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Abstract

Entanglement is a crucial resource for quantum information processing, and so pro-

tocols to generate high-fidelity entangled states on various hardware platforms are

in demand. While spin chains have been extensively studied to generate entangle-

ment, graph structures also have such potential; however, only a few classes of graphs

have been explored for this specific task. In this paper, we apply a particular coupling

scheme involving two different coupling strengths to a graph of two interconnected

3 × 3 square graphs such that it effectively contains three defects. We show how this

structure allows generation of a Bell state whose fidelity depends on the chosen cou-

pling ratio. We apply partitioned graph theory in order to reduce the dimension of the

graph and show that, using a reduced graph or a reduced chain, we can still simulate

the same protocol with identical dynamics. Finally, we investigate how fabrication

errors affect the entanglement generation protocol and how the different equivalent

structures are affected, finding that for some specific coupling ratios they are extremely

robust.
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1 Introduction

Quantum computers hold the promise of being one of the next major technological

developments in the field of information technology [11,19,20]. Quantum phenomena,

such as entanglement and superposition of states, provide quantum computers with the

ability to potentially solve some hard computational problems and to simulate quantum

systems in a more efficient way than their classical counterparts [1,5,8,24]. However,

one of the current limitations of this technology relies on the number of qubits that

can be allocated in a single chip [7,18]. The impact of this issue can be alleviated

by connecting different chips or registers through a quantum bus [7,25]. When these

interconnections are relatively short, it is desirable to use the same physical platform

and avoid using hybrid systems due to the associated inter-conversion from and to

different encoding degrees of freedom (e.g. states of light in optical links) [7,18]. For

that purpose, arrangements (chains or graphs) of solid-state qubits are good candidates

for short-range communication [6,7,18,25]. In addition to their application as quantum

buses, spin chains and graphs are also able to perform other quantum information

processing tasks, such as the creation and distribution of an entangled state [14,23,26].

The use of direct physical links is not the only way of transferring quantum states

and, for example, the teleportation protocol proposed by Bennett [3] uses entanglement

to communicate quantum information. Entanglement is also present in a wide range

of other applications, such as one-way quantum computer architectures [21,27] or

quantum key distribution [4,12,15]. Given that entanglement is a useful resource for

many applications, a reliable way to generate distributed entangled states on demand

is paramount.

In this paper, we explore the dynamics and entanglement generation/distribution

capabilities of a spin graph formed by two interconnected 3 × 3 square graphs. This is

engineered to present an ‘ABC-coupling’ configuration [14] with different coupling

ratios. We use the methods of graph partitioning from Refs. [2,17] to simplify such

graph into a quotient graph and a quotient linear chain. In Sect. 2, we explain in detail

the spin graph model. We also present the structure of the spin graph under study and

explain the partitioning theory that allows its simplification. In addition, we introduce

the measure used to assess the quality of entanglement (the entanglement of formation,

or EOF). In Sect. 3 we present our results. For different coupling ratios, we compare the

values of EOF obtained in a short period of time (something relevant for experiments

on hardware with short decoherence times) against the maximum EOF values over

a larger time window. We then investigate the effects that fabrication errors have on

the entanglement generation. We analyse both the effects of errors on the couplings

between qubits (non-diagonal disorder) and of errors on the on-site qubits’ energies

(diagonal disorder). Finally, our conclusions are included in Sect. 4.
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Fig. 1 Diagram of a spin chain of 6 qubits. Ji,i+1 are the coupling energies between two adjacent qubits.

Tilted arrows pictorially represent superpositions of up and down spin states

2 Themodel

Let us now explain the main concepts behind our spin graphs and the techniques that are

here being used to analyse their entanglement generation properties. In the following

subsections, we provide a general introduction to spin graphs and explain the details

on the partitioned graph theory. We then focus on the graph structure under study

and introduce the ‘ABC-coupling’ configuration. We show that with this structure and

coupling scheme, and the right tuning of the coupling parameters, the natural dynamics

of the system can generate a distributed highly entangled state.

2.1 The spin graph formalism

We describe generic spin graph systems with the XY (sometimes also called XX)

Heisenberg Hamiltonian. With |0〉 and |1〉 as our σz basis states, we write the Hamil-

tonian as

HXY =
N−1
∑

i=1

N
∑

j>i

Ji, j [|1〉 〈0|i ⊗ |0〉 〈1| j + |0〉 〈1|i ⊗ |1〉 〈0| j ]

+
N

∑

i=1

ǫi |1〉 〈1|i , (1)

where N is the number of qubits of the graph and Ji, j is the coupling energy between

qubit i and qubit j . We will consider all the energies ǫi to be equal, time-independent

and scaled to zero unless otherwise stated. An example of a simple spin graph is the

one-dimensional spin chain illustrated in Fig. 1.

As already noted, some particular arrangements of spin graphs present good quan-

tum state transfer properties [7,10,13,16], meaning that a quantum state can be reliably

transmitted from a specific qubit of the graph (sender) to another (receiver).

