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Abstract—Joint-event-extraction, which extracts structural in-
formation (i.e., entities or triggers of events) from unstructured
real-world corpora, has attracted more and more research
attention in natural language processing. Most existing works do
not fully address the sparse co-occurrence relationships between
entities and triggers, which loses this important information and
thus deteriorates the extraction performance. To mitigate this
issue, we first define the joint-event-extraction as a sequence-to-
sequence labeling task with a tag set composed of tags of triggers
and entities. Then, to incorporate the missing information in
the aforementioned co-occurrence relationships, we propose a
Cross-Supervised Mechanism (CSM) to alternately supervise
the extraction of either triggers or entities based on the type
distribution of each other. Moreover, since the connected entities
and triggers naturally form a heterogeneous information network
(HIN), we leverage the latent pattern along meta-paths for a
given corpus to further improve the performance of our proposed
method. To verify the effectiveness of our proposed method, we
conduct extensive experiments on four real-world datasets as well
as compare our method with state-of-the-art methods. Empirical
results and analysis show that our approach outperforms the
state-of-the-art methods in both entity and trigger extraction.

Index Terms—Joint-event-extraction, neural networks, hetero-
geneous information network

I. INTRODUCTION

Event extraction [1] is a process to extract the named

entities [2], event triggers [3] and their relationships from

real-world corpora. The named entities refer to those texts

about predefined classes (e.g. person names, company name

and locations) and event triggers are words that express the

types of events in texts [3] (e.g., the word “hire” may trigger an

“employ” event type). In literature, named entities and triggers

are connected and named entities with corresponding roles are

called arguments for a given trigger [4] of a specific event.

Currently, most existing works divide the event extraction

into two independent sub-tasks: named entity recognition [2]

and trigger labeling [3]. These two sub-tasks are always

formulated as multi-class classification problems, and many

works apply the sequence-to-sequence based labeling method

which aims to translate a sentence into sequential tags [5].

∗Lu Bai is the corresponding author.

From our investigation, one problem of these sequence-to-

sequence methods is that they ignore the orders of output

tags, and therefore, it is difficult to precisely annotate different

parts of an entity. To address this issue, some methods [6],

[7] propose to incorporate the conditional random field (CRF)

module to be aware of order-constraints for the annotated tags.

Since entities and triggers are naturally connected around

events, recent works try to extract them jointly from corpora.

Early methods apply pipeline frameworks with predefined

lexical features [8] which lack generality to different ap-

plications. Recent works leverage the structural dependency

between entities and triggers [9], [10] to further improve the

performances of both the entity and trigger identification sub-

tasks.

Although existing works have achieved comparable per-

formance on jointly extracting entities and triggers, these

approaches still suffer the major limitation of losing co-

occurrence relationships between entities and triggers. Many

existing methods determine the trigger and entities separately

and then match the entities with triggers [9], [11]. In this way,

the co-occurrence relationships between entities and triggers

are ignored, although pre-trained features or prior data are

introduced to achieve better performance. It is also challenging

to capture effective co-occurrence relationships between the

entities and their triggers. We observed from the experiments

that most of the entities and triggers are co-occurred sparsely

(or indirectly) throughout a corpus. This issue exacerbates

the problem of losing co-occurrence relationships mentioned

before.

To address the aforementioned challenge, the core insight of

this paper is that in the joint-event-extraction task, the ground-

truth annotations for triggers could be leveraged to supervise

the extraction of the entities, and vice versa. Based on this

insight, this paper proposes a novel method to extract structural

information from corpora by utilizing the co-occurrence rela-

tionships between triggers and entities. Furthermore, in order

to fully address the aforementioned sparsely co-occurrence

relationships, we model the entity-trigger co-occurrence pairs

as a heterogeneous information network (HIN) and supervise

the trigger extraction by inferring the entity distribution with
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go['Movement']

moving['Movement']

our troops['PER']

West Virginia['GPE']

U.S. troops['PER']

capturing['Transaction']

a key bridge on the Euphrates River['FAC']

a venerated mosque['FAC']

out['Movement']

Iraq['GPE']

the country['GPE']

gun['WEA']

street['FAC']

violence['Conflict']

all non-essential diplomats and dependents['PER']

most people['PER']

Jay Garner['PER']

(a)

10 sentences from the ACE 2005 corpus: 
1. At daybreak, U.S. troops pushed through the outskirts of Karbala on the road to 

Baghdad, capturing a key bridge on the Euphrates River. 
2. And so I would like you to take a look at the CNN / " USA TODAY " / Gallup poll, taken 

last week, should U.S. troops to go to Iraq to remove Saddam Hussein from power. 
3. Franks was in charge of the operation that was supposed to quickly go in, take over 

Iraq, and then start moving our troops out rapidly -- at this point I think we 're going 
to see our troops over there at least through the end of the decade. 

