
This is a repository copy of Network Embedding from the Line Graph:Random Walkers
and Boosted Classification.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/169801/

Version: Accepted Version

Article:

Lozano, Miguel Angel, Escolano, Francisco, Curado, Manuel et al. (1 more author) (2021)
Network Embedding from the Line Graph:Random Walkers and Boosted Classification.
Pattern Recognition Letters. pp. 36-42. ISSN 0167-8655

https://doi.org/10.1016/j.patrec.2020.12.018

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.patrec.2020.12.018
https://eprints.whiterose.ac.uk/id/eprint/169801/
https://eprints.whiterose.ac.uk/

Network Embedding from the Line Graph: Random Walkers and Boosted

Classification

Miguel Angel Lozanoa,∗, Francisco Escolanoa, Manuel Curadob, Edwin R. Hancockc

aDepartment of Computer Science and AI, University of Alicante
bPolytechnic School, Catholic University of Murcia

cDepartment of Computer Science, University of York

Abstract

In this paper, we propose to embed edges instead of nodes using state-of-the-art neural/factorization methods (Deep-

Walk, node2vec, NetMF). These methods produce latent representations based on co-ocurrence statistics by simulating

fixed-length random walks and then taking bags-of-vectors as the input to the Skip Gram Learning with Negative Sam-

pling (SGNS). We commence by expressing commute times embedding as matrix factorization, and thus relating this

embedding to those of DeepWalk and node2vec. Recent results showing formal links between all these methods via

the spectrum of graph Laplacian, are then extended to understand the results obtained by SGNS when we embed

edges instead of nodes. Since embedding edges is equivalent to embedding nodes in the line graph, we proceed to

combine both existing formal characterizations of the line graphs and empirical evidence in order to explain why this

embedding dramatically outperforms its nodal counterpart in multi-label classification tasks.

Keywords: Network embedding, SGNS, Line graph, Spectral Theory.

1. Introduction

The recent success of neural graph embeddings such

as LINE (Tang et al., 2015), DeepWalk (Perozzi et al.,

2014a) and node2vec (Grover and Leskovec, 2016a) has

opened a new path for analyzing networks. Despite these

embeddings outperform spectral ones in tasks such as link

prediction and multi-label node classification, Spectral

Graph Theory (Chung, 1997) is still key tool for under-

standing and characterizing neural embeddings (Qiu et al.,

2018a).

In this paper, we contribute with empirical evidence

showing that neural embeddings (Section 2) can boost

their performance in multi-label classification by embed-

ding edges instead of nodes. We conjecture that this fact is

∗Corresponding author: Tel.: +34-965-903900; fax: +34-965-

903902;

Email address: malozano@ua.es (Miguel Angel Lozano)

due to the spectral properties of line graphs, whose nodes

are the edges of the original graphs (Section 3). How-

ever, since general line graphs have not been fully charac-

terized yet, we can only correlate our empirical findings

(Section 4) with some of the well known properties of line

graphs and the spectral characterization of neural embed-

dings. More precisely, we conjecture that the spectrum

of the normalized Laplacian of a graph majorizes that of

the normalized Laplacian of its line graph. This conjec-

ture is solved for regular graphs and it is coherent with

our empirical observations. In addition, this fact explain

the boosted performance on classification in conjunction

with the lack of scale-freedom and better clustering coef-

ficients of line graphs.