2.2 Partitioned graph theory

Here, we consider the theory of graph partitioning based on [17]. This allows reduc-

ing the complexity of a graph by collapsing several similar sites into a single effective

site that will be referred to as a node. The obtained graph is called the partitioned

graph. After also readjusting the new interaction strengths one then obtains the quo-

tient graph. The purpose of our use of partitioned graph theory is to find and study

different graph structures with equivalent dynamics. This is not merely to provide
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Fig. 2 Example of a partitioned graph consisting of two nodes. Node 1 is connected to d1 fg-sites of node

2, and similarly node 2 is connected to d2 fg-sites of node 1. Node 1 comprises M1 fg-sites, and node 2

comprises M2 fg-sites [17]

a simpler calculation, but rather to present different graphs with the same entangle-

ment generation properties. This would allow experimentalists to be able to choose

between different graph topologies and find the most suitable to the characteristics of

the available hardware. We will refer to the original graph, for which the complexity

will be reduced by partitioning, as the full graph and call its sites fg-sites. All coupling

energies in this graph are equal. In [17], a partitioned graph G comprising a set of

nodes is defined such that:

– The first node comprises a single fg-site of the full graph.

– All fg-sites collapsed in node i are equidistant from the first node.

– For any pair of nodes, i, j , every fg-site collapsed in node i connects to the same

number of fg-sites collapsed in node j .

– No edges join fg-sites collapsed in the same node.

Once the first node is defined, we will group the remaining fg-sites together to form

the other nodes of the partitioned graph. These remaining fg-sites are grouped if and

only if they all have the same distance to the first node and the same coupling degree

to the fg-sites collapsed into a different node. Note that the distance between two sites

is defined by the number of edges connecting them on the shortest path.

In Fig. 2, we show two nodes, where each fg-site of the full graph in node 1 is

coupled to d1 fg-sites in node 2 and each fg-site in node 2 is coupled to d2 fg-sites in

node 1. Here, M1 (M2) is the number of fg-sites collapsed into node 1 (2). It is always

required that M1d1 = M2d2, or more generally

Mi di = M j d j (2)

for any coupled pair of nodes i , j . In a nutshell, partitioned graphs, as the one shown in

Fig. 2, are graphical constructions that group together in a node the fg-sites that fulfil

the same connection properties (see the conditions listed above).

Once the partitioned graph is obtained, the quotient graph can be easily defined. The

locations of the qubits in the quotient graph are determined by its site structure, and this

site structure is identical to the node structure of the partitioned graph. We will refer

to the qubit sites of the quotient graph as qg-sites, to distinguish these from the qubit

locations in the full graph which are determined by the fg-sites. While in the full graph

all the fg-sites were uniformly coupled with J = 1, in the quotient graph each qg-site

is now interacting with the adjacent qg-sites through an effective coupling strength

J1,2 =
√

d1d2. The quotient graph and the full graph present the same dynamics and

therefore the quantum transfer abilities of both graphs are identical.

We now move to the network arrangement considered in this work. First let us

introduce the basic unit of our system: a single 3×3 square graph, as shown in Fig. 3a.
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(a)

(b)

(c)

Fig. 3 The 3×3 square graph a together with the corresponding partitioned graph b and the quotient graph

c. The numbers drawn on top of the edges in the partitioned graph describe the coupling degrees of each

node, di , and the numbers on top of the edges in the quotient graph denote the effective coupling strengths,

Ji, j . Note that for the initial full 3 × 3 square graph all coupling strengths are Ji, j = 1. The red numbers

at the bottom of each circle are labelling the sites of the graphs (a) and (c) and the nodes of the partitioned

graph (b)

In [9], Christandl et al. showed that this structure has perfect state transfer (PST)

properties. The PST property entails that an excitation injected at the first fg-site is

perfectly transferred to its mirror position (here, fg-site 9) by the natural dynamics of

the system. Here, by ’injected excitation’ we mean the creation of a spin up state, | ↑〉,
in a system that has all spins down, | ↓↓ . . . ↓〉. The complexity of the 3 × 3 structure

can be reduced by applying the aforementioned process of graph partitioning as shown

in Fig. 3b, c. We note that for the presented quotient graph, Bachmann et al. introduced

an additional lift-and-quotient reduction [2] allowing for a further simplification of

the graph to a linear chain, as shown in Fig. 4. Therefore, we do have some freedom

in the way we perform that partition, as partitioning only the grey coloured sub-graph

at the top of Fig. 4 results in the bottom left graph, and if we partition everything, but

the edges we get the bottom right graph. The bottom right graph is a linear chain, for

which the qubit sites will be referred to as lc-sites. Importantly, when the full graph is

initialised in a normalised equal superposition between the fg-sites that correspond to

the initially excited qg-sites of the quotient graph and, in turn, to the initially excited

lc-sites of the quotient linear chain, the three graphs present the same dynamics.
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Fig. 4 Sketch of the lift-and-quotient reduction [2]

Fig. 5 Graph of two interconnected 3 × 3 square graphs

Fig. 6 Quotient linear chain for the two interconnected 3 × 3 square graphs from Fig. 5

Given that the 3 × 3 square graph can be collapsed to a linear chain (see Fig. 4)

whilst ensuring PST properties, we have chosen it as our basic unit to build a more

complex system. For our entanglement generation protocol we interconnect two of

these units (as shown in Fig. 5). If we apply the partitioning method and the lift-and-

quotient reduction to the two coupled 3×3 square graphs, we obtain a linear chain, as

shown in Fig. 6. This can in turn be approximated to a trimer, a well-known structure

capable of generating entanglement, as we will introduce in Sect. 2.4.

