .) with fresh

random coins r and assigning the output(s) to y1, . . . by (y1, . . .)←$ A(1λ, x1, . . . ; r).

For a finite set X , we denote its cardinality by |X | and the action of sampling a uniformly

random element x from X by x←$ X . Vectors are written in boldface x and by slight

abuse of notation, running algorithms on vectors of elements indicates component-wise

operation. Throughout the paper, ⊥ denotes a special error symbol, and poly(·) stands for

a fixed polynomial. A real-valued function negl(λ) is negligible if negl(λ) ∈ O(λ−ω(1)).

We denote the set of all negligible functions by Negl and use negl(λ) to denote an

unspecified negligible function.

2.2. Homomorphic Public-Key Encryption

Circuits. A polynomial-sized deterministic circuit family C := {Cλ}λ∈N is a sequence

of sets of poly(λ)-sized circuits for a fixed polynomial poly. We assume that for all

λ ∈ N, all circuits C ∈ Cλ share a common input domain ({0, 1}λ)a(λ), where a(λ)

is a the arity of the circuit family, and codomain {0, 1}λ. A randomized circuit family

is defined similarly except that the circuits now also take random coins r ∈ {0, 1}r(λ).

To make the coins used by a circuit explicit (e.g., to view a randomized circuit as a

deterministic one), we write C(x; r).

Syntax and compactness. A tuple of ppt algorithms � := (Gen, Enc, Dec, Eval) is

called a homomorphic public-key encryption (HPKE) scheme for deterministic circuit

family C = {Cλ}λ∈N of arity a(λ) if (Gen, Enc, Dec) is a conventional public-key

encryption scheme with message space {0, 1}λ and Eval is a deterministic algorithm

that on input, a public key pk, a circuit C ∈ Cλ and ciphertexts c1, . . . , ca(λ) output a

ciphertext c. We require HPKE schemes to be compact in the sense that the outputs of

Eval have a size that is bounded by a polynomial function of the security parameter (and

independent of the size of the circuit). Without loss of generality, we assume that secret
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keys of an HPKE scheme are the random coins used in key generation. This will allow

us to check key pairs for validity.

Correctness. We require the following perfect correctness requirements from a HPKE

scheme:

1. Scheme � := (Gen, Enc, Dec) is perfectly correct as a PKE scheme; that is, for

any λ ∈ N, any (sk, pk)←$ Gen(1λ), any m ∈ {0, 1}λ, and any c←$ Enc(m, pk),

we have that Dec(c, sk) = m.

2. We furthermore require that any ciphertext (i.e., not only honestly generated ones)

uniquely determines the message it decrypts to. That is, for any λ ∈ N, any pk

in the range of Gen(1λ), and any syntactically possible c, there is precisely one

m (which may be m = ⊥), such that for all sk with (pk, sk) = Gen(sk), we have

Dec(c, sk) = m.

3. The evaluation algorithm is also perfectly correct in the sense that for any λ ∈ N,

any (sk, pk)←$ Gen(1λ), any mi ∈ {0, 1}λ for i ∈ [a(λ)], any ci←$ Enc(mi , pk),

any C ∈ Cλ and any c ← Eval(pk, C, c1, . . . , ca(λ)), we have that Dec(c, sk) =

C(m1, . . . , ma(λ)).

We note that perfect correctness implies that every ciphertext (even an adversarially

generated one) uniquely determines its decryption result, independently of the used

secret key (for a given public key). Hence, it is reasonable to think of any ciphertext as

“containing” a uniquely defined message (as long as only secret keys consistent with a

given public key are used).

Security. The IND-CPA security of an HPKE scheme is defined identically to a standard

PKE scheme without reference to the Dec and Eval algorithms. Formally, we require

that for any legitimate ppt adversary A := (A1,A2),

Adv
ind-cpa
�,A

(λ) := 2 · Pr
[
IND-CPAA

�(λ)

]
− 1 ∈ Negl ,

where game IND-CPAA
�(λ) is shown in Fig. 1 (left). Adversary A is legitimate if it

outputs two messages of equal lengths.

HPKE schemes can be constructed from rerandomizable IND-CPA secure PKE

schemes, subexponentially secure IO, and subexponentially secure one-way func-

tions [17]. The correctness properties of this construction immediately follow from

those of its underlying components. Although this HPKE construction may not be per-

fectly correct in our sense above, when used with ElGamal (which is rerandomizable

and IND-CPA secure under the DDH assumption), it does satisfy our notion of perfect

correctness.

2.3. Obfuscators

Syntax and correctness. A ppt algorithm Obf is called an obfuscator for (determin-

istic or randomized) circuit class C = {Cλ}λ∈N if Obf on input the security parameter 1λ

and the description of a (deterministic or randomized) circuit C ∈ Cλ outputs a deter-

ministic circuit C . For deterministic circuits, we require Obf to be perfectly correct in
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Fig. 1. Left: IND-CPA security of a (homomorphic) PKE scheme. Middle: Indistinguishability security of an

obfuscator. Right: Static input (aka. selective) X -IND property of A := (A1, A2).

the sense the circuits C and C are functionally equivalent; that is, that for all λ ∈ N,

all C ∈ Cλ, all C←$ Obf(1λ, C), and all mi ∈ {0, 1}λ for i ∈ [a(λ)], we have that

C(m1, . . . , ma(λ)) = C(m1, . . . , ma(λ)). For randomized circuits, the authors of [17]

define correctness via computational indistinguishability of the outputs of C and C . For

our constructions, we do not rely on this property and instead require that C and C are

functionally equivalent up to a change in randomness; that is, for all λ ∈ N, all C ∈ Cλ,

all C←$ Obf(1λ, C) and all mi ∈ {0, 1}λ for i ∈ [a(λ)], we require there is an r such

that C(m1, . . . , ma(λ)) = C(m1, . . . , ma(λ); r). In this paper by correctness, we refer to

this latter property. We note that the construction from [17] is correct as it relies on a

correct (indistinguishability) obfuscator (and a PRF to internally generate the required

random coins).

Security. The security of an obfuscator Obf requires that for any legitimate ppt adver-

sary A := (A1,A2)

Advind
Obf,A(λ) := 2 · Pr

[
INDA

Obf(λ)

]
− 1 ∈ Negl ,

where game IND is shown in Fig. 1 (middle). Depending on the notion of legitimacy

different security notions for the obfuscator emerge, we consider two such notions below.

Functionally equivalent samplers. We call (the first phase of) A a functionally

equivalent sampler if for any (possibly unbounded) distinguisher D

Adv
eq$
A,D

(λ) := Pr
[
C0(x) 	= C1(x) : (C0, C1, st)←$ A1(1

λ); x←$ D(C0, C1, st)
]

∈ Negl.

The security notion associated with equivalent samplers is called indistinguishability. We

call an obfuscator meeting this level of security an indistinguishability obfuscator [24]

and use IO instead of Obf to emphasize this.

X -IND samplers [17] Roughly speaking, A is an X -IND sampler if there is a set X of

size at most X such that the circuits output by A are functionally equivalent outside X

and furthermore within X the outputs of the two sampled circuits are indistinguishable.

Formally, let X (·) be a function such that X (λ) ≤ 2λ for all λ ∈ N. We call A an X -IND

sampler if there is a set Xλ of size at most X (λ) such that the following two conditions

hold: (1) for all (possibly unbounded) D, the advantage function below is negligible
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Adv
eq$
A,D

(λ) := Pr [C0(x; r) 	= C1(x; r) ∧ x /∈ Xλ :

(C0, C1, st)←$ A(1λ); (x, r)←$ D(C0, C1, st)
]
.

(2) For all non-uniform ppt distinguishers D := (D1,D2)

X (λ) · Advsel-ind
A,D (λ) := X (λ) · Pr

[
Sel-INDD

A
(1λ)

]
∈ Negl ,

where game Sel-INDD
A

(1λ) is shown in Fig. 1 (right). This game has a static (or selective)

flavor as D1 chooses a differing input x before it gets to see the challenge circuit pair.

We call an obfuscator meeting this level of security a probabilistic indistinguishability

obfuscator [17] and use PIO instead of Obf to emphasize this.

[17] show how to construct secure probabilistic indistinguishability obfuscators for

X -IND samplers from subexponentially secure indistinguishability obfuscation and

subexponentially secure one-way functions.

2.4. Dual-Mode NIZK Proof Systems

In our constructions, we will be relying on special types of non-interactive zero-

knowledge proof systems [29]. These systems have “dual-mode” common reference

string (CRS) generation algorithms that produce indistinguishable CRSs in the “binding”

and “hiding” modes. They also enjoy perfect completeness in both modes, are perfectly

sound and extractable in the binding mode, and perfectly witness-indistinguishable (WI)

and zero knowledge (ZK) in the hiding mode. The standard prototype for such schemes

is pairing-based Groth–Sahai proofs [29]. These proof systems can be instantiated in any

(pair of) pairing-friendly groups, under a variety of computational assumptions, includ-

ing the SXDH and k-Linear assumptions. Moreover, using a generic NP reduction to the

satisfiability of (systems of) quadratic equations, we can obtain a suitable proof system

for any NP language.4 We formalize the syntax and security of such proof systems next.