Preprint submitted to Pattern Recognition Letters September 22, 2020

Figure 1: Barbell graph linking two cliques (left) and its line graph

(right)

0 500 1000 1500 2000 2500

Index

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E
ig

e
n
v
a
lu

e

cora (nodes)

D
−1/2

AD
−1/2

U

(

1

T

∑T
r=1

Λr
)

UT

(

1

T

∑T
r=1

P r
)

D−1

0 500 1000 1500 2000 2500 3000

Index

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E
ig

e
n
v
a
lu

e

citeseer (nodes)

D
−1/2

AD
−1/2

U

(

1

T

∑T
r=1

Λr
)

UT

(

1

T

∑T
r=1

P r
)

D−1

0 1000 2000 3000 4000 5000

Index

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E
ig

e
n
v
a
lu

e

cora (edges)

D
−1/2

AD
−1/2

U

(

1

T

∑T
r=1

Λr
)

UT

(

1

T

∑T
r=1

P r
)

D−1

0 1000 2000 3000 4000

Index

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E
ig

e
n
v
a
lu

e

citeseer (edges)

D
−1/2

AD
−1/2

U

(

1

T

∑T
r=1

Λr
)

UT

(

1

T

∑T
r=1

P r
)

D−1

Figure 2: Eigenvalues of the original (top) and line graph (bottom), for

Cora (left) and CiteSeer (right) databases

2. Classic vs Neural Embeddings

2.1. Classic Embeddings

Let G = (V, E,A) be a graph/network with n = |V |

nodes, m = |E| edges, where E ⊆ V × V , and adjacency

matrix A. Then, node embedding consists of finding a

mapping f : V → R
d (with d ≪ n) so that the result-

ing d−dimensional vectors capture the structural proper-

ties of each vertex. As a result, we have || f (i)− f (j)||2 → 0

if nodes i and j are structurally similar within the graph

G. Traditionally, nodal structural similarity was associ-

ated with the reachability of node j from node i (and

vice versa) through random walks (Lovász, 1996). This

characterization leads us to define both hitting times Hi j

(expected steps taken by a random walk to reach j from

i) and commute times CTi j = Hi j + H ji (which also in-

cludes the expected steps needed to return to i from j).

Since random walks are encoded by transition matrices

of the form P = D−1A, where D = diag(d1, . . . , dn) is

the diagonal matrix with the degrees of the nodes, the

spectral analysis of P is a natural way of understand-

ing both hitting and commute times. More precisely, let

µ1 = 1 ≥ µ2 ≥ . . . ≥ µn ≥ −1 be the spectrum of the

transition matrix. It is well known that hitting times and

commute times are highly conditioned by the spectral gap

µ = 1 − max{µ2, |µn|}. When several communities are

encoded by a connected graph G, then Hi j and CTi j are

only meaningful when µ→ 0 (small bottlenecks between

communities); otherwise, these quantities rely on the lo-

cal densities (degrees) of the nodes i and j, and one cannot

discriminate whether two nodes belong to the same com-

munity or not (von Luxburg et al., 2014). Consequently,

the applicability of node embeddings based on commute

times to clustering is quite limited (see representative ex-

amples of image segmentation and tracking in Qiu and

Hancock (2007)). In this regard, recent research is fo-

cused on simultaneously minimizing the spectral gap and

shrinking (whenever possible) inter-community commute

distances via graph densification (Curado et al., 2019) be-

fore embedding the nodes.

Therefore, once G is processed (or rewired) commute

times embedding leads to learn two matrices X,Y ∈ Rn×d,

whose rows are denoted by xi and y j respectively and xi is

the embedding of the node i. Following Qiu and Hancock

(2007), the commute times embedding matrix X results

from factorizing

vol(G)G = XYT , (1)

where vol(G) =
∑n

i=1 di is the volume of the graph and

G is its Green’s function, i.e. the pseudo-inverse of the

normalized graph Laplacian L = I−D−1/2AD−1/2, whose

spectrum is λ1 = 1−µ1 = 0, λ2 = 1−µ2, . . . , λn = 1−µn ≤

2, i.e. if µi is an eigenvalue of P then λi = 1 − µi is an

eigenvalue of L.

2.2. Neural Embeddigs

Neural embeddings such as LINE (Tang et al., 2015),

DeepWalk (Perozzi et al., 2014a) and node2vec (Grover

and Leskovec, 2016a), exploit random walks in a dif-

ferent way. