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Mycorrhizal symbioses in lycopods 35 

Lycopods represent a significant diversification point on the land plant 36 

phylogenetic tree, being the earliest divergent extant tracheophyte lineage (Kenrick, 37 

1994) and marking the transition from non-vascular to vascular plants. Several 38 

lycophytes (Huperzia, Lycopodium, Lycopodiella and Phylloglossum; Supplementary 39 

Fig. 1a) possess an “alternation of generations” lifecycle (Kenrick, 1994) which 40 

features fully independent gametophyte (haploid) and dominant sporophyte (diploid) 41 

generations (Haufler et al, 2016; Supplementary Fig. 1b). In nature, all members of 42 

the Lycopodiaceae require mycorrhizal symbionts for growth and for the production 43 

of gametes (Winther and Friedman, 2008). These fungal symbionts are of particular 44 

interest as they are reported to be present across both free-living generations of the 45 

plants: from the gametophyte to the young sporophyte (protocorm), while still 46 

attached to the gametophyte, through to the mature sporophyte (Bierhorst, 1971; 47 

Winther and Friedman, 2008).  48 

Initially, it was thought that the fungal symbionts of the Lycopodiaceae were 49 

arbuscular mycorrhizal (AM)-like with unique “lycopodioid” features (Schmid and 50 

Oberwinkler, 1993). However, a recent global analysis of over 20 lycopod species 51 

determined that many form symbioses with both AM-forming Glomeromycotina fungi 52 

and Mucoromycotina “fine root endophyte” (MFRE) fungi, with MFRE partners being 53 

the only detectable fungal symbiont in the lycopod species, Lycopodiella inundata 54 

(Rimington et al. 2015). MFRE, previously classified as the AM species Glomus tenue, 55 

have recently been reclassified as belonging within the Mucoromycotina (Orchard et 56 

al, 2017a, b) and renamed as Planticonsortium tenue (Walker et al. 2018). Emerging 57 

evidence suggests that, in contrast to the majority of studies on MFRE which have so 58 

far focussed primarily on the role of the fungal partners in phosphorus (P) transfer to 59 

host plants (Orchard et al, 2017a), MFRE partners also play a significant role in plant 60 

nitrogen (N) assimilation (Hoysted et al, 2019; Field et al, 2019), complementary to the 61 

role of AMF in P (Smith & Read, 2008) and potential N uptake (Hodge et al 2000, 62 

Hodge & Storer, 2015). Such complementation with AMF could help to explain the 63 

persistence of MFRE across nearly all modern plant lineages.  64 

Mycorrhizal functioning in plants with alternating generations, such as L. 65 

inundata, is complex and poorly understood with the only published research to date 66 

focussing on instantaneous measurements on a single life history stage, e.g. 67 

photosynthetic sporophytes of Ophioglossum associating with AMF (Field et al, 2015; 68 



Suetsugu et al, 2020). To date, only one study has dissected the symbiotic function of 69 

MFRE in L. inundata, or indeed in any vascular plant (Hoysted et al, 2019); however, 70 

like other studies investigating mycorrhizal function, experiments were limited to 71 

actively growing, photosynthetic adult sporophytes with erect fertile stems and thus 72 

provide only a snapshot in time of symbiotic function in a perennial plant. Given that 73 

MFRE have been reported to be present at each life stage of L. inundata – from the 74 

subterranean gametophyte to the retreating adult sporophyte (Hoysted et al, 2019), 75 

these plants provide a unique opportunity to understand symbiotic function and 76 

enhance our knowledge of MFRE, not only in a vascular plant, but one with a complex 77 

lifecycle.  78 

We used a combination of isotope tracers and cytological analyses to 79 

investigate how MFRE fungal morphology and function may change across the 80 

transition from newly emerging, juvenile sporophytes to retreating adult sporophytes 81 

of L. inundata, how MFRE function changes as plants become photosynthetic and how 82 

the loss of photosynthetic capacity of L. inundata may affect MFRE-acquired nutrient 83 

assimilation in retreating sporophytes. We collected Lycopodiella inundata (L.) 84 

gametophytes and sporophytes at three different life stages (Figure 2a-c, Figure S1b) 85 

from Thursley National Nature Reserve, Surrey, UK (SU 90081 39754) in spring and 86 

late summer, 2017. Using the methods of Hoysted et al, (2019), we quantified carbon-87 

for-nutrient exchange between L. inundata and MFRE symbionts. 33P-labelled 88 

orthophosphate and 15N-labelled ammonium chloride were used to trace nutrient flow 89 

from MFRE-to-plant for each of the L. inundata life stages collected. We 90 

simultaneously traced the movement of carbon from plant-to-MFRE by generating a 91 

pulse of 14CO2 and quantifying the activity of extraradical MFRE hyphae in the 92 

surrounding soil using sample oxidation (307 Packard Sample Oxidiser, Isotech, 93 