Syntax. A relation with setup is a pair of ppt algorithms (S, R) such that S(1λ) outputs

(gpk, gsk) and R(gpk, x, w) is a ternary relation that outputs a bit b ∈ {0, 1}. A dual-

mode non-interactive zero-knowledge (NIZK) proof system � for (S, R) consists of six

algorithms as follows. (1) Algorithm BCRS(gpk, gsk) outputs a (binding) common ref-

erence string crs and an extraction trapdoor tdext ; (2) HCRS(gpk, gsk) outputs a (hiding)

common reference string crs and a simulation trapdoor tdzk ; (3) Prove(gpk, crs, x, w) on

input crs, an instance x , and a witness w, outputs a proof π ; (4) Verify(gpk, crs, x, π)

on input a bit string crs, an instance x , and a proof π , outputs accept or reject; (5)

WExt(tdext , x, π) on input an extraction trapdoor, an instance x , and a proof π , outputs

a witness w; and (6) Sim(tdzk, crs, x) on input the simulation trapdoor tdzk , the CRS

crs, and an instance x , outputs a simulated proof π . We require a dual-mode NIZK to

meet the following requirements.

4We note that extraction in Groth–Sahai proofs does not recover a witness for all types of statements.

(Instead, for some types of statements, only gwi for a witness variable wi ∈ Zp can be recovered.) Here,

however, we will only be interested in witnesses w = (w1, . . . , wn) ∈ {0, 1}n that are bit strings, in which

case extraction always recovers w. (Specifically, extraction will recover gwi for all i and thus all wi .)
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CRS indistinguishability. The common reference strings generated through BCRS

(gpk, gsk) and HCRS(gpk, gsk) are computationally indistinguishable. We denote the

distinguishing advantage of a ppt adversary A in the relevant security game by

Advcrs
�,A

(λ).

Perfect completeness under BCRS/HCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ),

any crs←$ BCRS(gpk, gsk), any (x, w) such that R(gpk, x, w) = 1, and any

π←$ Prove(gpk, crs, x, w), we have that Verify(gpk, crs, x, π) = 1. We require this

property to also hold for any choice of crs←$ HCRS(gpk, gsk).

Perfect soundness under BCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ), any com-

mon reference string crs←$ BCRS(gpk, gsk), any x for which for all w ∈ {0, 1}∗, we

have R(gpk, x, w) = 0, and any π ∈ {0, 1}∗, we have that Verify(gpk, crs, x, π) = 0.

Perfect extractability under BCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ), any

(crs, tdext )←$ BCRS(gpk, gsk), any tuple (x, π) with Verify(gpk, crs, x, π) = 1, and

for w←$ WExt(tdext , x, π), we always have R(gpk, x, w) = 1.

Perfect WI under HCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ), any (crs, tdzk)←$

HCRS(gpk, gsk), any (x, wb) such that R(gpk, x, wb) = 1 for b ∈ {0, 1}, we have that

πb←$ Prove(gpk, crs, x, wb) for b ∈ {0, 1} are identically distributed.

Perfect ZK under HCRS. For any λ ∈ N, any (gpk, gsk)←$ S(1λ), any (crs, tdzk)←$

HCRS(gpk, gsk), any (x, w) such that R(gpk, x, w) = 1, it is that π0←$ Prove(gpk,

crs, x, w) and π1←$ Sim(tdzk, x) are identically distributed.

2.5. Hard Membership Problems

Finally, we will use languages with hard membership problems. Let U = {Uλ} be a col-

lection of universal sets, and let L = {Lλ} be a collection of sets Lλ = {L} of languages

with L ⊆ Uλ for each L ∈ Lλ. We say that L has a hard subset membership problem if

the following holds: No ppt algorithm given L←$ Lλ can efficiently distinguish between

x←$ L and x←$ Uλ.

3. Multilinear Groups with Non-Unique Encodings

Before presenting our constructions, we formally introduce what we mean by a mul-

tilinear group (MLG) scheme. Our abstraction differs from that of Garg, Gentry, and

Halevi [23] in that our treatment of MLG schemes is a direct adaptation of the “dream”

MLG setting (called the “cryptographic” MLG setting in [7]) to a setting where group

elements have non-unique encodings (as in [23]). In our abstraction, on top of the proce-

dures needed for generating, manipulating, and checking group elements, we introduce

an equality procedure which generalizes the equality relation for groups with unique

encodings.

Syntax. A multilinear group (MLG) scheme Γ consists of six ppt algorithms as follows.

Setup(1λ, 1κ ): This is the setup algorithm. On input the security parameter 1λ

and the multilinearity 1κ , it outputs the group parameters pp. These parame-
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ters include generators g1, . . . , gκ+1, identity elements 11, . . . , 1κ+1, and integers

N1, . . . , Nκ+1, which will represent group orders. Generators, identity elements,

and group orders are discussed in detail below. In our constructions, we will have

N1, . . . , Nκ+1 all equal to some prime N , but we work here at a greater level of

generality because it may be useful in future work. We assume pp is provided to

the various algorithms below.

Vali (h): This is the validity testing algorithm. On input (the group parameters), a

group index 1 ≤ i ≤ κ + 1 and a string h ∈ {0, 1}∗, it returns b ∈ {0, 1}. We define

Gi , which is also parameterized by pp, as the set of all h for which Vali (h) = 1.

We write h ∈ Gi when Vali (h) = 1 and refer to such strings as group elements

(since we will soon impose a group structure on Gi ). Without loss of generality,

we assume the Gi to be non-intersecting sets (since a string h ∈ Gi can always be

augmented with an encoding of i). We require that the bit strings in Gi have lengths

that are polynomial in λ and κ , a property that we refer to as compactness.

Eqi (h1, h2): This is the equality algorithm. On input two valid group elements

h1, h2 ∈ Gi , it outputs a bit b ∈ {0, 1}. We require Eqi to define an equivalence

relation. We say that the group has unique encodings if Eqi simply checks the equal-

ity of bit strings. We write Gi (h) for the set of all h′ ∈ Gi such that Eqi (h, h′) = 1;

for any such h, h′ in Gi , we write h = h′; sometimes we write h = h′ in Gi for

clarity. Since “=” refers to equality of bit strings as well as equivalence under Eqi ,

we will henceforth write “as bit strings” when we mean equality in that sense. We

require |Gi/Eqi |, the number of equivalence classes into which Eqi partitions Gi ,

to be finite and equal to Ni (where Ni comes from pp). We assume throughout the

paper that various algorithms below return ⊥ when run on invalid group elements.

Opi (h1, h2): This algorithm defines the group operation. On input two valid group

elements h1, h2 ∈ Gi , it outputs h ∈ Gi . We write h1h2 in place of Opi (h1, h2) for

simplicity. We require that Opi respect the equivalence relations Eqi , meaning that if

h1 = h2 in Gi and h ∈ Gi , then h1h = h2h in Gi . We also demand that h1h2 = h2h1

in Gi (commutativity); for any third h3 ∈ Gi , we require h1(h2h3) = (h1h2)h3 in

Gi (associativity), and we require h1i = h in Gi for all h ∈ Gi .

The algorithm Opi gives rise to an exponentiation algorithm Expi (h, z) that on input

h ∈ Gi and z ∈ N outputs an h′ ∈ Gi such that h′ = h · · · h in Gi with z occurrences

of h. When no h is specified, we assume h = gi . This algorithm runs in polynomial

time in the length of z. We denote Expi (h, z) by hz and define h0 := 1i . Note that

under the definition of Ni for any h ∈ Gi we have that Expi (h, Ni ) = 1i . This in

turn leads to an inversion algorithm Invi (h) that on input h ∈ Gi outputs hNi −1.

We insist that gi in fact has order Ni , so that (the equivalence class containing) gi

generates Gi/Eqi .

The above requirements ensure that Gi/Eqi acts as a cyclic group of order Ni

with respect to the operation induced by Opi , with identity (the equivalence class

containing) 1i , and inverse operation Invi .

We use the bracket notion [19] to denote an element h = gx
i in Gi with [x]i .