2.3 Unitary transformation perspective

An alternative and more physical perspective on the graph partition and quotient

combined operation is to consider this operation as due to a unitary transformation.

The reduction of the complexity of a graph to a simpler graph (with fewer coupled

sites), or even a simple chain (with still fewer coupled sites), can be viewed as due

to a unitary transformation. As we are considering the single excitation subspace of

our system, the Hamiltonian has the same dimensionality as the site basis and the
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transformation redefines the definitions of (some of) the sites to superpositions of

the original site basis. There are two criteria for the transformation. First, it should

decouple some of the sites, to simplify the graph. Second, it should leave alone the

definitions of the sites between which we seek identical dynamics in the reduced graph.

Clearly this perspective also works in reverse, in the sense that we could start with a

simple graph or chain, and augment this with some additional uncoupled sites (which

could be at zero energy or nonzero energy, dependent upon the form of the more

complicated graph sought). Then, a unitary transformation can be chosen to redefine

the site basis and involve the uncoupled sites in a more complex graph. If in this

reverse approach the objective is again a network with identical dynamics between

certain sites, these sites should be invariant under the transformation.

In both cases (graph simplification and graph expansion) where the sites of interest

for the dynamics are not invariant under the transformation, there are clearly still

equivalent dynamics in the two graphs. However, these will involve site superposition

states, as related by the transformation.

We will refer to this unitary perspective in relation to the specific examples discussed

in this paper.

2.4 ABC configuration

We now extend what in [14] is called ABC configuration to our specific graph structure.

This configuration is attained by imposing a coupling distribution of two different

energies, � and δ, that results in having three sites (named A, B and C) distributed

symmetrically and weakly coupled (δ) to the rest of the system, such that they appear

to be defects in an otherwise strongly coupled (�) graph. The reason that makes this

particular configuration interesting is that it can be approximated to a tunable trimer

chain, which has the ability to dynamically create a maximally entangled Bell state

between the edge sites when the system is initialised by injecting an excitation in the

middle site [14,28]. Figure 7 shows the result of applying this configuration in our full

graph and its two quotient structures.

From the unitary transformation perspective, the ABC system has seventeen single-

excitation eigenstates, with eigenenergies as given in Fig. 8. The first partition and

quotient operation is effected by a transformation that acts only on the black sites in

Fig. 7 and leaves A, B and C invariant. This decouples six sites (two at positive energy√
2�, two at equal magnitude negative energy −

√
2� and two at zero energy), clearly

without changing the overall spectrum of the system. The resultant non-trivial network

is the 11-site quotient graph shown. A further unitary transformation, again acting on

only the black sites and leaving A, B and C invariant, can decouple a further two zero

energy sites to leave the final 9-site chain, with the spectrum given in Fig. 8.

2.5 Entanglement-of-formation as ameasure of graph performance

To determine the effectiveness of any particular spin chain or graph to generate entan-

gled states, a quantitative measurement of bipartite entanglement is needed. For this,

we will use the entanglement of formation (EOF) [29]. The EOF between qubits A,
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Fig. 7 ABC configuration of the full two interconnected 3 × 3 square graphs (top), the quotient graph

(middle) and the quotient linear chain (bottom)

Fig. 8 The seventeen single-excitation eigenenergies of the network shown in Fig. 7, identifying those that

decouple with the reductions

C is defined by,

EOFAC = −x log2 x − (1 − x) log2(1 − x), (3)

where x = 1+
√

1−τ
2

and τ = (max{0, λ1 − λ2 − λ3 − λ4})2. λi is the square root of

the i th eigenvalue of the matrix ρAC ρ̃AC = ρAC [(σ A
y ⊗ σC

y )ρ∗
AC (σ A

y ⊗ σC
y )], ordered

such that λ1 > λ2 > λ3 > λ4. ρAC is the reduced density matrix for sites A and C

that result from tracing out the rest of the system, such that ρAC = trrest(ρ).
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The EOF ranges between 0 and 1, with EOF = 1 indicating that the state com-

prising two qubits is maximally entangled. In our work, the EOF magnitude allows

us to quantitatively assess how good is the entangled state generated from the natural

dynamics of the graph. The EOF has also been used to assess the quality of other

entangled state generation protocols in spin chains [14,28]

3 Results

In order to study the dynamics of the system, we solve the time-independent

Schrödinger equation through exact diagonalisation of the Hamiltonian matrix [13].

Note that, as already mentioned, the three structures (full graph, quotient graph and

quotient linear chain) will have the same dynamics for injection and extraction at

sites A, B and C. For that, we initialise the system to a spin up, |1〉, at site B and

all spins down, |0〉, in the rest of the graph. We then let the state evolve through its

natural dynamics and calculate the EOF versus time. Because we based our structure

on the trimer chain, the dynamics of the EOF will look like a Rabi oscillation which

corresponds to the entangling and disentangling of the state comprising sites A and

C. In the remaining of this section, we study how the amplitude and period of such

oscillations depend on the chosen coupling ratio, δ
�

, and how such ratio affects the

time one needs to wait to obtain the maximum EOF peak. We also investigate how

the presence of random fabrication errors (diagonal and off-diagonal disorder) affects

differently the dynamics of the three graph structures, giving different results in terms

of robustness. We will use natural units, so that � = 1.

3.1 Entanglement generation

In Fig. 9, we show the EOF dynamics for two different coupling ratios, δ
�

= 0.1 and
δ
�

= 1. The peaks for each of the two scenarios present different periodicity and

related amplitudes. In Fig. 9, it is also apparent that the larger the coupling ratio, the

faster the oscillations, meaning that the entangled state is generated earlier. For δ
�

= 1,

the first EOF peak happens at t1 · � = 1.97 and for δ
�

= 0.1, at t1 · � = 18.02.

3.1.1 EOF at the first peak

Our first approach to compare the effect of the different coupling ratios in our protocol

is to investigate the first EOF peak. From an experimental point of view, the evalu-

ation of the first peak is a useful metric as it will be most likely to fall ahead of the

decoherence times of the experimental realisation. The dependence of the time when

the first entanglement operation happens can be analytically approximated from the

reduced trimer as done in [28]. From that, we obtain

tP · � =
π

√

3 +
(

δ
�

)2 −
√

9 +
(

δ
�

)4

(4)
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Fig. 9 Dynamics of the EOF between sites A and C for the coupling ratios δ
�

= 0.1 (top) and δ
�

= 1

(bottom). A coupling ratio of δ
�

= 1 corresponds to the case with uniform couplings

as the estimate of the period of the EOF oscillation and of the time needed for an

excitation injected at site B to propagate to the edges and return to its initial state.

Thus, the entangled state will be formed for the first time at approximately tP · �/2.

Also, in our calculations we have numerically obtained the exact time, t1, at which the

first EOF peaks occurs within a time window equal to tP .

The coupling ratio dependence of the first EOF peak for the two interconnected 3×3

square graphs is shown from the orange (dashed) curve of Fig. 10. This dependence

is identical for the three structures (full graph, quotient graph and quotient chain).

This curve shows an oscillatory behaviour, with amplitude increasing and frequency

decreasing with the coupling ratio. We observe that the highest EOF attained is EOF =
0.8745 for a coupling ratio of δ

�
= 0.828 46. In the right inset of Fig. 10 we show how

the time t1 decays as the coupling ratio increases, a result that is in agreement with its
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Fig. 10 Orange dashed Curve: EOF at t1 plotted against the coupling ratio δ
�

. This value is obtained as

the highest entanglement found in a time window of tP . Green solid curve: Maximum EOF in a time

window of 100 · tP , EOFt100 , against the coupling ratio δ
�

. In the left inset, the time t100 when the maximal

entanglement within 100 · tP occurs is plotted against the coupling ratio. In the right inset, the time t1 when

the first entanglement peak occurs is plotted against the coupling ratio

analytical approximation. The dependence of t1 on the coupling ratio has a staircase-

like profile; the quick vertical drops occur at the ratios corresponding to the minima

of the orange dashed curve in the main panel. This behaviour can be understood if we

look at a few consecutive slices of the dynamics for the region close to those minima.

Figure 11 shows three nearby points to the minimum close to δ
�

= 0.5. From the lower
δ
�

to the higher, we observe how the EOF curve goes from having a clear maximum

to reach a plateau, and then the maximum can be distinguished again. This transition

results in a t1 step (note how the maximum that was initially at the right-hand side

appears at the left side after reaching the flat plateau), as seen in the right inset in

Fig. 10. This behaviour can be observed at all of the minima of the orange dashed

curve in Fig. 10.

3.1.2 Comparison to ‘normal’ linear chain

When changing the coupling ratio of the quotient linear chain in Fig. 7 from
√

2δ/
√

3�

to δ/� we find that the dynamics is the same, but with a rescaled factor
√

3/
√

2. In

particular, the first EOF peak is reached later, at a time longer by
√

3/
√

2. So if one

has only two specific couplings δ and � available due to experimental constraints,

then using the full graph generates faster dynamics (a shorter t1) than a coupled linear

chain generated by those same two couplings. In this sense, the dynamics of the full

graph is equivalent to the dynamics of an ‘enhanced’ spin chain with coupling ratio

increased by a factor
√

3/
√

2.

3.1.3 Entanglement within a longer time

A different approach to compare the coupling ratio dependence is to use the maximum

entanglement generated over a larger time window. We denote t100 the time at which
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Fig. 11 EOF for ratios around the orange dashed curve minimum at δ
�

= 0.50446 in Fig. 10. The shifting

of the maximum from the right hand side of the peak to the left hand side explains the staircase like profile of

the left inset in Fig. 10. Orange dashed: EOF vs. time for a coupling ratio slightly smaller than the rightmost

minimum of the orange dashed curve in Fig. 10. Green solid: EOF vs. time for a coupling ratio equal to the

rightmost minimum of the orange dashed curve in Fig. 10. Blue dotted: EOF vs. time for a coupling ratio

slightly larger than the rightmost minimum of the orange dashed curve in Fig. 10

the highest entanglement EOFt100 occurs in a time window of 100 tp periods (note

that tP will depend on the coupling ratio). Figure 10 shows the dependence of EOFt100

(green solid profile) with the coupling ratio. For this scenario and a coupling ratio of

δ/� = 0.720 18 we get the highest maximum entanglement, EOFt100 = 0.8787. The

left-hand inset in Fig. 10 shows the time t100 when the maximal entanglement occurs.

The upper limit is given by the time window t = 100 · tP and is decreasing with the

coupling ratio. We will later have a more detailed look at this time behaviour.

The green solid line in Fig. 10 outlines an upper limit with respect the orange dashed

curve, but it also displays a few downward outliers. For such cases, the highest possible

entanglement occurs at a time out of the selected time frame due to the presence of

secondary oscillations of a large period (examples of secondary oscillations can be seen

in Fig. 9). We will call these outliers ‘downwards peaks’. Note that the ‘downwards

peaks’ are very sharp so we need a high precision in the coupling ratio to identify

them. The sharpness of the ‘downwards peaks’ also underlines the quick change in

the secondary oscillations just by slightly modifying the coupling ratio.

3.1.4 Ratios for perfect periodicity

In Fig. 10, for certain ratios, the green solid curve shows ‘downwards peaks’ touching

the orange dashed curve; this behaviour implies that that no EOF peak is higher than

the first peak in the specified time frame of 100 ·tP . However, many of these downward

peaks remain when considering an arbitrarily large time window, suggesting that no

EOF peak is higher than the first peak. This either means that the first EOF peak is

the highest or that all EOF peaks have the same height (periodic system). We shall see

first through inspection of one of these ‘downward peaks’ and then analytically that

the latter is true.
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Fig. 12 Green solid: EOF at the

coupling ratio of one of the

‘downwards peaks’

(corresponding to the rightmost

minimum of the orange dashed

curve in Fig. 10). Red dashed:

fidelity against the initial state.

EOF and fidelity show that the

system returns periodically to its

initial state

As shown in Fig. 12, the state of the system at those specific coupling ratios is fully

periodic. The system returns exactly to its initial state, and the second and consecutive

EOF peaks have the same shape as the first. We conclude that all the peaks are the

same for the specific coupling ratios showing ‘downwards peaks’.

There are multiple coupling ratios for which this is true, and the reason for this, as

well as the precise values of these ratios, can be discovered through the analysis of

the fidelity against the initial state. For an initial state |ψ0〉, the fidelity against a state

|ψ f 〉, is defined as

F(t) = | 〈ψ f | e−i tH |ψ0〉 |2 (5)

where H is the time-independent system’s Hamiltonian. By diagonalising H one can

obtain its eigenvalues and eigenvectors {Ei } and {|φi 〉}, and the fidelity can be written

as

F(t) =
∑

i, j

αi j e
i t(E j −Ei ), (6)

where we have defined αi j = 〈φ j |ψ f 〉 〈ψ f |φi 〉 〈φi |ψ0〉 〈ψ0|φ j 〉. By noting that αi j =
α∗

j i , and ei t(E j −Ei ) = (ei t(Ei −E j ))∗, we can see that the imaginary part of the i, j

term cancels with the imaginary part of the j, i term. Therefore, as the diagonal terms,

αi i e
i t(Ei −Ei ) are real, the fidelity can be written as a sum of cosines:

F(t) =
∑

i, j

αi j cos((E j − Ei )t). (7)

The dynamics we are interested in is the same for the full, seventeen fg-

sites graph, the quotient graph and the quotient linear chain. We shall focus

our analysis here on the simpler case of the quotient linear chain (with an

initial injection in the centre lc-site B). For this system, there are nine eigenvec-

tors, five even under reflection about lc-site B and four odd under this reflec-

tion. There are thus five eigenvectors which are not orthogonal to the (even)
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initial state. These eigenvectors correspond to the eigenenergies (taken from

Fig. 8)

±E := ±
√

3δ2 + 3�2 +
√

δ4 + 9�4 (8)

±E ′ := ±
√

3δ2 + 3�2 −
√

δ4 + 9�4 (9)

E0 := 0 . (10)

As αi j = 0 when either |φi 〉 or |φ j 〉 is orthogonal to the initial state |ψ0〉, these

are the only eigenvalues that affect the time dependence of F(t). We need to con-

sider all combinations of these five eigenvalues in the term cos((E j − Ei )t). By

noting that cosine is an even function, it can be shown that in order to equal unity

(and therefore for the fidelity to return to its initial state) the following must be satis-

fied:

Et = 2πn1

E ′t = 2πn2

2Et = 2πn3

2E ′t = 2πn4

2(E − E ′)t = 2πn5

2(E + E ′)t = 2πn6

for some integers ni . Of course, these equations are not independent, if the first two

are satisfied, then so are the rest. Therefore, when E ′n1 = En2, F(t) = 1 at time

t = 2πn1
E

= 2πn2
E ′ .