Chesterfield, UK) and liquid scintillation (see Supplementary Information for details). 94 

Fungal symbionts from root samples of experimental plants were identified using 95 

molecular fungal identification methods as per Hoysted et al. (2019; see 96 

Supplementary Information for details) with MFRE being detected in each life stage 97 

(GenBank/EMBL accession numbers: MK673773-MK673803).  98 

 Our data show MFRE fungi play distinct functional roles at each life stage of L. 99 

inundata, with evidence of bidirectional exchange of plant C for fungal acquired 100 

nutrients (N and P) between mature adult and retreating adult sporophytes and fungi, 101 

but no transfer of plant C to fungi and little fungal-acquired nutrient gain in juvenile 102 



sporophytes. Furthermore, we show that these functional stages correspond with 103 

different cytologies of colonisation across the L. inundata life cycle. Considered 104 

alongside the results of studies in other plants with complex life cycles (Roy et al., 105 

2013; Gonneau et al., 2014; Suetsugu et al., 2018), our results emphasise the 106 

importance of investigating symbiotic fungal function across plant life histories. 107 

 108 

C-for-nutrient exchange between L. inundata and MFRE across life stages 109 

 L. inundata forms associations with MFRE fungi in each stage of its life cycle 110 

(Rimington et al, 2015; Hoysted et al, 2019) and previous research in mature 111 

sporophytes has demonstrated that these associations represent nutritional 112 

mutualisms, akin to AM fungal associations in other vascular plants (Hoysted et al, 113 

2019). However, despite there being copious MFRE colonisation within juvenile 114 

sporophytes (Figure 2d-f), we found no transfer of plant C to MFRE (Fig. 1a, b; Table 115 

S3,4) even though green leaves were present with potential photosynthetic 116 

capabilities. In contrast, transfer of C from plants to MFRE in both the mature and 117 

retreating adult sporophyte growth stages was evident (Fig. 1a, b; Table S3,4), with 118 

~2.4 times the amount of C being transferred from the plant to MFRE in mature adult 119 

sporophytes compared to retreating adult sporophytes, although this difference was 120 

not significant (Mann-Whitney U = 142.000, P = 0.144).   121 

Winther and Friedman (2008) suggested a form of parental nurture may occur 122 

in lycopods with achlorophyllous subterranean gametophytes, such as L. inundata, 123 

where fidelity of fungal partners and shared mycelial networks between generations 124 

allow autotrophic sporophytes to supply the small but critical amounts of 125 

carbohydrates required to support heterotrophic gametophytes (Leake et al, 2008). 126 

Our findings may corroborate this idea of intergenerational support, with adult and 127 

retreating sporophytes transferring C to MFRE partners and C transfer by juveniles 128 

being undetectable. However, the absence of C transfer by juveniles in our 129 

experiments does not necessarily equate to a total lack of C transfer by juveniles, 130 

further research is needed to determine this.     131 

Movement of 33P from MFRE associates was detected in all L. inundata plants 132 

tested, although the amounts transferred varied among growth stages (Fig. 1c, d; 133 

Table S2), with juvenile L. inundata sporophytes receiving approximately 10-fold less 134 

33P from their fungal partner compared to mature adult L. inundata sporophytes (Mann-135 



Whitney U= 13.000, P = 0.012, Fig. 1c). However, there was no significant difference 136 

in the amounts of 33P received from MFRE between mature adult sporophytes and 137 

juvenile sporophytes when above-ground plant tissue 33P content was normalised to 138 

plant biomass (Mann-Whitney U = 45.000, P = 0.813, Fig. 1d). In addition to 33P, 139 

significant amounts of 15N were transferred from MFRE to the shoots of mature and 140 

retreating adult L. inundata sporophytes (Fig. 1e, f; Table S2). Mature adult 141 

sporophytes received ~9 times more 15N from MFRE compared to retreating ones. 142 

However, there was no 15N transferred from MFRE to any of the juvenile sporophytes 143 

tested (Fig. 1e, f; Table S2).     144 

Although there was little-to-no exchange of plant-fixed C for fungal-acquired 145 

nutrients in juvenile sporophytes, we observed abundant bi-directional exchange of 146 

carbon for 33P and 15N between the mature adult sporophyte of L. inundata and MFRE 147 

fungi (Fig. 1a-f; Table S2-4). These results are similar to those of a previous 148 

investigation into the function of AMF symbionts of green sporophytes of the fern 149 