When using this notation, we will write the group law additively. This notation will

be convenient in the construction and analysis of our MLG schemes. For example,

[z]i +[z′]i succinctly denotes Opi (Exp(gi , z), Exp(gi , z′)). Note that when writing

[z]i , it is not necessarily the case that z is explicitly known.
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e(h1, . . . , hκ): This is the multilinear map algorithm. For κ group elements hi ∈ Gi

as input, it outputs hκ+1 ∈ Gκ+1. We demand that for any 1 ≤ j ≤ κ and any

h′
j ∈ G j

e(h1, . . . , h j h′
j , . . . , hκ ) = e(h1, . . . , h j , . . . , hκ )e(h1, . . . , h′

j , . . . , hκ ) in Gκ+1.

We also require the map to be non-degenerate in the sense that for some tuple

of elements as input the multilinear map outputs an element of Gκ+1 outside the

equivalence class of 1κ+1. We call an MLG scheme symmetric if the group algo-

rithms are independent of the group index for 1 ≤ i ≤ κ and e is invariant under

permutations of its inputs. That is, for any permutation π : [κ] −→ [κ], we have

e(h1, . . . , hκ) = e(hπ(1), . . . , hπ(κ)) in Gκ+1 .

We refer to all the other cases as being asymmetric. To distinguish the target group,

we frequently write GT instead of Gκ+1 (and similarly for 1T and gT in place of

1κ+1 and gκ+1) as its structure in our construction will be different from that of the

source groups G1, . . . , Gκ .

Sami (z): This is the sampling algorithm. On input z ∈ N, it outputs some h ∈ Gi .

We also allow a special input ε to this algorithm, in which case the sampler is

required to output some h ∈ Gi together with a uniformly distributed z such that

h ∈ Gi (g
z
i ). Note that for groups with unique encodings, these algorithms trivially

exist. For notational convenience, for a known a, we define [a]i to be an element

sampled via Sami (a).

Some applications also rely on the following algorithm which provides a canonical

bit string for the group elements within a single equivalence class.

Exti (h): This is the extraction algorithm. On input h ∈ Gi , it outputs a string

s ∈ {0, 1}poly(λ). We demand that for any h1, h2 ∈ Gi with h1 = h2 in Gi , we have

that Exti (h1) = Exti (h2) (as bit strings). We also require that for [z]i←$ Sami (ε),

the distribution of Exti ([z]i ) is uniform over {0, 1}poly(λ). For groups with unique

encodings, this algorithm trivially exists.

Comparison with GGH. Our formalization differs from that of [23] which defines a

graded encoding scheme. The main difference is that a graded encoding scheme defines

bilinear maps ei, j : Gi × G j −→ Gi+ j . Using this algorithm, one can implement Eqi

for any 1 ≤ i ≤ κ from Eqκ+1 as follows (if ei, j is injective). To check the equality of

h1, h2 ∈ Gi , call ei,κ+1−i (h, gκ+1−i ) for h = h1, h2 to map these elements to the target

group and check equality there using Eqκ+1. Similarly, Exti (h) can be constructed from

Extκ+1(h) and 1 j for all G j . (Note that for extraction we need a canonical string rather

than a canonical group element.) Moreover, the abstraction and construction of graded

encodings schemes in [23] do not provide any validity algorithms; these are useful in

certain adversarial situations such as CCA security and signature verification. Further, all

known candidate constructions of graded encoding schemes are noisy and only permit a

limited number of group operations (though parameters can be set to allow that number

to be polynomial). Finally, the known candidate graded encoding schemes do not permit

sampling for specific values of z, but rather only permit sampling elements with a z that

is only known up to its equivalence class.
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Syntactic extensions. Although our syntax does not treat the cases of graded [15,23],

exponentially multilinear, or self-pairing [43] maps, it can be modified to capture these

variants. We briefly outline the required modifications. For graded maps, we require the

existence of a map that on input hi ∈ Gi for indices i = i1, . . . , iℓ with t :=
∑ℓ

i=1 i j ≤ κ

outputs a group element in Gt . This map is required to be multilinear in each component.

For exponential (aka. unbounded) linearity, we provide the linearity κ in its binary

representation to the Setup algorithm. We also include procedures for generator and

identity element generation. Proper self-pairing maps correspond to a setting where the

group algorithms are independent of the group index for 1 ≤ i ≤ κ + 1 (including

the target index κ + 1), and the group generators and identity elements are all identical.

Observe that a proper self-pairing would induce a graded encoding scheme of unbounded

linearity; recall from the introduction that the scheme of Yamakawa et al. [43] does not

meet this definition because of the growth in the size of its auxiliary information.

4. The Construction

We now present our construction of an MLG scheme Γ according to the syntax intro-

duced in Sect. 3. In the later sections, we will consider special cases of the construction

and prove the hardness of analogues of the multilinear DDH problem under various

assumptions.

We rely on the following building blocks in our MLG scheme. (1) A cyclic group

G0 of some order N0 with generator g0 and identity 10; formally, we think of this as

a 1-linear MLG scheme Γ0 with unique encodings in which e is trivial; the algorithm

Val0 implies that elements of G0 are efficiently recognizable. (2) A general-purpose

obfuscator Obf. (3) A perfectly correct additively homomorphic public-key encryption

scheme � := (Gen, Enc, Dec, Eval) with plaintext space ZN .5 (4) A dual-mode NIZK

proof system. (5) A family T D of (families of) languages TD which has a hard subset

membership problem, and such that all TD have efficiently computable witness relations

with unique witnesses.6 (See Sect. 2 for more formal definitions.)

We reserve variables and algorithms with index 0 for the base scheme Γ0; we also

write N = N0. We require that the algorithms of Γ0 except for Setup0 and Sam0 are

deterministic. We will also use the bracket notation to denote the group elements in G0.

For example, we write [z]0, [z
′]0 ∈ G0 for two valid elements of the base group and

[z]0 + [z′]0 ∈ G0 for Op0([z]0, [z
′]0). Variables with nonzero indices correspond to

various source and target groups. Given all of the above components, our MLG scheme

Γ consists of algorithms as detailed in the sections that follow.

4.1. Setup

The setup algorithm for Γ samples parameters pp0←$ Setup0(1
λ) for the base MLG

scheme generates two encryption key pairs (pk j , sk j )←$ Gen(1λ) ( j = 1, 2) of an

5Note that such a scheme can be constructed from any perfectly correct HPKE scheme.
6An example of such a language is the Diffie–Hellman language TD = {(gr

1, gr
2) | r ∈ N} in a DDH

group with generators g1, g2. In particular, a suitable trapdoor language imposes no additional computational

assumption in our upcoming security proof.
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HPKE scheme, and a matrix W = (ω1, . . . ,ωκ)t ∈ Z
κ×ℓ
N where κ is the linearity and

ℓ = 2 is a parameter of our construction. Although many of the upcoming results hold

for more general distributions of W, for concreteness, we set ωi = (1, ω) for all i and a

uniformly random ω. The setup algorithm then sets

gpk := (pp0, pk1, pk2, [W]0, TD, y) ,

where [W]0 denotes a matrix of G0 elements that entrywise is written in the bracket

notation, TD←$ T D, and y is not in TD. In our MLG scheme, we set N1 = · · · =

Nκ+1 := N , where N is the group order implicit in pp0. The setup algorithm then

generates a common reference string crs = (crs′, y) where crs′←$ BCRS(gpk, gsk)

for a relation (S, R) that will be defined in Sect. 4.2. It also constructs two obfuscated

circuits CMap and CAdd which we will describe in Sects. 4.3 and 4.4. For 1 ≤ i ≤ κ , the

identity elements 1i and group generators gi are sampled using Sami (0) and Sami (xi ),

respectively, for algorithm Sami described in Sect. 4.5 with xi ∈ [N −1]. We emphasize

that this approach is well defined since the operation of Sami is defined independently

of the generators and the identity elements and depends only on gpk and crs. We set

1κ+1 = 10 and gκ+1 = g0. The scheme parameters are

pp := (gpk, crs, CMap, CAdd, g1, . . . , gκ+1, 11, . . . , 1κ+1) .

We note that this algorithm runs in polynomial time in λ as long as κ is polynomial in λ.

4.2. Validity and Equality

The elements of Gi for 1 ≤ i ≤ κ are tuples of the form h = ([z]0, c1, c2, π) where c1, c2

are encryptions of vectors from Z
ℓ
N under pk1, pk2, respectively (encryption algorithm

Enc extends from plaintext space ZN to Z
ℓ
N in the obvious way) and where π is a NIZK

to be defined below. We refer to (c1, c2, π) as the auxiliary information for [z]0. The

elements of Gκ+1 are just those of G0.