4. Armed coalition soldiers moving toward a venerated mosque at the request of a 
Muslim cleric, but angry locals who didn't understand what they were trying to do. 

5. Yeah, I did go through -- West Virginia, one time through -- from Pittsburgh. 
6. Jay Garner the retired general will go into Iraq soon with his troops soon. 
7. Harrods is Harrods though, and most people go there to be blown away by the prices. 
8. But despite issuing a host of tough decrees, Bremer has failed to stem the rampant 

crime and street violence plaguing the country. 
9. In a horribly deceitful manner, the Brady Campaign has released " report cards " for 

every state on their gun laws that supposedly shield children from gun violence. 
10. the state department is ordering all non-essential diplomats and dependents out of the 

country. 

(b)
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Fig. 1: An example of the meta-path based distribution on a heterogeneous information network (HIN). (a) The “entity-trigger”

HIN for 10 sentences from the ACE 2005 corpus [12], where green nodes are triggers and red nodes are entities; triggers are

words that express the types of events in the texts (e.g. “go” and “violence” in this example). (b) The original 10 sentences

for the HIN in this example. (c) Direct-adjacency-distribution for entities (Direct) v.s. meta-path-based distribution with path-

length of 3 for entities (Meta) based on a given trigger. The meta-path-based distribution collects more indirect co-occurrence

patterns for entities than the direct distribution (e.g. from “go” to “gun” along the meta-path “Movement-GPE-Conflict-WEA”).

The “Movement” and “Conflict” are predefined trigger types; “GPE”, “PER” and “WEA” are predefined entity types for the

geographical-social-political, person and weapon entities respectively. More information about entity and trigger types are

referred to the document of the ACE 2005.

given triggers based on the indirect co-occurrence relationships

collected along the meta-paths from a heterogeneous informa-

tion network (HIN).

Figure 1 illustrates the process of our proposed method to

collect indirect co-occurrence relationships between entities

and triggers. Figure 1a is a sub-graph of the “entity-trigger”

HIN for the ACE 2005 corpus [12]. Figure 1c compares the

entity distributions inferred from given triggers based on the

direct adjacency matrix and that inferred from the meta-path

adjacency matrix. From this figure, we observe that a trigger

does not necessarily connect to all entities directly and the

direct-adjacency-based distribution is more concentrated on a

few entities, while the meta-path-based distribution is spread

over a larger number of entities. This shows that a model

could collect indirect co-occurrence patterns between entities

and triggers based on the meta-path adjacency matrix of an

“entity-trigger” HIN. Moreover, the obtained indirect patterns

could be applied to improve the performance to extract both

entities and triggers.

Based on the aforementioned example and analysis, we

propose a neural network to extract event entities and triggers.

Our model is built on the top of sequence-to-sequence labeling

framework and its inner parameters are supervised by both

the ground-truth annotations of sentences and “entity-trigger”

co-occurrence relationships. Furthermore, to fully address the

indirect “entity-trigger” co-occurrence relationships, we pro-

pose the Cross-Supervised Mechanism (CSM) based on the

HIN. The CSM alternatively supervises the entity and trigger

extraction with the indirect co-occurrence patterns mined from

a corpus. CSM builds a bridge for triggers or entities by

collecting their latent co-occurrence patterns along meta-paths

of the corresponding heterogeneous information network for

a corpus. Then the obtained patterns are applied to boost the

performances of entity and triggers extractions alternatively.

We define this process as a “cross-supervise” mechanism. The

experimental results show that our method achieves higher

precisions and recalls than several state-of-the-art methods.

In summary, the main contributions of this paper are as

follows:

• We formalize the joint-event-extraction task as a

sequence-to-sequence labeling with a combined tag-set,

and then design a novel model, CSM, by considering

the indirect “entity-trigger” co-occurrence relationships

to improve the performance of joint-event-extraction.