Ophioglossum vulgatum, also defined by a characteristic alternation of generations 150 

(Field et al, 2015), which showed mutualistic exchange of plant fixed carbon for 151 

nutrients between symbionts.  152 

  153 

Changing patterns of colonisation 154 

SEM results confirm distinct differences in fungal colonisation between 155 

gametophytes, juvenile sporophytes and roots of adult plants. Colonisation of the 156 

protocorm of newly developing sporophytes, which remain attached to the 157 

gametophyte (Fig. S2a-c), occurs de novo, with no evidence of the fungal symbiont 158 

crossing the gametophyte-sporophyte junction (placenta) (Fig. S2d). Fungal 159 

colonisation in newly developing sporophytes is both intra- and intercellular (Fig. S2e) 160 

and, like in the gametophytes, consists of thin (>2 µm in diameter), branching hyphae 161 

with small intercalary and terminal vesicles (Fig. S2d), typical of MFRE colonisation.  162 

As the young sporophytes develop the intercellular hyphae enlarge, reaching 163 

diameters well in excess of 3 µm, while the vesicles disappear (see Hoysted et al, 164 

2019). By the time young sporophytes have reached the developmental stage used in 165 

our isotope tracer experiments (up to seven leaves, remnants of protocorm, rhizoids 166 

and no or rarely one newly developing rootlet) (Fig. 2a), the system of large, mucilage-167 

filled intercellular spaces almost completely fills the remnants of the protocorm (Fig. 168 



2d) and is packed with pseudoparenchymatous hyphal masses (Fig. 2e), which are 169 

mostly collapsed (Fig. 2f). Roots of actively growing (Fig. 2g) and retreating (Fig. 2h, 170 

2Sf, g) adult plants both display the same cytology of colonisation, consisting of 171 

intracellular thin hyphae and vesicles (Fig. S2f, g) (Hoysted et al, 2019), however in 172 

the latter the fungus is largely confined to the epidermal and outermost cortical layers 173 

(Fig. 2h).    174 

MFRE fungi have a distinct zonation in the gametophytes and protocorms of 175 

newly developed L. inundata sporophytes consisting of an intracellular phase of 176 

colonisation characterised by fine hyphae with small swelling/vesicles (and, in the 177 

gametophyte only, also hyphal coils with larger vesicles – see Hoysted et al, 2019) 178 

and an intercellular phase where the fungus proliferates in the system of mucilage-179 

filled intercellular spaces forming masses of large pseudoparenchymatous hyphae 180 

that eventually collapse and degenerate (Hoysted et al, 2019). This colonisation is the 181 

same as that reported in other lycopod gametophytes and protocorms (Schmid and 182 

Oberwinkler, 1993; Duckett and Ligrone, 1992) and strikingly similar to that described 183 

in the earliest diverging Haplomitriopsida liverworts Treubia and Haplomitrium 184 

(Duckett et al, 2006; Carafa et al, 2003), the only two liverwort genera known to date 185 

to be colonised exclusively by MFRE fungi (Bidartondo et al, 2011; Field et al, 2015; 186 

Rimington et al, 2020). In Treubia and Haplomitrium, the intracellular fungal swellings 187 

or ‘lumps’ are relatively short-lived; it has been suggested that these structures are 188 

involved in active metabolic interactions with the host cells (Carafa et al, 2003) and 189 

that their eventual collapse and lysis may also provide nutrients, such as nitrogen, to 190 

the host plant (Duckett et al, 2006).  191 

The MFRE fungal colonisation in the roots of adult sporophytes is only 192 

intracellular and consists of fine aseptate hyphae with intercalary and terminal 193 

swellings/vesicles but without arbuscules (Hoysted et al, 2019). It is possible that the 194 

small swellings/vesicles may play an important role in host-fungus physiological 195 

relationships, as it has been suggested for Haplomitriopsida liverworts (Duckett et al, 196 

2006; Carafa et al, 2003). Further studies are urgently needed to determine the 197 

functional role of the diverse structures produced by MFRE in the different stages of 198 

Lycopodiella's life cycle, and indeed other plants. In retreating sporophytes, fungal 199 

colonisation appears much reduced compared to fully photosynthesising sporophytes, 200 

being mostly restricted to the outermost cortical layers (Fig. 2h). This may explain why 201 



retreating sporophytes receive smaller amounts of N and P from their fungal symbionts 202 

(Fig. 1c-f). 203 

 204 

Intergenerational support by MFRE in L. inundata 205 

Previous descriptions of Lycopodiella have highlighted the crucial role played 206 

by symbiotic fungi in the continued growth of the gametophyte; growing green portions 207 

of older gametophytes of L. alopecuroides were often observed to be embedded in 208 

older, yellow portions with abundant fungal hyphae (Koster, 1941). Coupled with the 209 

absence of C and N transfer between L. inundata and MFRE fungi in the juvenile 210 

sporophyte in our experiments (Fig. 1a.,b,e,f; Table S2-S4) this may suggest the 211 

presence of intergenerational support between alternating life stages whereby later 212 

life stages need to be present to transfer essential nutrients and nurture younger 213 

plants.  214 

In our experiments, the juvenile sporophytes were sustained throughout the 215 

experimental period despite the apparent lack of photosynthetic carbon being 216 

transferred from plant-to-fungus and without hyphal connections to mature 217 

sporophytes. It is possible that residual carbon reserves within the sporophyte tissues 218 

were mobilised and used for plant growth and allocation to fungi and recent 219 

photosynthates restricted for use only in plant tissues, suggestive of there being 220 

intricate temporal dynamics in allocation of carbon resources to fungal partners in this 221 

key transitional stage. Alternatively, the presence of collapsed and degenerating 222 

pseudoparenchymatous hyphal masses filling the extensive system of intercellular 223 

spaces in the remnants of protocorms may suggest a different scenario.  This juvenile 224 

sporophytic stage just precedes root development and therefore formation of a 225 

mycorrhizal association sensu stricto between Lycopodiella sporophytes and MFRE 226 

symbionts. It is likely that very early stages of sporophyte development are, like the 227 

gametophytes, completely, or largely mycoheterotrophic i.e. where plant carbon and 228 

nutrients are acquired entirely via mycorrhizal fungi), as fungal colonisation is 229 

ubiquitous and extensive in their subterranean protocorms with only the apical parts 230 

of newly developing, green leaves emerging above the ground.  It is therefore possible 231 

that juvenile sporophytes just prior to root development maintain a partially 232 

mycoheterotrophic lifestyle, the masses of collapsed and degenerating intercellular 233 

hyphae releasing nutrients that support early sporophyte development. Further 234 



investigations are now required that include structural and functional assessment of 235 

subterranean gametophytes associating with MFRE fungi. 236 

 237 

Conclusion 238 

 This investigation represents the first functional assessment of fungal 239 

symbiosis across the changing phenology of the marsh clubmoss, L. inundata. We 240 

show that MFRE fungi play critical and distinct functional roles across different 241 

developmental stages and that these correspond with different cytologies of 242 

colonisation. Our results show that MFRE have considerable plasticity in their 243 

interactions with plants which appears to relate to the developmental stage of the host 244 

and is suggestive of intergenerational support between sporophytes and 245 

gametophytes via shared MFRE symbionts. 246 
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Figure Legends 263 

 264 

Figure 1. Carbon-for-nutrient exchange between Lycopodiella inundata 265 

sporophytes (juvenile, mature adult and retreating adult) and Mucoromycotina 266 

fine root endophyte (MFRE). (a) Percentage allocation of plant-derived carbon to 267 



fungi within soil cores; (b) total measured plant-fixed carbon transferred to MFRE in 268 

soil by lycophyte sporophytes; (c) total plant 33P content (ng) and (d) tissue 269 

concentration (ng g-1) of fungal acquired 33P in juvenile, mature adult and retreating 270 

adult L. inundata plants; (e) total tissue 15N content (ng) and (f) concentration (ng g-1) 271 

of fungal-acquired 15N in lycophyte sporophytes. In all panels, error bars show ± s.e.m. 272 

Different letters represent where P < 0.05 (Mann-Whitney U test). The absence of a 273 

bar denotes no transfer of carbon or nutrients. In panels (a) and (b), n=5, n=24, n=16; 274 

in panels (c) and (d), n=5, n=15, n=8; in panels (e) and (f), n=6, n=15, n=8 for juvenile, 275 

mature adult and retreating adult sporophytes, respectively.  276 

 277 

Figure 2. Patterns of Mucoromycotina fungal colonisation in L. inundata. L. 278 

inundata gametophytes, juvenile sporophytes (up to 7 leaves, remnants of protocorm, 279 

rhizoids) and roots of mature and retreating adult plants (both wild and experimental), 280 

were either stained with trypan blue (Brundrett et al, 1996), fixed and embedded in 281 