The NIZK proof system that we use corresponds to the following inclusive disjunctive

relation (S, R := R1 ∨ R2). Algorithm S(1λ) outputs gpk = (pp0, pk1, pk2, [W]0, TD)

as defined above and sets gsk = (sk1, sk2). Relation R1 on input gpk, tuple ([z]0, c1, c2),

and witness (x, y, r1, r2, sk1, sk2) accepts iff [z]0 ∈ G0, the representations of [z]0 as

x, y ∈ Z
ℓ
N are valid with respect to [W]0 in the sense that

[z]0 = [〈x,ωi 〉]0 ∧ [z]0 = [〈y,ωi 〉]0 ,

(where 〈·, ·〉 denotes inner product) and the following ciphertext validity condition (with

respect to the inputs to the relation) is met:

(c1 = Enc(x, pk1; r1) ∧ c2 = Enc(y, pk2; r2))

∨
(
(pk1, sk1) = Gen(sk1) ∧ (pk2, sk2) = Gen(sk2)

∧ x = Dec(c1, sk1) ∧ y = Dec(c2, sk2))
)

(1)
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Recall that we have assumed the secret key of the encryption scheme to be the ran-

dom coins used in Gen. Note that the representation validity check can be efficiently

performed “in the exponent” using [W]0 and the explicit knowledge of x and y. Note also

that for honestly generated keys and ciphertexts, the two checks in the expression above

are equivalent (although this is not generally the case when public keys are malformed,

i.e., not in the range of Gen).

Intuitively, the upper branch of the disjunction (1) checks consistency based on encryp-

tion randomness. This branch allows Sam to generate proofs without decryption keys.

The lower branch of (1) uses decryption keys. This branch is used by the addition circuit

Add to generate proofs without knowing the encryption randomness.

Relation R2 depends on the language TD, and on input gpk, tuple ([z]0, c1, c2), and

witness wy accepts iff wy is a valid witness to y ∈ TD. (Note that R2 completely

ignores ([z]0, c1, c2).) Intuitively, R2 creates a simulation trapdoor (i.e., wy) that allows

to generate proofs for statements that are not in R1.

For 1 ≤ i ≤ κ , the Vali algorithm for Γ , on input ([z]0, c1, c2, π), first checks that

the first component is in G0 using Val0 and then checks the proof π ; if both tests pass,

it then returns ⊤, else ⊥. Observe that for an honest choice of crs = (crs′, y), the

perfect completeness and the perfect soundness of the proof system ensure that only

those elements which pass relation R1 are accepted. Algorithm Valκ+1 just uses Val0.

The equality algorithm Eqi of Γ for 1 ≤ i ≤ κ first checks the validity of the

two group elements passed to it and then returns true iff their first components match,

according to Eq0, the equality algorithm from the base scheme Γ0. Algorithm Eqκ+1

just uses Eq0. The correctness of this algorithm follows from the perfect completeness

of �.

4.3. Group Operations

We provide a procedure that, given as inputs h = ([z]0, c1, c2, π) and h′ =

([z′]0, c′
1, c′

2, π
′) ∈ Gi , generates a tuple representing the product h · h′. This, in par-

ticular, will enable our multilinear map to be run on the additions of group elements

whose explicit representations are not necessarily known. We exploit the structure of

the base group as well as the homomorphic properties of the encryption scheme to “add

together” the first three components. We then use (sk1, sk2) as a witness to generate a

proof π ′′ that the new tuple is well formed. (For technical reasons, we check the validity

of h and h′ in two different ways: using proofs π , π ′, and also explicitly using (sk1, sk2).

Note that, although useful in the analysis, the explicit check is redundant by the perfect

soundness of the proof system under a binding crs′.)

In pp, we include an obfuscation of the CAdd circuit shown in Fig. 2 (top), and again,

we emphasize that steps 5a or 5b are never reached with a binding crs′ (but they may be

reached with a hiding crs′ later in the analysis). Note that although we have assumed the

evaluation algorithm to be deterministic, algorithm Prove is randomized and we need

to address how we deal with its coins. To this end, we use a PIO to obfuscate CAdd; the

probabilistic obfuscator directly deals with the needed randomness.7 The Opi algorithm

7Typically, the obfuscated circuit will have a PRF key hardwired in and derives the required randomness

by applying the PRF to the circuit inputs.
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Fig. 2. Top: Circuit for addition of group elements. Explicit randomness r is internally generated when using a

PIO. Bottom: Circuit implementing the multilinear map. Recall that here gpk = (pp0, pk1, pk2, [W]0, TD, y).

for 1 ≤ i ≤ κ runs the obfuscated circuit on i , the input group elements. Algorithm

Opκ+1 just uses Op0 as usual. The correctness of this algorithm follows from those of

Γ0 and �, the completeness of �, and the correctness, in our sense, of the probabilistic

obfuscator Obf = PIO; see Sect. 2 for the definitions.

4.4. The Multilinear Map

The multilinear map for Γ , on input κ group elements hi = [zi ]i = ([zi ]0, ci,1, ci,2, πi ),

uses sk1 to recover the representation xi . It then uses the explicit knowledge of the matrix

W to compute the output of the map as

e([z1]1, . . . , [zκ ]κ) :=

[
k∏

i=1

〈xi ,ωi 〉

]

κ+1

.

Recalling that Gκ+1 is nothing other than G0, and gκ+1 = g0, the output of the map

is just the G0-element (g0)
∏k

i=1〈xi ,ωi 〉. The product in the exponent can be efficiently

computed over ZN for any polynomial level of linearity κ and any ℓ as it uses xi and

ωi explicitly. The multilinearity of the map follows from the linearity of each of the
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multiplicands in the above product (and the completeness of �, the correctness of �,

and the correctness of the (possibly probabilistic) obfuscator Obf). An obfuscation CMap

of the circuit implementing this operation (see Fig. 2, bottom) will be made available

through the public parameters, and e is defined to run this circuit on its inputs.

4.5. Sampling and Extraction

For sampling random group elements, we first define two vectors x and y in Z
ℓ
N satisfying

〈x,ωi 〉 = 〈y,ωi 〉. In other words, these vectors define two equivalent representations of

a group element relative to a matrix W. If W is explicitly known, the vectors x and y can

take arbitrary forms subject to validity. However, is only implicitly known by an honest

user of the system, and in order to sample random group elements, we set x = y = (z, 0)

for ℓ = 2. (We call these the canonical representations.)

Then, we set [z]0 := [〈y,ωi 〉]0 (which can be computed using [W]0 and explicit

knowledge of x) and

[z]i ←
(
[z]0, c1 = Enc(x, pk1; r1), c2 = Enc(y, pk2; r2),

π = Prove(gpk, crs, ([z]i , c1, c2), (x, y, r1, r2)
)
.

Note that the outputs of the sampler are not statistically uniform within Gi ([z]i ). Indeed,

not even the IND-CPA security of the encryption directly implies any form of security

of the generated ciphertexts (since the addition circuit Add contains the corresponding

decryption keys). Our upcoming “switching theorem” (Theorem 1) will, however, prove

that encodings that are functionally equivalent cannot be efficiently distinguished.

Since the target group has unique encodings, as noted in Sect. 3, an extraction algo-

rithm for all groups can be derived from one for the target group. The latter can be

implemented by applying a universal hash function to the group elements in GT , for

example.

5. Indistinguishability of Encodings

In this section, we will prove a theorem that is an essential tool in establishing the

intractability of the κ-MDDH for our MLG scheme Γ constructed in Sect. 4. This theo-

rem, roughly speaking, states that valid encodings of elements within a single equivalence

class are computationally indistinguishable. We formalize this property via the κ-Switch

game shown in Fig. 3. This game lets an adversary A choose an element [z]i ∈ Gi by

producing two valid representations (x0, y0) and (x1, y1) for it. The adversary is given

an encoding of [z]i generated using (xb, yb) for a random b and has to guess the bit b.

In this game, besides access to pp, which contains the obfuscated circuits for the group

operation and the multilinear map, we also provide the matrix W in the clear to the

adversary. This strengthens the κ-Switch game and is needed for our later analysis.

To prove that the advantage of A in the κ-Switch game is negligible, we rely on

the security of the obfuscator, the IND-CPA security of the encryption scheme, and the

security of the NIZK proof system.
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Fig. 3. Game formalizing the indistinguishability of encodings with an equivalence class. This game is specific

to our construction Γ . An adversary is legitimate if z = 〈xb, ωi 〉 = 〈yb, ωi 〉 for b ∈ {0, 1}. We note that A

gets explicit access to matrix W generated during setup .

Intuitively, the IND-CPA security of the encryption scheme will ensure that the encryp-

tions of the two representations are indistinguishable. This argument, however, does not

immediately work as the parameters pp contain component CAdd that depends on both

decryption keys. We deal with this by finding an alternative implementation of this cir-

cuit without the knowledge of the secret keys, in the presence of a slightly different

public parameters (which are computationally indistinguishable to those described in

Sect. 4). The next lemma, roughly speaking, says that provided parameters ppinclude an

instance y ∈ TD; then, there exists an alternative implementation ĈAdd that does not use

the secret keys, and whose obfuscation is indistinguishable to that of C̃Add of Fig. 2 (top)

for an adversary that knows the secret keys. It relies on the security of the obfuscator

and the security of the NIZK proof system.

