

This is a repository copy of *Effect* of salt on the formation and stability of water-in-oil *Pickering nanoemulsions stabilized by diblock copolymer nanoparticles*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/169829/

Version: Supplemental Material

Article:

Hunter, S.J. orcid.org/0000-0002-9280-1969, Cornel, E.J., Mykhaylyk, O.O. orcid.org/0000-0003-4110-8328 et al. (1 more author) (2020) Effect of salt on the formation and stability of water-in-oil Pickering nanoemulsions stabilized by diblock copolymer nanoparticles. Langmuir, 36 (51). pp. 15523-15535. ISSN 0743-7463

https://doi.org/10.1021/acs.langmuir.0c02742

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://dx.doi.org/10.1021/acs.langmuir.0c02742.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information for:

Effect of salt on the formation and stability of water-in-oil Pickering nanoemulsions stabilized by diblock copolymer nanoparticles

Saul J. Hunter, Erik J. Cornel, Oleksandr O. Mykhaylyk and Steven P. Armes*,

[†]Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.

Figure S1. ¹⁹F NMR spectrum recorded for PSMA₃₂-PTFEMA₅₃ diblock copolymer dissolved in CDCl₃. From the residual monomer signal observed at -73.8 ppm, a final TFEMA conversion of 97% can be calculated.

Figure S2. Effect of varying the applied pressure and number of passes during microfluidization on the initial z-average aqueous droplet diameter of w/o Pickering nanoemulsions prepared using 5.0% w/w PSMA₃₂-PTFEMA₅₃ nanoparticles at a fixed water volume fraction of 0.10, as determined by DLS.

Figure S3. Intensity-average droplet size distributions recorded by DLS for Pickering nanoemulsions prepared using either a neutral (pH 7) or acidic (pH 2) aqueous solution containing 0.11 M NaCl.

Figure S4. Digital photographs recorded for one-day-old w/o Pickering nanoemulsions prepared using various NaCl concentrations (0, 0.05 or 0.11 M) at a constant nanoparticle concentration of 5.0% w/w and a water volume fraction of 0.10. Microfluidization conditions: applied pressure = 10 000 psi; 5 passes.

Figure S5. Representative TEM image recorded for dried water-in-*n*-dodecane Pickering nanoemulsions prepared using 5.0% w/w PSMA₃₂-PTFEMA₅₃ nanoparticles with 0.11 M NaCl dissolved in the aqueous phase. Conditions: microfluidization pressure = 10 000 psi; 5 passes.

Figure S6. Effect of varying the aqueous droplet concentration on the apparent droplet diameter of a water-in-*n*-dodecane Pickering nanoemulsion as determined by analytical centrifugation (LUMiSizer instrument). This so-called 'hindrance' function indicates that the optimum droplet concentration for such analyses is approximately 1.0% v/v, with higher concentrations leading to hindered creaming and hence undersizing.

Figure S7. Volume-weighted cumulative distributions determined by analytical centrifugation (LUMiSizer instrument) for *n*-dodecane-in-water Pickering nanoemulsions prepared using various amounts of NaCl dissolved in the aqueous phase) after ageing for 4 weeks at 20 °C.

Structural models for SAXS analysis

In general, the X-ray intensity scattered by a system composed of *n* different (non-interacting) populations of polydisperse objects [usually described by the differential scattering cross-section per unit sample volume, $d\Sigma(q)/d\Omega$] can be expressed as:¹

$$\frac{d\Sigma(q)}{d\Omega} = \sum_{l=1}^{n} S_{l}(q) N_{l} \int_{0}^{\infty} \dots \int_{0}^{\infty} F_{l}(q, r_{l1}, \dots, r_{lk})^{2} \Psi_{l}(r_{l1}, \dots, r_{lk}) dr_{l1} \dots dr_{lk} SI$$

where $F_l(q, r_{l_1}, ..., r_{l_k})$ is the form factor, $\Psi_l(r_{l_1}, ..., r_{l_k})$ is the distribution function, N_l is the number density per unit volume and $S_l(q)$ is the structure factor of the l^{th} population in the system. Here, $r_{l_1}, ..., r_{l_k}$ is a set of k parameters describing the structural morphology of the l^{th} population.