• We are the first to use the indirect “entity-trigger” co-

occurrence relationships (encoded in HIN) to improve

the performance of the joint-event-extraction task. With

the co-occurrence relationships collected based on meta-

path technology, our model can be more precise than the

current methods without any predefined features.

• Our experiments on real-world datasets show that, with

the proposed cross-supervised mechanism, our method

achieves better performance on the joint-event-extraction

task than other related alternatives.

The remainder of this paper is organized as follows. In Sec-

tion II, we first introduce some preliminary knowledge about

event extraction and HIN, and also formulate the problem.

Section III presents our proposed model in detail. Section IV

verifies the effectiveness of our model and compares it with

state-of-the-art methods on real-world datasets. Finally, we

conclude this paper in Section V.

II. PRELIMINARIES

We formalize the related notations about the joint-event-

extraction and heterogeneous information network.

A. The Joint-Event-Extraction Task

The sequence-to-sequence is a popular framework for event

extraction [5], which has been widely adopted in many recent



related works. These methods annotate each token of a sen-

tence as one tag in a pre-defined tag-set A. In this way, a model

based on sequence-to-sequence framework learns the relation-

ship between original sentences and annotated tag-sequences.

Recurrent Neural Networks (RNN) [13] have shown promising

performance in dealing with sequence-to-sequence learning

problems. Therefore, lots of recent works [6], [14] apply RNN

to perform the sequence-to-sequence event extraction.

Combined Annotation Tag-Set. In order to extract the entities

and trigger words jointly under the sequence-to-sequence

framework, one way is to extend the original tag-set A to

a combined tag-set of entity types and trigger types, i.e.

A = Ae

⋃

At, where Ae and At represent the set of entity

types and trigger types, respectively.

Given a sentence s = {w1, w2, . . . , wn}, where wis are

tokens (i = 1, 2, . . . , n), the joint-event-extraction is defined

as the process to annotate each wi (wi ∈ s) as one of

the tags in set A. This results in an annotated sequence

φ(s) = {y1, y2, . . . , yn}, where yi ∈ A. Then the joint event

extraction becomes a sequence-to-sequence labeling [6] which

transforms a token sequence into a tag sequence.

Sequence-to-Sequence Labeling. The goal of joint-event-

extraction is to train a machine learning model under the

supervision of a pre-annotated corpus. Minimizing the cross-

entropy loss function [15] has always been introduced to

achieve this goal. The cross-entropy loss function is defined

as follows:

L = argmin
∑

∀i∈[1,n]

∑

∀yi∈A

−Pr(yi|wi) log(P̂ r(yi|wi)), (1)

where P̂ r(yi|wi) is the probability for a model to annotate a

token wi as a tag y and Pr(yi|wi) is the probability of an

oracle model to annotate the token wi as the tag yi (∀yi ∈
A). Within the framework of sequence-to-sequence labeling,

entities and triggers could be recognized simultaneously by

mapping the token sequence (of a sentence) to a combined

tag sequence.

Generally, an event is modeled as a structure consisting

of elements, such as event triggers and entities in different

roles [14]. As shown in Figure 1, event factors [16] from

sentences accumulate to a heterogeneous information net-

work [17] with nodes in different types. Furthermore, we

observe that all edges or direct connections in Figure 1

are between triggers and entities, implying that named en-

tities and triggers are contexts for each other. Intuitively, the

performance of a joint-event-extraction task may degrade if

it annotates triggers without the supervision of entities or

annotates entities without the supervision of triggers.

B. “Entity-Trigger” Heterogeneous Information Network

Given a corpus D, an “entity-trigger” heterogeneous infor-

mation network (HIN) is a weighted graph G = 〈V,E,W 〉,
where V is a node set of entities and triggers; E is an edge

set, for ∀ei,j ∈ E (ei,j = 〈vi, vj〉 , vi, vj ∈ V ), ei,j denotes

that vi and vj are co-occurred in a sentence of D; W is a

set of weight, for ∀wi,j ∈W , wi,j = w(vi, vj) (vi, vj ∈ V ),

wi,j refers to the frequency that vi and vj are co-occurred in

sentences of D. Furthermore, G contains a node type mapping

function φ : V → A and a link type mapping function

ψ : E → R, where A is the combined annotation tag-set

and R denotes the set of predefined ink types.

In particular, an “entity-trigger” HIN can be obtained by

treating co-occurrence relationships between entities and trig-

gers as edges. As illustrated in Figure 1, “entity-trigger” HINs

are usually sparse since entities do not directly connect (or co-

occur) to all triggers and vice versa. In order to collect this

indirect information, we resort to the meta-path [17] based on

“entity-trigger” HIN.

Meta-Path [17]. A meta-path is a sequence ρ = A1
R1−→

A2
R2−→ · · ·

Rl−→ Al+1, where l is the length of this path and

Ai ∈ A (i = 1, 2, . . . , l+1). Generally, ρ could be abbreviated

as A1A2 . . .Al+1.

Example 2.1: As shown in Figure 1a, given two basic paths

“U.S. troops-go-Iraq”, “most people-go-the country” in the

ACE 2005 corpus [12], the corresponding meta-path is “PER-

Movement-GPE” for both basic paths, where “Movement”

is a trigger type, “PER” and “GPE” are entity types. This

observation shows that the entities in types “PER” and “GPE”

are indirectly connected through the given meta-path in the

ACE 2005.

Since the routes for meta-paths are node types, they are

much more general than direct paths. Furthermore, the meta-

paths encode the indirect co-occurrence relationships between

triggers and entities. Therefore, we can collect the latent

information in the “entity-trigger” HIN along meta-paths to

alleviate the sparse co-occurrence issue between entities and

triggers.

C. Problem Formulation

In this section, we formalize the problem of joint-event-

extraction by utilizing the co-occurrence relationships between

entities and triggers (abbreviated as co-occurrence relation-

ships in the following part) in a HIN.

Joint-Event-Extraction via HIN. Given a corpus D, its

“entity-trigger” HIN G and a set of meta-paths ̺. The task of

joint-event-extraction via HIN is to map the token sequences

(of sentences) in D to sequences of tags (for any tag ∀y ∈ A)

with the co-occurrence patterns in G based on the meta-paths

in ̺.

Intuitively, the corresponding “entity-trigger” HIN of a

given corpus is naturally aligned together to form a knowledge

graph that conforms to a corpus and can be used to supervise

both the extracting processes for named entities and event

triggers. In other words, if an annotation (both for entities

and triggers) from a corpus violates its corresponding “entity-

trigger” HIN, the entities and triggers in this result must be

ill-annotated.

III. OUR PROPOSED MODEL

As shown in Figure 2, we define our task as a two-step

process. First, it performs sequence-to-sequence labeling to

annotate all entities and triggers, as shown on the left hand
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Fig. 2: The framework of the joint-event-extraction model with our proposed cross-supervised mechanism.

side of Figure 2. Then, it supervises the annotated results by

inferring the probabilities of the predicted entity and trigger

based on the annotated results and indirect co-occurrence

relationships, as shown on the right hand side of Figure 1a.

To predict the entities or triggers distributions, we propose the

meta-path based adjacency matrix for a given HIN and apply

it to alternatively derive the entity and trigger distributions

from each other. We name our method as the Cross-Supervised

Mechanism (CSM) and implement it by a well designed neural

cross-supervised layer (NCSL). Moreover, since the NCSL can

be linked with any differentiable loss function, it can also be

easily extended to many other event-extraction models. In this

section, we will elaborate each part of our proposed model.

A. Cross-Supervised Mechanism

To incorporate the co-occurrence relationship into the joint-

event-extraction process, we propose the cross-supervised

mechanism. It is based on the observation that triggers and

entities are prevalently connected in an “entity-trigger” HIN

(cf. Figure 1). With this observation, in a given corpus, the

trigger of an event indicates the related entities. Meanwhile,

the entities of an event also contain evidence for the cor-

responding trigger. Therefore, an extracted result could be

evaluated by comparing the predicted entities (or triggers)

based on the extracted triggers (or entities) with ground-truth

entities (triggers). In order to implement this idea, we first

define the probability distributions for entities and triggers.

Entity and Trigger Distribution. The entity distribution

Fe(x) = Pr(x = a) is a probability function for any entity

type ∀a ∈ Ae, while the trigger distribution Ft(x) = Pr(x =
a) is a probability function for any trigger type ∀a ∈ At.

With these notations of entity and trigger distributions, the

cross-supervised mechanism could be defined as follows.