Spur’s resin following Hoysted et al (2019), or processed for scanning electron 282 

microscopy (SEM) (Hoysted et al. 2019), within 48 hrs of collection (Orchard et al, 283 

2017c). Scanning electron micrographs, except (a-c) digital camera images and (f) 284 

light micrograph of toluidine blue stained semi-thin section.  (a - c) Life stages of L. 285 

inundata analysed in this study. (a) Example of juvenile sporophyte at the 286 

developmental stage used in our isotope tracer experiments; the sporophyte is no 287 

longer attached to the gametophyte, has up to seven leaves and remnants of 288 

protocorms (yellowish, arrowed) with copious rhizoids emerging from the ventral side. 289 

(b, c) L. inundata at Thursely Common; (b) mature adult sporophytes in summer and 290 

(c) retreating adult sporophytes in spring, note the partially submerged creeping 291 

stems. (d-f) Protocorms of juvenile sporophytes are almost completely filled by an 292 

extensive system of intercellular spaces (d, arrowed), which is packed with swollen, 293 

pseudoparenchymatous, mostly collapsed hyphae (e, *, f, *). (g). Transverse section 294 

of root of mature sporophyte of L. inundata showing extensive fungal colonisation (*). 295 

(h) In the roots of retreating sporophytes the fungus is largely confined to the epidermal 296 

and outermost cortical layers (h,*). Scale bars: (a) 1 mm; (d) 500 µm; (g, h) 100 µm; 297 

(e, f) 50 µm. 298 

 299 

 300 
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 409 



 410 

Figure 1. Carbon-for-nutrient exchange between Lycopodiella inundata 411 

sporophytes (juvenile, mature adult and retreating adult) and Mucoromycotina 412 

fine root endophyte (MFRE). (a) Percentage allocation of plant-derived carbon to 413 

fungi within soil cores; (b) total measured plant-fixed carbon transferred to MFRE in 414 

soil by lycophyte sporophytes; (c) total plant 33P content (ng) and (d) tissue 415 

concentration (ng g-1) of fungal acquired 33P in juvenile, mature adult and retreating 416 

adult L. inundata plants; (e) total tissue 15N content (ng) and (f) concentration (ng g-1) 417 

of fungal-acquired 15N in lycophyte sporophytes. In all panels, error bars show 418 

minimum to maximum values. Different letters represent where P < 0.05 (Mann-419 

Whitney U test). The absence of a bar denotes no transfer of carbon or nutrients. In 420 

panels (a) and (b), n=5, n=24, n=16; in panels (c) and (d), n=5, n=15, n=8; in panels 421 

(e) and (f), n=6, n=15, n=8 for juvenile, mature adult and retreating adult sporophytes, 422 

respectively.  423 

  424 



 425 

 426 

Figure 2. Patterns of Mucoromycotina fungal colonisation in L. inundata. L. 427 

inundata gametophytes, juvenile sporophytes (up to 7 leaves, remnants of protocorm, 428 

rhizoids) and roots of mature and retreating adult plants (both wild and experimental), 429 



were either stained with trypan blue (Brundrett et al, 1996), fixed and embedded in 430 

Spur’s resin following Hoysted et al (2019), or processed for scanning electron 431 

microscopy (SEM) (Hoysted et al. 2019), within 48 hrs of collection (Orchard et al, 432 

2017c). Scanning electron micrographs, except (a-c) digital camera images and (f) 433 

light micrograph of toluidine blue stained semi-thin section.  (a - c) Life stages of L. 434 

inundata analysed in this study. (a) Example of juvenile sporophyte at the 435 

developmental stage used in our isotope tracer experiments; the sporophyte is no 436 

longer attached to the gametophyte, has up to seven leaves and remnants of 437 

protocorms (yellowish, arrowed) with copious rhizoids emerging from the ventral side. 438 

(b, c) L. inundata at Thursely Common; (b) mature adult sporophytes in summer and 439 

(c) retreating adult sporophytes in spring, note the partially submerged creeping 440 

stems. (d-f) Protocorms of juvenile sporophytes are almost completely filled by an 441 

extensive system of intercellular spaces (d, arrowed), which is packed with swollen, 442 

pseudoparenchymatous, mostly collapsed hyphae (e, *, f, *). (g). Transverse section 443 

of root of mature sporophyte of L. inundata showing extensive fungal colonisation (*). 444 

(h) In the roots of retreating sporophytes the fungus is largely confined to the epidermal 445 

and outermost cortical layers (h,*). Scale bars: (a) 1 mm; (d) 500 µm; (g, h) 100 µm; 446 

(e, f) 50 µm. 447 

 448 
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