Using this integer condition, and the formulae for the energies, we can derive a

formula which will tell us, for given n1, n2, what coupling ratio ensures that the

condition E ′n1 = En2 is true. When this condition is satisfied for integers n1, n2, the

system exhibits periodic dynamics. When n2 = 1, the system returns to its initial state

after a single peak in EOF, implying that every EOF peak will be the same height.

For example, the dynamics shown in Fig. 12, for a ratio δ
�

= 0.504469524022, is

produced when n2 = 1 and n1 = 3.

3.1.5 Time behaviour around ‘flat coupling ratios’

Here, we consider coupling ratios within a small interval around the minima of the

orange dashed curve of Fig. 10 that coincide with the downwards peaks of the green

solid curve of Fig. 10. We investigate the time when the highest EOF occurs by consid-

ering a fixed time window. In Fig. 13, we show the highest EOF within 0 ≤ t ·� ≤ 4000

for small variations of the coupling ratios around δ/� = 0.505. The period of the

secondary oscillations becomes longer if we get closer to the minimum of the orange
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Fig. 13 Time behaviour around the coupling ratio corresponding to the absolute minimum of the orange

dashed curve in Fig. 10. Every point stands for the time tE when the highest EOF is observed in a time

window of t · � = 4000. To be sure that the overall shape of the plot was not due to the sampling of the

coupling ratios, we have chosen 2000 random coupling ratios in the range [0.50, 0.51]

dashed curve in Fig. 10, therefore, the number of the EOF maxima from the secondary

oscillations within the observed time window decreases. This behaviour is confirmed

in Fig. 13. Here, each of the blue curves tracks the evolution of one EOF maxima as the

coupling ratio δ
�

varies and 0 ≤ t · � ≤ 4000. By considering vertical cuts at specific

coupling ratios (the red lines), we can see that the number of blue curves intersecting

each cut decreases as we get closer to the coupling ratio δ
�

= 0.504469524022 (min-

imum of the orange curve in Fig . 10). More details are in Appendix where we show

the dynamics of the EOF for the specific coupling ratios corresponding to the vertical

lines in Fig. 13. Close to this coupling ratio, the highest EOF within the chosen time

window occurs just before t · � = 4000, but the absolute highest EOF (a maxima

of the secondary oscillation) occurs outside the time window. As the coupling ratio

approaches the minimum of the orange dashed curve in Fig. 10 the time when the

absolute highest EOF occurs goes to infinity. Then, we cannot observe any secondary

oscillations. We call all the coupling ratios which lead to an infinite long period of the

secondary oscillations ‘flat coupling ratios’.

3.2 Stability against errors: random static disorder

So far we have discussed the behaviour of an ideal system, with no errors in the cou-

pling strengths between sites and where all of the on-site energies are precisely equal

and scaled to zero. This is of course an unrealistic situation and a consideration of

how robust a system is to errors in manufacturing is critical to determining its prac-

tical feasibility. Following [22], to study our systems’ robustness we introduce two

types of static disorder. The first, diagonal disorder, consists of adding random per-

turbations to the diagonal terms of the Hamiltonian and represents random differences

between the on-site energies of the qubits. The second type of disorder we apply,
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Fig. 14 Stability against disorder. Top: δ
�

= 0.109; Bottom: δ
�

= 0.828. Left: Full graph; Middle: Quotient

graph; Right: linear chain. Off-diagonal disorder is shown in blue with dots, and diagonal disorder is shown

in black with crosses. The shaded areas represent the standard deviation. The three graph structures display

a very similar response to both disorders

off-diagonal disorder, represents random errors in the couplings between qubits. This

is incorporated into the simulation by adding random perturbations to the nonzero

off-diagonal terms of the Hamiltonian. These two types of perturbation encompass

a wide range of potential fabrication defects; however, we leave the study of other

sources of errors or decoherence for a follow-up work. To see the effect of these errors

on the dynamics of the system, we apply these perturbations to two different coupling

scenarios: a coupling ratio of δ
�

= 0.828 (corresponding to the rightmost maximum of

the orange dashed curve in Fig. 10) and a coupling ratio of δ
�

= 0.109 (corresponding

to the left-most minimum of the orange dashed curve in Fig. 10). We scale the errors

via a disorder scale, D, ranging from 0% to 50% of the strong coupling, �. D is

then included into the couplings or energies as a dimensionless parameter such that

ǫi = ǫi + Dri� and J i,i+1 = Ji,i+1 + Dri�, where ri is a random number generated

from a uniform distribution between 0 and 1. For both types of added disorder, we

perform 1000 random realisations for each value of D, and for each realisation we

obtain the EOF at the time of the first peak in the unperturbed system, t1, and then

calculate the average.