Cross-Supervised Mechanism. Given an entity distribution

Fe(x), a trigger distribution Ft(x) for a corpus D and the

corresponding HIN G; Suppose F̂e(x) and F̂t(x) are entity

and trigger distributions based on the extraction results of a

model. Then the target of cross-supervised mechanism is to

minimize the following loss function:

LHIN = ∆(τe(F̂t(x), G), Fe(x))+ ∆(τt(F̂e(x), G), Ft(x)), (2)

where τe(F̂t(x), G) and τt(F̂e(x), G) are the functions to pre-

dict entity and trigger distributions with the extracted results

based on G; ∆ is a function to compute the difference between

two distributions. Intuitively, LHIN measures the loss between

the predicted and ground-truth distributions for entities and

triggers.

To alternatively predict the entities (or triggers) based on the

given triggers (or entities) from a HIN, the adjacency matrix

of “entity-trigger” HIN is a natural tool to convert one (e.g.

entity or trigger) distribution to another.

Entity-Trigger Direct Adjacency Matrix. The entity-trigger

direct adjacency matrix is an R
‖Ae‖×‖At‖ matrix M =

{mi,j}‖Ae‖×‖At‖, where mu,v = mu,v refers to the frequency

that an entity u and a trigger v are co-occurred in sentences

of a corpus.

With the notation of the entity-trigger direct adjacency

matrix, the alternative predicting function τt(F̂e,M) and

τe(F̂t,M) can be computed as the following equations:

τt(F̂e, G) = F̂e ×MT , (3)

τe(F̂t, G) = F̂t ×M, (4)

where Fe and F̂e are R
‖Ae‖ vectors; Ft and F̂t are

R
‖At‖ vectors; Fe = [Fe(x1), Fe(x2), . . . , Fe(x‖Ae‖

)]

and F̂e = [F̂e(x1), F̂e(x2), . . . , F̂e(x‖Ae‖
)] for ∀xi ∈

Ae; Ft = [Ft(x1), Ft(x2), . . . , Ft(x‖At‖
)] and F̂t =

[F̂t(x1), F̂t(x2), . . . , F̂t(x‖At‖
)] for ∀xi ∈ At. However, since

the “entity-trigger” HIN may be sparse (cf. Figure 1c), it is

challenging to precisely predict entity and trigger distributions

with inadequate evidence. Thus, we resort to the meta-path

based technology to utilize the sparse information in a HIN.

Meta-Path based Adjacency Matrix. In the same setting of

the direct adjacency matrix, given a set of meta-paths ̺, the

meta-path based adjacency matrix is an R
‖Ae‖×‖At‖ matrix

M ′ = {m′
u,v}‖Ae‖×‖At‖, where m′

u,v is denoted as:

m′
u,v =

∑

ρ∈̺

logPrρ(u, v), (5)



where Prρ(u, v) is the reachable probability from u to v

based on a given meta-path ρ. Suppose ‖ρ‖ = l, Prρ(u, v)
is computed in the following equation:

Prρ(u, v) =

n1=u,nl=v
∏

i∈[1,l],φ(ni)=ρi

wni+1,i
Pr(ni+1|ni), (6)

where φ(ni) is the type of node ni, ρi is the i-th type in

path ρ (ρi ∈ Ae); wni+1,i
is the frequency that ni and ni+1

are co-occurred in sentences; Pr(ni+1|ni) is the reachable

probability from node ni to ni+1 by considering the types

φ(ni) and φ(ni+1). Pr(ni+1|ni) can be obtained through a

meta-path based random walk [18].

Pr(ni+1|ni) =

{

1
|Nρi+1 (ni)|

, |Nρi+1(ni)| > 0

0, else,
(7)

where Nρi+1(ni) is the set of direct neighbors for node ni by

considering the next type ρi+1 on path ρ.

By replacing the adjacency matrices as meta-path based

adjacency matrices in Eq. 3 and Eq. 4, the entity and trigger

distributions can be predicted through the following equations:

τ ′t(F̂e, G) = F̂e ×M ′T , (8)

τ ′e(F̂t, G) = F̂t ×M ′, (9)

where τ ′t(F̂e, G) and τ ′e(F̂t, G) compute the entity and trigger

meta-path based distributions, respectively.

B. Neural Cross-Supervised Layer

With the aforementioned discussion, we could further eval-

uate the possibility of the trigger distribution based on the

annotated entities of a model or evaluate the possibility that

the entity distribution of the entity distribution based on the

annotated triggers of the same model. We name this evaluation

process as the cross-supervision and implement it in the

NCSL. By substituting the Eq. 8 and Eq. 9 for corresponding

terms in Eq. 2, NCSL evaluates this difference with two

concatenate KL-divergence loss [19] in the following:

LHIN =Ft log
Ft

τ ′t(F̂e, G)
+Fe log

Fe

τ ′e(F̂t, G)
, (10)

where F̂e and F̂t are the predicted distributions for entities and

triggers by the sequence-to-sequence labeling; Fe and Ft are

the ground-truth entity and trigger distributions, respectively.