Spherical Micelle SAXS Model

In terms of Equation SI, a dispersion of spherical micelles formed by an amphiphilic diblock copolymer can be described as a single population system (n = 1). Assuming that only the micelle core radius is polydisperse, Equation S1 for this system can be rewritten as:

$$\frac{d\Sigma(q)}{d\Omega} = S_1(q)N_1\int_0^{\infty} F_1(q,r_{11})^2 \Psi_1(r_{11}) dr_{11} S2$$

The spherical micelle form factor for Equation S2 is given by:¹

$$F_{1}(q, r_{11}) = N_{s}^{2} \beta_{s}^{2} A_{s}^{2}(q, r_{11}) + N_{s} \beta_{c}^{2} F_{c}(q, R_{g}) + N_{s}(N_{s} - 1) \beta_{c}^{2} A_{c}^{2}(q) + 2N_{s}^{2} \beta_{s} \beta_{c} A_{s}(q, r_{11}) A_{c}(q)$$

$$S3$$

where r_1 is the spherical micelle core radius, R_g is the radius of gyration of the PSMA coronal block, and the X-ray scattering length contrast for the core and corona blocks is given by $\beta_s = V_s(\xi_s - \xi_{sol})$ and $\beta_c = V_c(\xi_c - \xi_{sol})$, respectively. Here ξ_s , ξ_c and ξ_{sol} are the X-ray scattering length densities of the core block ($\xi_{PTFEMA} = 12.76 \times 10^{10} \text{ cm}^{-2}$), the corona block ($\xi_{PSMA} = 9.24 \times 10^{10} \text{ cm}^{-2}$) and the solvent ($\xi_{sol} = 7.63 \times 10^{10} \text{ cm}^{-2}$), respectively. V_s and V_c are volumes of the core block (V_{PTFEMA}) and the corona block (V_{SMA}), respectively. The volumes were calculated from $V = \frac{M_{n,pol}}{N_A \rho}$ using the solid-state homopolymer densities of PTFEMA ($\rho_{PTFEMA} = 1.47 \text{ g cm}^{-3}$)² and PSMA ($\rho_{PSMA} = 0.97 \text{ g cm}^{-3}$)³ determined by helium pycnometry, where $M_{n,pol}$ corresponds to the number-average molecular weight of the block. The mean aggregation number of the spherical micelle is expressed as $N_s = \frac{4}{3} \pi r_{11}^3 \frac{1}{V_s}$ where it is assumed that the solvent is absent in the micelle core. The sphere form factor amplitude is used for the amplitude of the core self-term:

$$A_{\rm c}(q,r_{11}) = \Phi(qr_{11})\exp\left(-\frac{q^2\sigma^2}{2}\right) \qquad \qquad S4$$

where

$$\Phi(x) = \frac{3[\sin(x) - x\cos(x)]}{x^3}$$

A sigmoidal interface between the two blocks was assumed for the spherical micelle form factor (Equation *S4*). This is described by the exponent term with a width σ accounting for a decaying scattering length density at the membrane surface. This σ value was fixed at 2.5 during fitting.

The form factor amplitude of the spherical micelle corona in Equation S3 is given by:

$$A_{\rm c}(q) = \frac{\int_{R_{\rm s}}^{R_{\rm s}+2s} \mu_{\rm c}(r) \frac{\sin(qr)}{qr} r^2 dr}{\int_{R_{\rm s}}^{R_{\rm s}+2s} \mu_{\rm c}(r) r^2 dr} \exp\left(-\frac{q^2 \sigma^2}{2}\right) \qquad \qquad S6$$

The radial profile, $\mu_c(r)$, can be expressed by a linear combination of two cubic b splines, with two fitting parameters *s* and *a* corresponding to the width of the profile and the weight coefficient, respectively. This information can be found elsewhere,⁴⁻⁵ as can the approximate integrated form of Equation *S5*. The self-correlation term for the corona block is given by the Debye function:

$$F_{\rm c}(q, R_{\rm g}) = \frac{2\left[\exp\left(-q^2 R_{\rm g}^2\right) - 1 + q^2 R_{\rm g}^2\right]}{q^4 R_{\rm g}^4} \qquad S7$$