In Fig. 14, we compare the robustness of the graph structure of Fig. 5 to its quo-

tient graph and quotient linear chain. We find that the three graph structures show

a quick decay of the averaged EOF for the coupling ratio δ
�

= 0.109, especially

for the off-diagonal disorder (top panel). However, for the case of the coupling ratio
δ
�

= 0.828 (bottom panel) we observe an excellent robustness, especially in the

case of diagonal disorder. Hence, there is a strong dependence of the robustness of

our protocol on the chosen coupling ratio. In addition to this, there is a significant

difference between the effects of diagonal and off-diagonal disorder, with the lat-

ter being much more damaging for both coupling ratio scenarios. While the three

graph structures show similar robustness, the linear chain is slightly more robust

than the quotient graph which in turn is slightly more robust than the full graph.
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It is important to note that the off-diagonal disorder simulates errors in the cou-

pling between sites and therefore high levels of this disorder significantly change

the level of connectivity within the graph. This has an impact on how the wave-

function evolves in space. For example, a negligible coupling can become much

larger due to error, losing the required strong/weak coupling pattern of the system

and, de facto, resulting in the opening of new channels for the wavefunction to dif-

fuse.

4 Conclusions

Using a graph formed by two interconnected 3 × 3 square graphs, we have shown

that one can efficiently generate bipartite entanglement by preparing an initial state

with an excitation in the middle site of the graph. We engineered the graph cou-

plings with a strong and weak coupling distribution such that we obtain an ABC

configuration that can be approximated to the trimer chain, known to generate Bell

pairs. We analysed the spin dynamics dependent on the ratio of the weak and strong

coupling and found specific coupling ratios where the entanglement shows a perfect

periodic behaviour. This behaviour, however, can be rapidly lost by a slight change

on the coupling ratio. In such cases, we encounter secondary oscillations causing

the entanglement peaks to have a different height and therefore showing a different

EOF.

We used graph partition theory to derive two additional related graphs and showed

that the above findings are identical for the three graphs. In addition, we discussed

the partitioning from the physical perspective of unitary transformations applied to

redefine some of the graph sites. All three graphs depicted in Fig. 7 show the same

dynamics after an excitation is injected in the middle. Moreover, the three graphs

show the same dynamics if the initial state of the full graph is a normalised super-

position between the fg-sites which correspond to the initially excited qg-sites of

the quotient graph and, in turn, the initially excited lc-sites of the quotient linear

chain. This gives experimentalists flexibility in their system’s topology; for exam-

ple, for certain hardware, a full graph could be more favourable to implement than

a linear chain, or it could offer additional functionalities. In addition, if the set of

available couplings is limited, the full graph is advantageous as it corresponds to a

spin chain with faster dynamics than a spin chain constructed from the same available

couplings.

Finally, we considered the robustness of the three systems. We found that there

is a significant dependence on the ratio δ
�

, as the systems with a ratio δ
�

= 0.828

are significantly more robust than the ones with ratio δ
�

= 0.109. These two ratio

correspond to a maximum and a minimum, respectively, of the curve describing

how the height of the first entanglement peak varies with the coupling ratio. This

suggests that ratios corresponding to a maximum of this curve lead to more robust

devices, but a systematic analysis should be conducted to support this conclusion,

which is beyond the scope of this work. We also noted that errors affecting the

coupling between sites (‘off-diagonal disorder’) are more damaging to the entan-
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glement generation protocol than errors affecting the on-site energies of the sites

(‘diagonal disorder’). The three graph structures show similar robustness, although

the linear chain is slightly more robust than the quotient graph which in turn is

slightly more robust than the full graph. These results suggest that a physical real-

isation of the systems shown in Fig. 7 should aim for a ratio of δ
�

= 0.828,

as it not only produces a high EOF in a shorter time, but is also extremely

robust.

We conclude that graph structures with only two different couplings δ and

� can be used to generate robust bipartite entanglement. While a linear chain

with the same dynamics as the graph is slightly more robust to errors, a lin-

ear chain with the same coupling as the graph displays a slower dynamics. We

show that, depending on the experimental demands, one has the freedom to choose

between graphs or chains for the design of different quantum technology applica-

tions.
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Appendix: EOF for coupling ratios close to
ı

1
= 0.504469524022

In Fig. 13, the behaviour of the time of the highest EOF peak around a minimum of

the orange dashed curve in Fig. 10 is shown. In this graph, the time, tE , seems to

reach a maximum of tE · � = 4000 for ratios near to δ
�

= 0.504469524022; this

is in fact a consequence of the chosen simulation time window cutting off at this

time. As the bottom left graph in Fig. 15 shows, systems with a coupling ratio in this

region achieve their first maximum after t · � = 4000 (although the highest EOF

in the considered time range is just before tE · � = 4000). Figure 15 also offers

an explanation for the multiple curves seen in Fig. 13: as the system exhibits peri-

odic behaviour, there are multiple EOF maxima for each coupling ratio. In Fig. 13,

each curve intersecting with the red line corresponds to a different EOF maxima,

which shift in time as the coupling ratio is changed. Due to our simulation choos-

ing only one EOF maximum for each coupling ratio, each coupling ratio is shown

to have just one time value at which EOF is maximised, even when the dynamic

is periodic. This results in the blue curves in Fig. 13 not being continuous. How-

123

http://creativecommons.org/licenses/by/4.0/


Generation and robustness of quantum entanglement… Page 19 of 20     2 

Fig. 15 EOF vs time for coupling ratio corresponding to the vertical red lines shown in Fig. 13. From top to

bottom, left to right, the graphs show the EOF behaviour as the coupling ratio gets closer to the ‘flat ratio’
δ
�

= 0.504469524022. The top graphs show that for each coupling ratio there are multiple EOF maxima,

and the bottom left graph shows that for ratios sufficiently close to the flat ratio, the first maximum will fall

outside of the considered time window

ever, in a true reflection of the time behaviour of the EOF maxima, there would be

multiple points for each coupling ratio and each curve would therefore be continu-

ous.