In this way, NCSL incorporates both the cross-supervised

information for triggers and entities into its process.

C. Training the Complete Model

We formalize the complete process of our model as follows.

Cross-Supervised Joint-event-extraction. The objective of

our task is to optimize the following equation:

Lc = (1− α)L+ αLHIN , (11)

where L is the loss for a sequence-to-sequence labeling in

Eq. 1, LHIN is the loss for the cross-supervised process in

Eq. 10 and α is the ratio for the cross-supervised process.

As illustrated in Figure 2, this model implements the

sequence-to-sequence labeling with an embedding layer which

embeds the input sentences as sequences of vectors and a Bidi-

rectional Long-Short-Term Memory (Bi-LSTM) network [20]

of RNN [13] family to predict the tag distribution based on

the embedded vector sequences. The training applies the back-

propagation with the Adam optimizer [21] to optimize this loss

function.

D. Discussion

From Eq. 11, we observe that our task is equivalent to

the sequence-to-sequence method when α = 0. Therefore,

our model could be easily implemented by following an

end-to-end framework with extra supervision information in-

corporated in the co-occurrence relationships. Here we also

summarize the novelty of our proposed approach as the

introduced cross-supervised mechanism by incorporating in-

direct co-occurrence relationships collected from the “entity-

trigger” HIN along meta-paths (cf. LHIN in Eq. 11), for the

task of joint-event-extraction. The introduced cross-supervised

mechanism aims to maximizing the utilization efficiency of

the training data, so that more effective information will

be considered to improve the performance of joint-event-

extraction.

TABLE I: Dataset statistics

ACE2005 NYT CoNLL WebNLG

sentences 2,107 6,304 3,932 10,165
entities 4,590 12,643 13,511 2,217
triggers 1,921 6,355 3,903 1,309

entity types 11 17 4 9
event types 8 4 11 289

meta-paths (l=3) 4,459 18,035 22,399 12,675

IV. EXPERIMENT AND ANALYSIS

We compare our model with some state-of-the-art methods

to verify the effectiveness of the proposed mechanism.

A. Datasets

We adopt four real-world datasets which are widely used

to evaluate our model. ACE 2005 is a corpus developed by

Linguistic Data Consortium (LDC) [12]. NYT is an annotated

corpus provided by the New York Times Newsroom [22].

CoNLL 2002 [23] is a Spanish corpus made available by the

Spanish EFE News Agency. WebNLG is a corpus introduced

by Claire et al. [24] in the challenge of natural language

generation, which also consists the entity label. Note that all

aforementioned datasets except ACE 2005 do not provide the

original ground-truth trigger annotations. In the testing phase,

since it requires ground-truth trigger annotations to measure

the performances of models, we instead use CoreNLP1 to

1https://stanfordnlp.github.io/CoreNLP/



TABLE II: Comparison on real-world datasets

Model
ACE 2005 NYT CoNLL WebNLG

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Seq2Seq 0.442±0.025 0.493±0.0272 0.466±0.026 0.818±0.012 0.832±0.012 0.825±0.012 0.709±0.015 0.852±0.011 0.774±0.013 0.851±0.009 0.910±0.007 0.880±0.008
CRF 0.434±0.031 0.478±0.033 0.455±0.032 0.813±0.011 0.828±0.011 0.821±0.01 0.718±0.016 0.867±0.013 0.785±0.014 0.864±0.005 0.921±0.005 0.892±0.005
GCN 0.435±0.030 0.487±0.032 0.459±0.031 0.804±0.013 0.819±0.013 0.811±0.013 0.706±0.015 0.871±0.014 0.780±0.013 0.884±0.008 0.931±0.008 0.907±0.008
JEE 0.423±0.023 0.468±0.030 0.443±0.026 0.717±0.009 0.645±0.014 0.679±0.012 0.713±0.019 0.814±0.013 0.76±0.015 0.775±0.015 0.818±0.012 0.796±0.013
JT 0.469±0.003 0.426±0.005 0.447±0.004 0.725±0.012 0.691±0.006 0.708±0.009 0.738±0.025 0.837±0.006 0.784±0.021 0.818±0.011 0.829±0.007 0.823±0.008