Lemma 1. (CAdd without decryption keys) Let PIO be a secure obfuscator for X-IND

samplers and � be a dual-mode NIZK proof system. Additionally, let parameters p̃p be

sampled as in Sect. 4 but with ỹ ∈ TD. Furthermore, let p̂p be sampled as p̃p, but with a

hiding CRS ĉrs′, and an obfuscation of circuit ĈAdd of Fig. 4 (bottom). Then, for any ppt

adversary A, there are ppt adversaries B1 and B2 of essentially the same complexity as

A such that for all λ ∈ N

Pr [A(p̃p, sk1, sk2) = 1 : (sk1, sk2)←$ Gen(1λ)]

− Pr [A(p̂p, sk1, sk2) = 1 : (sk1, sk2)←$ Gen(1λ)]

≤ 2 · Adv
ind
PIO,B1

(λ) + Adv
crs
�,B2

(λ).

Proof. The crucial observation is that a witness wy to ỹ ∈ TD is also a witness to

x ∈ R, and therefore, ĈAdd can use wy instead of sk1, sk2 to produce the output proof

π ′′. Below we provide descriptions of the transformation from CAdd to ĈAdd, and let Wi

denote the event that A in Gamei outputs 1.

Game0: We start with (a PIO obfuscation of) circuit CAdd of Fig. 2 and with p̃p including

ỹ ∈ TD and a binding crs′.

Game1: The circuit has witness wy to ỹ ∈ TD hard-coded. If some input reaches the

“invalid” branches, CAdd does not extract a witness from the corresponding
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proof, but instead uses wy to generate proof π ′′. [See Fig. 4 (top).] Note that

Game1 requires no extraction trapdoor tdext anymore.

We claim that |Pr [W0(λ)] − Pr [W1(λ)]| ≤ Advind
PIO,B1

(λ).

By construction, the only difference between the games is that in Game1, proof

π ′′, with respect to invalid (input) encodings, is generated using hard-coded

witness wy to ỹ ∈ TD. Since wy is unique, and the CRS crs′ guarantees perfect

soundness, this leads to identical behavior of CAdd in Game 0. Hence, this hop

is justified by PIO.

Game2: The CRS ĉrs′ included in the public parameters is now hiding (such that the

generated proofs are perfectly witness-indistinguishable). We have that

|Pr [W1(λ)] − Pr [W2(λ)]| ≤ Advcrs
�,B2

(λ),

where B2 is a ppt algorithm against the indistinguishability of binding and

hiding CRS’s.

Game3: ere, output proofs π ′′ for those inputs entering the “valid” branch (step 5b of

Fig. 4 (top)) use wy (and not sk1, sk2) as witness. In particular, this game does

not need to perform a explicit validity check (using sk1, sk2) anymore, and

therefore, the addition circuit can be described as in Fig. 4 (bottom).

We claim that |Pr [W2(λ)] − Pr [W3(λ)]| ≤ Advind
PIO,B1

(λ).

By construction, the only difference between both games is that the public

parameters in Game2 contain a PIO obfuscation of CAdd and in Game3 contain

a PIO obfuscation of ĈAdd of Fig. 4. In Lemma 2, we prove that these circuit

variants are given by an X -IND sampler, and therefore, their PIO obfuscations

are indistinguishable. �

Lemma 2. (X-IND sampling) Let � be a dual-mode NIZK proof system for the relation

(S, R) defined in Sect. 4.2. Suppose � is perfectly witness-indistinguishable under a

hiding CRS. Let A be a sampler which outputs circuits (C̃Add, ĈAdd) of Fig. 4. (Both

circuits have the system parameters hard-coded in.) Then, A is X-IND for (the optimal)

X, the size of the domain of the circuits. More precisely, for any (possibly unbounded)

distinguisher D′ and for any ppt distinguisher D = (D1,D2) and any λ ∈ N,

Adv
eq$
A,D′(λ) = 0 and Adv

sel-ind
A,D (λ) = 0 .

Proof. The first equality is immediate as X is set to be the entire domain of the circuits.

The second equality follows from the perfect witness-indistinguishability property of

the proof system. Indeed, the only difference between the two circuits is that, for those

inputs that are valid encodings, C̃Add uses decryption keys sk1, sk2 as witness to generate

the output proof π ′′ ← Prove(gpk, crs, ([z′′]0, c′′
1, c′′

2), (sk1, sk2); r), and ĈAdd uses

witness wy to ỹ ∈ TD (with ỹ in the public parameters) to generate the proof π̂ ′′ ←

Prove(gpk, crs, ([z′′]0, c′′
1, c′′

2), wy; r). The WI property with a hiding ĉrs′ guarantees

that π ′′ and π̂ ′′ are identically distributed and hence so are the outputs of C̃Add and

ĈAdd. Note that no random coins are hardwired into these circuits—we are in the PIO

setting—and fresh coins are used to compute the circuits’ outputs.
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Fig. 4. Circuits for addition of group elements used in Lemma 1. p̂p includes gpk =

(pp0, pk1, pk2, [W]0, TD, ỹ) where ỹ ∈ TD (also includes a hiding CRS ĉrs′). Both circuits also have hard-

coded (the) witness wy to ỹ ∈ TD. Top: sk1, sk2 are used to produce π ′′ on valid inputs. Bottom: wy is

always used to produce π ′′.

With Lemma 1, we can invoke IND-CPA security and via a sequence of games obtain

the result stated below. The proof can be found in “Appendix A.1”; we will give a

high-level overview of the proof below. (See also Fig. 5.)

Theorem 1. (Switching encodings using PIO) Let Γ be the MLG scheme constructed

in Sect. 4, where PIO is secure for X-IND samplers, � is an IND-CPA-secure encryption

scheme, and � is a dual-mode NIZK proof system. Then, encodings of equivalent group

elements are indistinguishable. More precisely, for any ppt adversary A and all λ ∈ N,

there are ppt adversaries B1, B2, B3, and B4 of essentially the same complexity as A

such that for all λ ∈ N

Adv
κ-switch
Γ,A (λ) ≤ 3 · Adv

sm
TD,B1

+ 7 · Adv
ind
PIO,B2

(λ) + 3 · Adv
crs
�,B3

(λ) + 2 · Adv
ind-cpa

�,B4
(λ) .

Furthermore, B2 is an X-IND sampler for any function X (λ).

Proof sketch. The proof of this theorem proceeds via a sequence of 9 games as follows.
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Fig. 5. Outline of the proof steps of Theorem 1. b is the random bit of the κ-Switch game. (See Fig. 3.)

Changing between pp and p̃p is justified by the hardness of deciding membership of TD, and changing

between p̃p and p̂p by Lemma 1. The hops relying on PIO use the perfect correctness of �, and the perfect

completeness and the perfect soundness of � under binding crs′ to argue function equivalence of CMap.

Game0: This is the κ-Switch game. The public parameters pp contain a no-instance

y /∈ TD, a binding crs′, and CAdd is constructed using (sk1, sk2) and CMap

using sk1. (See Fig. 2.) The ciphertexts c1 and c2 contain xb and yb for a

random bit b.

Game1: This game generates the public parameters p̃p so that they include a yes-instance

y ∈ TD. The difference to the previous game can be bounded via the hardness

of deciding membership in TD.

Game2: The public parameters p̂p change so that they include a hiding ĉrs′, and a (PIO)

obfuscation of circuit ĈAdd, see Fig. 4. (Recall that this circuit uses the witness

wy to y ∈ TD to produce the output proofs π̃ ′′, and therefore, the simultaneous

knowledge of decryption keys sk1,sk2 is not needed anymore.) Additionally,

the game uses wy to prepare the proof π in the κ-Switch challenge for A. By

Lemma 1 and the perfect witness-indistinguishability of �, the difference with

the previous game can be bounded by PIO and CRS indistinguishability.

Game3: This game generates c2 by encrypting y1, even when b = 0. We can bound the

difference in any adversary’s success probability via the IND-CPA advantage

of � with respect to pk2. (The reduction will know (pk1, sk1) so as to be able

to construct CMap.)

Game4: The public parameters are changed back to p̃p, so that they include a binding

crs′, and a (PIO) obfuscation of circuit C̃Add of Fig. 2 (top). The difference

with the previous game is bounded again with Lemma 1.

Game5: Now, a no-instance y /∈ TD is included in the public parameters pp. This game

is justified by the hardness of deciding membership in TD.

Game6: This game uses sk2 (in place of sk1) in the generation of CMap circuit. In this

transition, we rely on the security of Obf , the perfect correctness of �, and

the perfect soundness of �. Perfect soundness of � implies that CMap rejects
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ciphertexts unless relation R1 holds. Together with the perfect correctness of

�, R1 implies that CMap yields identical results with sk1 and sk2. We can then

use the IO security of Obf to justify the switch from using sk1 to using sk2.