References

1. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao,

F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature

574(7779), 505–510 (2019)

2. Bachman, R., Fredette, E., Fuller, J., Landry, M., Opperman, M., Tamon, C., Tollefson, A.: Perfect

state transfer on quotient graphs. Quantum Inf. Comput. 12(3), 0293 (2012)

3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown

quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895

(1993)

4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev.

Lett. 68(5), 557 (1992)

5. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247

(2000)

6. Bohnet, J.G., Sawyer, B.C., Britton, J.W., Wall, M.L., Rey, A.M., Foss-Feig, M., Bollinger, J.J.: Quan-

tum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352(6291),

1297–1301 (2016)

7. Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp.

Phys. 48(1), 13 (2007)

123



    2 Page 20 of 20 J. Riegelmeyer et al.

8. Bruss, D., Leuchs, G.: Lectures on Quantum Information. Wiley-VCH, Hoboken (2007)

9. Christandl, M., Datta, N., Dorlas, T.C., Ekert, A., Kay, A., Landahl, A.J.: Perfect transfer of arbitrary

states in quantum spin networks. Phys. Rev. A 71, 032312 (2005)

10. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks.

Phys. Rev. Lett. 92(18), 187902 (2004)

11. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A

439(1907), 553–558 (1992)

12. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

13. Estarellas, M.P.: Spin Chain Systems for Quantum Computing and Quantum Information Applications.

PhD thesis, University of York, York (2018)

14. Estarellas, M.P., D’Amico, I., Spiller, T.P.: Robust quantum entanglement generation and generation-

plus-storage protocols with spin chains. Phys. Rev. A 95, 042335 (2017)

15. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entan-

gled photons. Phys. Rev. Lett. 84(20), 4729 (2000)

16. Kay, A.: Perfect, efficient, state transfer and its application as a constructive tool. Int. J. Quantum Inf.

8(4), 641 (2010)

17. Kay, A.: The perfect state transfer graph limbo. arXiv preprint arXiv:1808.00696 (2018)

18. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer.

Nature 417(6890), 709 (2002)

19. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers.

Nature 464(7285), 45 (2010)

20. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University

Press, Cambridge (2000)

21. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

22. Ronke, R., Spiller, T.P., D’Amico, I.: Effect of perturbations on information transfer in spin chains.

Phys. Rev. A 83(1), 012325 (2011)

23. Sahling, S., Remenyi, G., Paulsen, C., Monceau, P., Saligrama, V., Marin, C., Revcolevschi, A., Reg-

nault, L., Raymond, S., Lorenzo, J.: Experimental realization of long-distance entanglement between

spins in antiferromagnetic quantum spin chains. Nat. Phys. 11(3), 255 (2015)

24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer. SIAM Rev. 41(2), 303–332 (1999)

25. Skinner, A., Davenport, M., Kane, B.E.: Hydrogenic spin quantum computing in silicon: a digital

approach. Phys. Rev. Lett. 90(8), 087901 (2003)

26. Spiller, T.P., D’Amico, I., Lovett, B.W.: Entanglement distribution for a practical quantum-dot-based

quantum processor architecture. New J. Phys. 9(1), 20 (2007)

27. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger,

A.: Experimental one-way quantum computing. Nature 434(7030), 169 (2005)

28. Wilkinson, K.N., Estarellas, M.P., Spiller, T.P., D’Amico, I.: Rapid and robust generation of Einstein–

Podolsky–Rosen pairs with spin chains. Quantum Inf. Comput. 18(3), 0247 (2018)

29. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1(1), 27 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

http://arxiv.org/abs/1808.00696

	Generation and robustness of quantum entanglement in spin graphs
	Abstract
	1 Introduction
	2 The model
	2.1 The spin graph formalism
	2.2 Partitioned graph theory
	2.3 Unitary transformation perspective
	2.4 ABC configuration
	2.5  Entanglement-of-formation as a measure of graph performance

	3 Results
	3.1 Entanglement generation
	3.1.1 EOF at the first peak
	3.1.2 Comparison to `normal' linear chain
	3.1.3 Entanglement within a longer time
	3.1.4 Ratios for perfect periodicity
	3.1.5 Time behaviour around `flat coupling ratios'

	3.2  Stability against errors: random static disorder

	4 Conclusions
	Acknowledgements
	Appendix: EOF for coupling ratios close to δΔ=0.504469524022
	References