CSMDA 0.455±0.024 0.494±0.022 0.474±0.023 0.835±0.012 0.847±0.012 0.841±0.012 0.730±0.017 0.856±0.021 0.788±0.019 0.908±0.005 0.941±0.004 0.924±0.004
CSMHIN 0.477±0.030 0.533±0.033 0.503±0.031 0.859±0.007 0.870±0.008 0.865±0.008 0.754±0.018 0.890±0.020 0.816±0.017 0.923±0.004 0.953±0.003 0.937±0.003

TABLE III: Detailed comparison on ACE 2005

Model
Entity extraction Trigger extraction

Precision Recall F1 Precision Recall F1

Seq2Seq 0.494 0.489 0.49 0.383 0.426 0.403
CRF 0.502 0.483 0.491 0.395 0.473 0.431
GCN 0.508 0.491 0.499 0.381 0.443 0.410
JEE 0.451 0.497 0.472 0.407 0.411 0.409
JT 0.492 0.458 0.474 0.447 0.414 0.432

CSMDA 0.509 0.535 0.52 0.404 0.442 0.422
CSMHIN 0.512 0.552 0.532 0.464 0.484 0.474

create the corresponding trigger annotations for these datasets.

More details of our datasets are shown in Table I.

B. Comparison Baselines

We compare our method with some state-of-the-art baselines

for event extraction.

• Sequence-to-Sequence Joint Extraction (Seq2Seq) [20]

[25] is a joint extraction method implemented by us in

the sequence-to-sequence framework with a joint tag set

contains tags for both entities and triggers.

• Conditional Random Field Joint Extraction (CRF) [7]

extends from the basic sequence-to-sequence framework

with a conditional random field (CRF) layer which con-

straints the output tag orders.

• GCN [26] jointly extracts entities and triggers by con-

sidering the context information with graph convolution

network (GCN) layers behind the BiLSTM module.

• Joint Event Extraction (JEE) [9] is a joint statistical

method based on the structural dependencies between

entities and triggers.

• Joint Transition (JT) [10] models the parsing process for

a sentence as a transition system, and proposes a neural

transition framework to predict the future transition with

the given tokens and learned transition system.

• CSMDA is the proposed model with Eq. 3 and Eq. 4

without considering the meta-paths.

• CSMHIN is our complete model with Eq. 8 and Eq. 9.

C. Evaluation Metrics

To evaluate the performance of our proposed model, we

adopt several prevalent metrics, e.g., precision, recall and F1

score, which have been widely used in the field of event

extraction. The Precision and Recall are defined as follows:

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP + FN
, (13)

where TP is the true positive frequency, FP is the false

positive frequency and FN is the false negative frequency.

The quantities TP , FP , and FN are measured from the

predicted tags of a model by referring to the ground-truth tags

for the testing samples. In our setting, for a specific model,

TP records the number of predicted tags matching with the

corresponding ground-truth tags for entities and triggers. FP ,

on the other hand, records the frequency of its predicted tags

conflicting with the corresponding ground-truth tags, and FN

records the number of entities and triggers missed by a model.

F1 =
2 · Precision ·Recall

Precision+Recall
. (14)

F1 measures the joint performance for a model by considering

the precision and recall simultaneously.

D. Implementation Details

Since our aim is to incorporate the indirect co-occurrence

relationships between the entities and their triggers into the

joint-event-extraction task, not to investigate the influence of

pre-trained features on different models, we implement all

models in IV-B without any pre-trained features on our pro-

totype system. Furthermore, in order to compare all methods

fairly, all the neural network models share the same LSTM

module (a Bi-LSTM with 128 hidden dimensions and 2 hidden

layers) as the basic semantic embedding. Moreover, all neural

network models are trained through the Adam optimizer [21]

with the same learning rate (0.02) and 30 training epoches.

During the training, we set the embedding dimension of a

word to 300, the batch size to 256, and the dropout to 0.5.

HIN Generation. Our model requires HINs to convert be-

tween the entity and trigger distributions. We need to generate

the required HINs in a preprocessing step. The HINs are

generated by merging all ground-truth triggers and entities

with their relationships and types from the training data. For

each training process, the HIN is re-generated with different

training data. During the testing process, the entity distribu-

tion is translated into the trigger distribution according to

the corresponding HIN, without knowing any co-occurrence

relationships between the entities and triggers in testing data.

Moreover, our HINs are generated based on the basic event

types since the obtained HINs based on event subtypes are too

sparse to reveal effective indirect co-occurrence relationships.

In the following experiments, we compare the precision,

recall and F1 scores for all methods in 10-fold cross-validation.

The 10-fold cross-validation means we split the original data

into 10 subsets randomly without intersection and train the

models with 9 of these subsets. We test the models with the



remaining subset. This procedure is repeated 10 times. We

report the means and variances of the results in the remaining

part. Furthermore, to compare the models on recognizing the

effect event factors, we exclude the results for those tokens

being labelled as the outside tag (or “O”) for all methods.

E. Experimental Results

The results of the comparison experiment on all datasets

are reported in Table II. We observe that with the cross-

supervised mechanism provided by the NCSL layer, both

CSMDA and CSMHIN surpass all the state-of-the-art methods.

Furthermore, we also measure the mean performances on

entity and trigger extraction respectively using the ACE 2005

dataset for all methods. This result is reported in Table III. We

observe that our model outperforms the alternative models on

both joint task and sub-tasks. This verifies that the extraction

performance is indeed improved by the indirect co-occurrence

relationships collected along the meta-paths of heterogeneous

information networks.
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Fig. 3: Sensitivity in different parameters

F. Sensitivity Analysis

We analyze the influence of the training ratio (from 5 to

10 fold cross-validation) and the length of meta-paths on the

performance of our model. These experiments are performed

on the ACE 2005 dataset and all of them are repeated 10

times. The mean results are reported in Figure 3. As shown

in Figure 3a, our model achieves the best performance with

the meta-path length of 3. The reason is that most of the ACE

2005 data are in the “entity-trigger-entity” form, our model

performs well with the meta-path lengths which are multipliers

of 3. Furthermore, from Figure 3b, we can see our model also

performs well when the K is large, which confirms to the

intuition that more training data lead to better performance.

G. Case Study

To figure out the improvement of our model on the ex-

traction task, we focus on typical cases from the ACE 2005

dataset. These cases are presented in Figure 4, where “Ora-

cle” means the ground-truth annotation. We observe that in

simple sentences, both the sequence-to-sequence method and

our model annotate accurately. However, with the sentence

becoming more complex (cf. the bottom sentence in Figure 3),

the sequence-to-sequence method hardly annotates accurate

entities that are far from the trigger, while our method keeps

stable performance. This further shows that our method can

extract the useful latent patterns along the meta-paths.

Armored forces destroyed dozens of Iraqi tanks and personnel carriers in their advance on Baghdad.
BConflict BVEH    IVEH IVEH IVEH BPER

BConflict BVEH IVEH IVEH     IVEH BVEH IVEH

BConflict BVEH IVEH IVEH     IVEH BVEH IVEH

In the African nation of Nigeria, an Islamic court delayed the appeal of a woman condemned to death by stoning.

IORG BJustice BPER IPER IPER BLife

IGPE BORG IORG IORG BJustice   BPER IPER IPER IPER  IPER IPER IPER

BGPE IGPE IGPE IGPE IGPE BORG IORG IORG BJustice BPER IPER IPER IPER IPER IPER IPER

Seq2Seq
CSMHIN

Oracle

Seq2Seq

CSMHIN

Oracle

Fig. 4: Part of annotation results on the ACE 2005 dataset.

V. CONCLUSION

In this paper, we have proposed a novel cross-supervised

mechanism which allows models to extract entities and triggers

jointly. Our mechanism alternately supervises the extraction

process for either the triggers or the entities, based on the

information in the type distribution of each other. In this

way, we incorporate the co-occurrence relationships between

entities and triggers into the joint-event-extraction process of

our model. Moreover, to further address the problem caused

by the sparse co-occurrence relationships, our method also

resorts to the heterogeneous information network technology

to collect indirect co-occurrence relationships. The empirical

results show that our method improves the extraction perfor-

mances for entities and triggers simultaneously. This verifies

that the incorporated co-occurrence relationships are useful

for the joint-event-extraction task and our method is more

effective than existing methods in utilizing training samples.

Our future works include: (a) investigating the impact of length

of sampled meta-paths, as in this paper we have limited the

meta-path into a fixed length; (b) connecting the extracted

entities and triggers from a corpus to facilitate the automatic

knowledge graph construction.
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