(Note that for any function X , any obfuscator that is secure for X -IND samplers

is also secure as an indistinguishability obfuscator.) Note that in this game, it

is crucial that the crs′ is in the binding mode.

Game7: This game, similar to Game1, switches to public parameters p̃p with a yes-

instance y ∈ TD. The analysis is as before.

Game8: This game, similar to Game2, includes in p̂p a hiding ĉrs′, and a (PIO) obfus-

cation of circuit ĈAdd. (See Fig. 4.) The analysis is as before.

Game9: This game generates c1 by encrypting x1, even when b = 0. The analysis is as

in Game3.

Observe that the challenge encoding in Game9 is independent of the random bit

b and the advantage of any (possibly unbounded) adversary A is 0. Collecting

bounds on the probabilities involved in the various game hops concludes the

proof.

�

6. The Multilinear DDH Problem

In this section, we show that natural multilinear analogues of the decisional Diffie–

Hellman (DDH) problem are hard for our MLG scheme Γ from Sect. 4. We will establish

this for two specific Setup algorithms which give rise to symmetric and asymmetric

multilinear maps in groups of prime order N . (See Sect. 3 for the formal definition.) In

the symmetric case, we will base hardness on the q-strong DDH problem [4] and in the

asymmetric case on the 1-strong DDH problem.

6.1. Intractable Problems

We start by formalizing the hard problems that we will be relying on and those whose

hardness we will be proving. We do this in a uniform way using the language of group

schemes of Sect. 3. Informally, the q-SDDH problem requires the indistinguishability

of gxq+1
from a random element given (gx , gx2

, . . . , gxq
) for a random x , and the

κ-MDDH problem, whose hardness we will be establishing, generalizes the standard

bilinear DDH problem (and its variants) and requires this for g
a1···aκ+1

T in the presence

of (ga1, . . . , gaκ+1) (for uniformly random ai ).

The q-SDDH problem. For q ∈ N, we say that a group schemeΓ0 is q-SDDH intractable

if

Adv
q-sddh
Γ0,A

(λ) := 2 · Pr
[
q-SDDHA

Γ0
(λ)

]
− 1 ∈ Negl ,

where game q-SDDHA
Γ0

(λ) is shown in Fig. 6 (left).

The (κ, I )-MDDH problem. We use a slight reformulation of the (generalized) MDDH

problem from [23]. For κ ∈ N we say that an MLG scheme Γ is κ-MDDH intractable

with respect to the index set I if
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Fig. 6. Left: The strong DDH problem. Right: The multilinear DDH problem, where I specifies the available

group elements. By slight abuse of notation, repeated use of [ai ]i denotes the same sample. Recall that we

use the notation [z]T and [z]κ+1 for elements of the target group Gκ+1 interchangeably.

Adv
(κ,I )-mddh
Γ,A

(λ) := 2 · Pr
[
(κ, I )-MDDHA

Γ (λ)

]
− 1 ∈ Negl ,

where game (κ, I )-MDDHA
Γ (λ) is shown in Fig. 6 (right). Here, I is a set of ordered

pairs of integers (i, j) with 1 ≤ i ≤ κ + 1, 1 ≤ j ≤ κ . The adversary is provided

with challenge group elements [ai ] j for (i, j) ∈ I , so that its challenge elements may

lie in any combination of the groups. The following example of such a set I leads to

a generalization of the symmetric external Diffie–Hellman (SXDH) assumption to the

multilinear case:

I = I ∗ := {(1, 1), . . . , (κ, κ), (κ + 1, κ)} .

Of course, when generalizing SXDH, the choice of the last element of I is not canonical.

Instead of (κ + 1, κ), also other values (κ + 1, j) for j ∈ {1, . . . , κ} seem natural.

6.2. The Symmetric Setting

We describe a special variant of our general construction in Sect. 4 which gives rise to

a symmetric MLG scheme as defined in Sect. 3.

We set ℓ := 2 and sample W = (ω1, . . . ,ωκ)t by setting ωi = (1, ω) for a random

ω ∈ ZN . The generators and identity elements for all groups are set to be a single value

generated for the first group. These modifications ensure that the scheme algorithms are

independent of the index for 1 ≤ i ≤ κ and that e is invariant under all permutations of

its inputs.

The following lemma, which provides a mechanism to compute polynomial values

“in the exponent,” will be helpful in the security analysis of our constructions.

Lemma 3. (Horner in the exponent) Let ω = (ω0, ω1) ∈ Z
2
N and xi = (xi,0, xi,1) ∈

Z
2
N for i = 1, . . . , κ . Define zi := 〈xi ,ω〉. Then, given only the implicit values [ω

j
0ωk

1]T ,

for all j, k such that j + k = κ and the explicit values xi , the element [z1 · · · zκ ]T can

be efficiently computed.
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Proof. Let

P(ω0, ω1) :=

κ∏

i=1

(xi,0 · ω0 + xi,1 · ω1) =
∑

j+k=κ

p jk · ω
j
0ωk

1 .

Clearly, if all p jk are known, then [P(ω0, ω1)]T can be computed using [ω
j
0ωk

1]T

with polynomially many operations. (There are O(κ) summands above.) To obtain these

values, we apply Horner’s rule. Define

Pi (ω0, ω1) :=

{
1 if i = 0 ;

(xi,0 · ω0 + xi,1 · ω1) · Pi−1(ω0, ω1) otherwise.

The coefficients of Pκ are the required p jk values. Let ti denote the number of terms

in Pi . It takes at most 2ti multiplications and ti − 1 additions in ZN to compute the

coefficients of Pi from Pi−1 and xi . Since ti ∈ O(κ), at most O(κ2) many operations

in total are performed. We note that the lemma generalizes to any (constant) ℓ with

computational complexity O(κℓ). �

We prove the following result formally in “Appendix A.2” and give an overview of

the proof here.

Theorem 2. (κ-SDDH hard �⇒ symmetric (κ, I ∗)-MDDH hard) Write I = I ∗ =

{(i, 1) | i ∈ [κ + 1]} for the index set with all the second components being 1. Let

Γ ∗ denote scheme Γ of Sect. 4 constructed using base group Γ0 and a probabilistic

indistinguishability obfuscator PIO with modifications as described above, and let κ ∈

N. Then, for any ppt adversary A, there are ppt adversaries B1, B2, and B3 of essentially

the same complexity as A such that for all λ ∈ N

Adv
(κ,I ∗)-mddh

Γ ∗,A
(λ) ≤ Adv

κ-sddh
Γ0,B1

(λ) + Adv
ind
PIO,B2

(λ) + (κ + 1) · Adv
κ-switch
Γ ∗,B3

(λ) .

Proof. In our reduction, the value ω used to generate W will play the role of the implicit

value in the SDDH problem instance. We therefore change the implementation of CMap

to one that does not know ω in the clear and only uses the implicit values [ωi ]0. (Recall

that in our construction GT is just G0, so these elements come from the SDDH instance.)

Such a circuit C∗
Map can be efficiently implemented using Horner’s rule above. In more

detail, C∗
Map has [ωi ]T hard-coded in, recovers xi from its inputs using sk1, and then

applies Lemma 3 with (ω0, ω1) := (1, ω) to evaluate the multilinear map.

The proof proceeds along a sequence of κ + 4 games as follows.

Game0: This is the κ-MDDH problem (Fig. 6, right). We use xi and yi

to denote the representation vectors of ai generated within the

sampler SamI (i)(ai ), where (i, I (i)) ∈ I .

Game1–Gameκ+1: In these games, we gradually switch the representations of [ai ]1

for i ∈ [κ + 1] so that they are of the form (ai − ω, 1). Each hop

can be bounded via the Switch game.
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Gameκ+2: This game introduces a conceptual change: the ai for i ∈ [κ + 1]

are generated as ai +ω. Note that the distributions of these values

are still uniform and that the exponent of the MDDH challenge

when b = 1 is

κ+1∏

i=1

(ai + ω) .

This game prepares us for embedding a κ-SDDH challenge and

then to randomize the exponent above.

Gameκ+3: This game switches CMap to C∗
Map as defined above. We use indis-

tinguishability obfuscation and the fact that these circuits are func-

tionally equivalent to bound this hop. We are now in a setting where

ω is only implicitly known.

Gameκ+4: This game replaces MDDH challenge [ωκ+1]0 with a random value

[σ ]0 in case b = 1. (Hence, the MDDH challenge is independently

uniform regardless of b.) Observe that Gameκ+3 and Gameκ+4

only require [ωi ]0 (for i ≤ κ + 1) and in fact require [ωκ+1]0 only

for the MDDH challenge. Hence, we can bound this hop using the

κ-SDDH assumption.