The structure factor in Equation S2, $S_1(q)$, is usually expressed for interacting spherical micelles as:⁶

$$S_1(q) = 1 + \frac{A_1^{\text{av}}(q, r_{11})^2 [S_{\text{PY}}(q, R_{\text{PY}}, f_{\text{PY}}) - 1]}{F_1(q, r_{11})}$$
 S8

Herein the form factor of the average radial scattering length density distribution of micelles is expressed as $A_1^{av}(q, r_1) = N_s[\beta_s A_s(q, r_{11}) + \beta_c A_c(q)]$ and $S_{PY}(q, R_{PY}, f_{PY})$ is a hard-sphere interaction structure factor solved using the Percus-Yevick closure relation,^{1,7} where R_{PY} is the interaction radius and f_{PY} is the hard-sphere volume fraction. For dilute dispersions of micelles it is assumed that $S_{PY}(q, R_{PY}, f_{PY}) = 1$.

A polydispersity of the micelle radius in Equation S2 can be described by a Gaussian distribution:

$$\Psi_{1}(r_{11}) = \frac{1}{\sqrt{2\pi\sigma_{Rs}^{2}}} \exp\left(-\frac{(r_{11} - R_{s})^{2}}{2\sigma_{Rs}^{2}}\right)$$
 S9

where R_s is the mean of the micelle core radius and σ_{Rs} is its standard deviation. The number density per unit volume for the micelle model is expressed as:

$$N_1 = \frac{\varphi_1}{\int_0^\infty V(r_{11})\Psi(r_{11})dr_{11}}$$
 S10

where φ_1 is the total volume fraction of copolymer in the spherical micelles and $V(r_{11})$ is the total volume of copolymer in a spherical micelle $[V(r_{11}) = (V_s + V_c)N_s]$.

Assuming that the projected contour length of a PSMA monomer is 0.255 nm (two C-C bonds in *all-trans* conformation), the total contour length of a PSMA₃₂ block, $L_{PSMA32} = 32 \times 0.255$ nm = 8.16 nm. Given a mean Kuhn length of 1.53 nm (based on the known literature value for PMMA⁸) an estimated unperturbed radius of gyration, $R_g = (8.16 \times 1.53/6)^{0.5} = 1.44$ nm is calculated. The data fit to the SAXS pattern recorded for PSMA₃₂-PTFEMA₅₃ spheres using the spherical micelle suggested that the experimental R_g for the corona PSMA block (1.72 nm) is physically reasonable, since it is close to this theoretical estimate.

Two-population SAXS Model

In order to construct a structural model for the SAXS analysis of water-in-oil emulsion droplets stabilised by PSMA₃₂-PTFEMA₅₃ spherical micelles, a previously used formalism for core-particulate shell spherical particles was employed.⁹ It was assumed that the differential cross-section per unit sample volume for the studied system patterns can be represented as a sum of two terms corresponding to scattering signals generated by two populations (n = 2 in Equation *SI*): spherical micelles forming the particulate shell (the first population, l = 1 in Equation *SI*) and core-shell particles (the second population, l = 2 in Equation *SI*). The contribution to the scattering signal from the first population can be described by the same term used for the spherical micelle dispersion (Equation *S2*). By expressing the scattering signal from the second population, the differential scattering cross-section per unit sample volume of the whole system could be written as:

$$\frac{d\Sigma(q)}{d\Omega} = S_1(q)N_1\int_0^{\infty} F_1(q,r_{11})^2 \Psi_1(r_{11})dr_{11} + S_2(q)N_2\int_0^{\infty} F_2(q,r_{21})^2 \Psi_2(r_{21})dr_{21}$$
S11

where it is assumed that only the particle core radius is polydisperse. The form factor for the second population, corresponding to the core-shell particles, is given by:

$$F_2(q, r_{21}) = V_{\text{total}}(\xi_{\text{shell}} - \xi_{\text{sol}})\Phi[q(r_{21} + T_{\text{shell}})] + V_{\text{core}}(\xi_{\text{core}} - \xi_{\text{shell}})\Phi(qr_{21})$$

$$S12$$

where r_{21} is the core radius and T_{shell} is the shell thickness. $V_{\text{total}} = \frac{4}{3}\pi (r_{21} + T_{\text{shell}})^3$ and $V_{\text{core}} = \frac{4}{3}\pi r_{21}^3$ are volumetric parameters for the core-shell particles, while ξ_{core} , ξ_{shell} and ξ_{sol} are the scattering length densities for the aqueous droplets [$\xi_{\text{H2O}} = 9.42 \times 10^{10} \text{ cm}^{-2}$], the particulate worm shell [volumeaveraged scattering length density of the spherical micelles $\overline{\xi}_{\text{mic}} = (\xi_{\text{PSMA}}V_{\text{s}} + \xi_{\text{PTFEMA}}V_{\text{c}})/(V_{\text{s}} + V_{\text{c}})$] and the solvent ($\xi_{n-\text{dodecane}} = 7.63 \times 10^{10} \text{ cm}^{-2}$), respectively. As for population 1, a Gaussian distribution is assumed for the particle core radius (with a mean radius R_{c} and its standard deviation σ_{Rc}):

$$\Psi_{2}(r_{21}) = \frac{1}{\sqrt{2\pi\sigma_{Rc}^{2}}} e^{-\frac{(r_{21}-R_{c})^{2}}{2\sigma_{Rc}^{2}}} S13$$

Thus, the number density, N_2 , of the second population in Equation S11 is expressed as

$$N_{2} = \frac{\varphi_{2}}{\int_{0}^{\infty} V(r_{21}) \Psi_{2}(r_{21}) dr_{21}}$$
S14

where φ_2 is the volume fraction of core-shell particles (i.e., nanoparticle-stabilized aqueous droplets) within the w/o nanoemulsion. Since the φ_2 used for the SAXS measurements is relatively low (0.01) and the q range resolved in the SAXS experiment (Figure 7) is virtually unaffected by the interdroplet interactions, it was assumed that the structure factor was equal to unity [$S_2(q) = 1$]. However, since the nanoparticles (a.k.a. spherical micelles) are expected to form reasonably close-packed layer at the surface of the aqueous droplets (Figure 6b), a structure factor for the first population [$S_1(q)$], as represented by Equation *S8*, had to be used in the analysis.

References

1. Pedersen, J. S.; Gerstenberg, M. C., Scattering Form Factor of Block Copolymer Micelles. *Macromolecules* **1996**, *29*, 1363-1365.

2. Akpinar, B.; Fielding, L. A.; Cunningham, V. J.; Ning, Y.; Mykhaylyk, O. O.; Fowler, P. W.; Armes, S. P., Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles. *Macromolecules* **2016**, *49*, 5160-5171.

3. Derry, M. J.; Fielding, L. A.; Warren, N. J.; Mable, C. J.; Smith, A. J.; Mykhaylyk, O. O.; Armes, S. P., In situ small-angle X-ray scattering studies of sterically-stabilized diblock copolymer nanoparticles formed during polymerization-induced self-assembly in non-polar media. *Chem. Sci.* **2016**, *7*, 5078-5090.

4. Pedersen, J. S.; Gerstenberg, M. C., The structure of P85 Pluronic block copolymer micelles determined by small-angle neutron scattering. *Colloids Surf., A* **2003**, *213*, 175-187.

5. Pedersen, J. S.; Svaneborg, C.; Almdal, K.; Hamley, I. W.; Young, R. N., A Small-Angle Neutron and X-ray Contrast Variation Scattering Study of the Structure of Block Copolymer Micelles: Corona Shape and Excluded Volume Interactions. *Macromolecules* **2003**, *36*, 416-433.

6. Pedersen, J. S., Structure factors effects in small-angle scattering from block copolymer micelles and star polymers. *The Journal of Chemical Physics* **2001**, *114*, 2839-2846.

7. Percus, J. K.; Yevick, G. J., Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. *Physical Review* **1958**, *110*, 1-13.

8. Fetters, L. J.; Lohsey, D. J.; Colby, R. H., *Physical Properties of Polymers Handbook*. 2nd ed.; Springer: New York: 2007.

9. Thompson, K. L.; Fielding, L. A.; Mykhaylyk, O. O.; Lane, J. A.; Derry, M. J.; Armes, S. P., Vermicious thermo-responsive Pickering emulsifiers. *Chem. Sci.* **2015**, *6*, 4207-4214.