In Gameκ+4, irrespective of the value of b ∈ {0, 1}, the challenge is uniformly and

independently distributed as σ remains outside the view of the adversary. Hence, the

advantage of any (unbounded) adversary in this game is 0. This concludes the sketch

proof. �

We note that in this symmetric case, C∗
Map can be directly used as the implementation

of the multilinear map. We chose CMap because it is somewhat simpler and also more

in line with the upcoming asymmetric case.

6.3. The Asymmetric Setting

We describe a second variant of the construction in Sect. 4 that results in an asymmetric

MLG scheme. We set ℓ := 2 and choose the matrix W = (ω1, . . . ,ωκ)t by setting

ωi := (1, ωi ) for random ωi ∈ ZN .

The following theorem shows that for index set I = {(i, I (i)) : 1 ≤ i ≤ κ + 1} given

by an arbitrary function I : [κ+1] −→ [κ], this construction is (κ, I )-MDDH intractable

under the 1-SDDH assumption in the base group, the security of the obfuscator, and the

κ-Switch game in Sect. 5. We present the proof intuition here and leave the details to

“Appendix A.3.”

Theorem 3. (1-SDDH hard �⇒ asymmetric (κ, I )-MDDH hard) Let Γ ∗ denote

scheme Γ of Sect. 4 constructed using base group Γ0 and a probabilistic indistinguisha-

bility obfuscator PIO with modifications as described above, and let κ ∈ N. Then, for

any ppt adversary A, there are ppt adversaries B1, B2, and B3 such that for all λ
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Adv
(κ,I )-mddh

Γ ∗,A
(λ) ≤ Adv

1-sddh
Γ0,B1

(λ) + Adv
ind
PIO,B2

(λ) + 2 · Adv
κ-switch
Γ ∗,B3

(λ) +
κ − 1

N (λ)
.

Proof. The general proof strategy is similar to that of the symmetric case and proceeds

along a sequence of 5 games as follows.

Game0: This is the (κ, I )-MDDH problem. By the pigeon-hole princi-

ple, there must exist a pair of distinct i, i ′ ∈ [κ + 1] such that

I (i) = I (i ′) ∈ [κ]. Without loss of generality, we assume that

I (1) = I (2) = 1.

Game1–Game2: In these games, we gradually switch the representation vectors of

[ai ]1 for i = 1, 2 to those of the form (ai − ω1, 1). Each of these

hops can be bounded via the Switch game.

Game3: This game introduces a conceptual change and generates ai as ai +ω1

for i = 1, 2. The exponent of the MDDH challenge when b = 1 is

(a1 + ω1)(a2 + ω1) ·

κ+1∏

j=3

a j .

Game4: In this game, we change the implementation of CMap to one which

uses all but one of the ωi explicitly, and the remaining one implicitly

via [ω1]0. The new circuit C∗
Map is functionally equivalent to the

original circuit used in the scheme. We invoke the IO security of the

obfuscator to conclude the hop. This game prepares us to embed a 1-

SDDH challenge next.

Game5: This game replaces MDDH challenge [ω1
2]0 with a random value

[σ ]0 in case b = 1. Observe that Game4 and Game5 only require

[ω1]0 and [ω1
2]0 and in fact require [ω1

2]0 only for the MDDH

challenge. Hence, we can bound the distinguishing advantage in this

hop down to the 1-SDDH game.

In Game5, irrespective of the value of b ∈ {0, 1}, the challenge is uniformly and

independently distributed as σ remains outside the view of the adversary. Hence, the

advantage of any (possibly unbounded) adversary in this game is 0. �
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A. Full Proofs from the Main Body

A.1. Proof of Theorem 1: Indistinguishability of encodings using PIO

Proof. We consider a chain of 10 games, with Game0 being the κ-Switch game, such that in the last game

the challenge encoding is drawn independently of the bit b. Below we let Wi denote the event that Gamei

outputs 1.

Game0: The original Switch game.

Game1: As Game0 but now the public parameters p̃p are changed so that they include a yes-

instance y ∈ TD. We have that

|Pr [W0(λ)] − Pr [W1(λ)]| ≤ Advsm
TD,B1

(λ),

where TD is a language in which membership is hard to decide.

Game2: The public parameters p̂p change so that they include a hiding ĉrs′, and a (PIO)

obfuscation of circuit ĈAdd. [See Fig. 4 (bottom).] Recall that this circuit uses the

witness wy to y ∈ TD to produce the output proofs π̃ ′′. Therefore, the simultaneous

knowledge of decryption keys sk1,sk2 is not needed anymore. Additionally, Game2

uses wy to prepare the proof π in the κ-Switch challenge for A. By Lemma 1 and the

perfect witness-indistinguishability of �, we have that

|Pr [W1(λ)] − Pr [W2(λ)]| ≤ 2 · Advind
PIO,B2

(λ) + Advcrs
�,B3

Game3: As Game2, but, if b = 0, the challenge encoding is generated by mixing the repre-

sentation vectors w.r.t public key pk2. Thus, on A’s response (z, (x0, y0), (x1, y1)),

in this game we set c0 ← Enc(x0, pk1; r1), and c1 ← Enc(y1, pk2; r2).

Claim. |Pr [W2(λ)] − Pr [W3(λ)]| ≤ Adv
ind-cpa
�,B4

(λ).

Proof Claim A.1. Consider the following ppt distinguisher B4 against the IND-CPA security of the encryp-

tion scheme �, with respect to key pair (pk2, sk2). The distinguisher runs experiment Game2 using A as a

subroutine with the following differences: When it receives A’s vectors (x j , y j ) (in Z
ℓ
p for j = 0, 1), it submits

(y0, y1) to the IND-CPA challenger. It gets back c∗ = Enc(yr∗ , pk2). Next, B4 generates c1 ← Enc(x0, pk1)

and sets c2 = c∗; the proof π on instance x = ([z]i , c1, c2) is generated using the simulation trapdoor of the

proof system. Namely, π←$ Sim(crs, x, tdzk ). Finally, B4 outputs what A outputs.

Algorithm B4 perfectly simulates the challenger in experiment Game2 if r∗ = 0 and in experiment Game3

if r∗ = 1. This follows from the facts that (1) (x, π) is a valid encoding, indeed ciphertext c∗ contains an

encryption of yr∗ , such that [z]i = [〈yr∗ ,ωi 〉]i ; and (2) real and simulated proofs are identically distributed

under (the hiding) ĉrs′ included in p̂p. �

Game4: The public parameters are changed back to p̃p, so that they include a binding crs′, and

a (PIO) obfuscation of circuit CAdd of Fig. 2 (top). (p̃p also include a yes-instance

y ∈ TD.) Again by Lemma 1, we have that

|Pr [W3(λ)] − Pr [W4(λ)]| ≤ 2 · Advind
PIO,B2

(λ) + Advcrs
�,B3

.

http://creativecommons.org/licenses/by/4.0/
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Game5: As Game4 but now the public parameters pp are changed back to the original one

described in Sect. 4 so that they include a no-instance y /∈ TD. We have that

|Pr [W4(λ)] − Pr [W5(λ)]| ≤ Advsm
TD,B1

(λ),

where TD is a language where is hard to decide membership.

Game6: As Game5, but now the challenger constructs a different circuit CMap with the sec-

ond encryption secret key hard-coded. Thus, the extracted vector is set to yi ←

Dec(ci,1, sk2). We claim that

|Pr [W5(λ)] − Pr [W6(λ)]| ≤ Advind
PIO,B1

(λ).

The variants of the CMap circuit described in the games extract (possibly different)

encoding vectors x∗
i

, y∗
i

, respectively, for any adversarial input x∗ = (x∗
1 , . . . , x∗

κ ).

Observe that the i-th argument x∗
i

= (i, [zi ]0, ci,1, ci,2, πi ) has a non-rejecting proof

πi iff ([zi ]0, ci,1, ci,2) passes relation R1. (In other words, the ciphertexts encrypt

representation vectors of the same [zi ]0.) We remark that at this point, we also use �’s

perfect correctness. Indeed, observe that while R1 implies that there exist encryption

random coins or secret keys that decrypt ci,1 and ci,2 to consistent representation

vectors xi,1 and yi,2, the perfect correctness of � implies that the secret keys used

by CMap retrieve those same representation vectors xi,1 and yi,2. By the definition

of R1, these representation vectors lead to the same outputs of CMap. It follows that

these variants of CMap behave identically on any (possibly malformed) input x∗.

Therefore, the variants are functionally equivalent and hence trivially drawn by an

X -IND sampler, so that their PIO obfuscations are indistinguishable.

Game7: As Game6 but now the public parameters p̃p are changed so that they include a yes-

instance y ∈ TD. We have that

|Pr [W6(λ)] − Pr [W7(λ)]| ≤ Advsm
TD,B1

(λ),

where TD is a language where is hard to decide membership.

Game8: The public parameters p̂p change so that they include a hiding ĉrs′, and a (PIO)

obfuscation of circuit ĈAdd. [See Fig. 4 (bottom).] By Lemma 1, we have that

|Pr [W7(λ)] − Pr [W8(λ)]| ≤ 2 · Advind
PIO,B2

(λ) + Advcrs
�,B3

Game9: As Game8, but, if b = 0, the challenge encoding is generated by mixing the repre-

sentation vectors w.r.t public key pk1. Thus, on A’s response (z, (x0, y0), (x1, y1)),

in this game, we set c0 ← Enc(x1, pk1; r1), and c1 ← Enc(y1, pk2; r2). Using a

similar argument as in Claim A.1, we have that

|Pr [W8(λ)] − Pr [W9(λ)]| ≤ Adv
ind-cpa
�,B4

(λ).

Finally, Pr [W9(λ)] = 1/2 because the challenge encoding is generated using the same pair of representation

vectors (x1, y1) regardless of the bit b. The proof of the theorem is concluded by collecting the terms above.

�

A.2. Proof of Theorem 2: Hardness of Symmetric MDDH

Proof. We show via a chain of games, starting with the symmetric κ-MDDH problem, such that the last

game chooses the challenge at random and independently of the guess bit b. Below we let Wi denote the event

that Gamei outputs 1.

Game0: The κ-MDDH problem as shown in Fig. 7. Here, there is only one

source group.
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Fig. 7. The symmetric multilinear DDH problem for our MLG scheme. Here, I∗ = {(1, 1), . . . , (κ + 1, 1)} .

Games for 1 ≤ s ≤ κ + 1: As Games−1, the difference is that the representation vectors (xs , ys )

of the sth challenge encoding [as ] are given by

xs,0 = ys,0 = as − ω and xs,1 = ys,1 = 1.

Thus, in game s′ ≥ s, the second coordinates of the sth encoding

vectors are always fixed to 1. Now, a straightforward reduction yields

an adversary B that satisfies:

Claim.

|Pr [Ws−1(λ)] − Pr [Ws (λ)]| ≤ Advκ-switch
Γ ∗,B

(λ) for 1 ≤ s ≤ κ + 1 .

Proof. Consider the following ppt adversary B = (B1, B2) against game κ-Switch of Fig. 3. B1 outputs

((xs−1, ys−1), (xs , ys ), s, st) representing a uniform value as in ZN , where (xs−1, ys−1) is as in Games−1

and (xs , ys ) as in Games . B1 can form these vectors because it knows matrix W and as explicitly. Next, B2

receives an encoding [as ]s that has embedded in it vector (xs+b−1, ys+b−1) for a random bit b and uses [as ]s
to simulate Games+b−1. Last, B2 outputs what A outputs.

Gameκ+2: The i th source exponent is changed to a′
i
= ai + ω for randomly chosen ai ∈ ZN and all

i ∈ [κ + 1]. This means that the target exponent for b = 1 is

d = (a1 + ω) · · · (aκ+1 + ω) (2)

The distribution from which the exponents a′
i

are drawn has not changed and indeed is the

uniform distribution. Therefore, Pr [Wκ+1(λ)] = Pr [Wκ+2(λ)].

Gameκ+3: The differences with the previous game are twofold.

First, for case b = 1, the challenge group element [d]T is generated as in Lemma 3. More

precisely, we first write Eq. (2) as

d = P(ω) ,

where P is a degree κ + 1 polynomial whose coefficients p = (p0, . . . , pκ , pκ+1)

are computed using the iterative rule of Lemma 3, with (xi,0, xi,1) = (ai , 1). Then,

[d]T is obtained by evaluating P at point ω in the exponent using group elements

([1]T , [ω]T , . . . , [ωκ ]T , [ωκ+1]T ).

The other difference is that we obfuscate a different circuit C∗
Map which has the powers

[ωi ]T hard-coded, for 1 ≤ i ≤ κ . This new circuit extracts the encoding vectors xi from

the inputs, as usual; then, it computes the coefficients of Q(w) =
∏κ

i=1(xi,0 + xi,1ω) by

Lemma 3 and evaluates it at ω in the exponent.
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Fig. 8. The asymmetric multilinear DDH problem for our MLG scheme. Here, I is a function defining the

index set I = (i, I (i)) .

Lemma 3 implies that (1) both circuits are functionally equivalent, and (2) C∗
Map is of

size poly(λ). We conclude that obfuscations of these two variants are indistinguishable.

Or putting it differently:

|Pr [Wκ+2(λ)] − Pr [Wκ+3(λ)]| ≤ Advind
PIO,B(λ) .

Gameκ+4: The last game samples the challenge [d]T for case b = 1 as [d]T = [σ ]T for independently

random σ ∈ ZN . A κ-SDDH challenge ([ωi ]0)i≤κ , [σ ]0) can be used to emulate the

challenger in Gameκ+3 if σ = ωκ+1, or in Gameκ+4 if σ is random. The latter follows

from the fact that knowing ωi in the exponent for i ∈ [κ + 1] suffices to generate [d]T .

(Recall that GT = G0.) This shows:

|Pr [Wκ+3(λ)] − Pr [Wκ+4(λ)]| ≤ Advκ-sddh
Γ0,B

(λ) .

To conclude, to see that Pr [Wκ+4] ≤ 1/2, it suffices to observe that the exponent target challenge d is

randomly distributed, regardless of the challenge bit b. �

A.3. Proof of Theorem 3: Hardness of Asymmetric MDDH

Proof. Let I : [κ + 1] −→ [κ] be any function. Slightly abusing notation, we set I = (i, I (i)) for

1 ≤ i ≤ κ + 1. By the pigeon-hole principle, there must exist a pair of distinct i, i ′ ∈ [κ + 1] such that

I (i) = I (i ′) ∈ [κ]. For simplicity, and without loss of generality, we assume that I (1) = I (2) = 1.

We show a chain of games, starting with the asymmetric (κ, I )-MDDH problem, such that the last game

chooses the challenge encoding at random and independently of the challenge bit b. Below we let Wi denote

the event that Gamei outputs 1.

Game0: The asymmetric (κ, I )-MDDH problem as shown in Fig. 8.
Games for s = 1, 2: Similar to Games−1 with the difference that the representation vectors (xs , ys )

of the source encoding [as ]1 are given by

xs,0 = ys,0 = as − ω1 and xs,1 = ys,1 = 1 .

Thus, in game s′ ≥ s, the second coordinates of the sth encoding vectors are

always fixed to 1. Using a similar argument as Claim A.2, we have that

|Pr [Ws−1(λ)] − Pr [Ws (λ)]| ≤ Advκ-switch
Γ ∗,B

(λ) .

Game3: We change the first two source exponents to a′
i

= ai + ω1 for randomly

chosen ai ∈ ZN . This means that the target exponent for b = 1 is

d = (a1 + ω1)(a2 + ω1) · a3 · · · aκ+1 .

The first two elements a′
i

are drawn from the uniform distribution, and their

respective representation vectors are (ai , 1) so Pr [W2(λ)] = Pr [W3(λ)].
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Game4: The implementation of CMap is changed. Now, it has hard-coded

[ω1]0, ω2, ω3, . . . , ωκ .

The polynomial P(ω1, . . . , ωκ ) =
∏κ

i=1(xi,0+xi,1ωi )on point (ω1, . . . , ωκ )

can be evaluated in the exponent knowing [ω1]0 and explicit ωi for i ≥ 2.

Since the output of the original CMap is exactly [P(ω1, . . . , ωκ )]T , we con-

clude that

|Pr [W3(λ)] − Pr [W4(λ)]| ≤ Advind
PIO,B(λ) .

Game5: The challenge target d is set to

d = (a1a2 + ω1a2 + ω1a1 + σ) · a3 · · · aκ+1 , (3)

where σ is a fresh random value in ZN .

Note that if σ = ω1
2, then this is precisely the challenge target d in the previ-

ous game. Thus, a 1-SDDH challenge ([ω1]0, [σ ]0) can be used to generate

the pair ([d]T , C∗
Map) as in Game4 if σ = ω1

2, or as in Game5 if σ is

random. This shows:

|Pr [W4(λ)] − Pr [W5(λ)]| ≤ Adv1-sddh
Γ0,B (λ) .

To conclude, we have Pr [W5(λ)] ≤ 1/2 + negl(λ). To see this, we argue that d is randomly distributed in ZN

for challenge bit b = 1 with overwhelming probability in λ as follows: If N is prime, then
∏κ+1

j=3 a j has an

inverse in ZN , and therefore, d in Eq. (3) seen as a function of σ and parametrized by a j defines a bijection

in ZN with overwhelming probability. Thus, if σ is uniform so is d. �
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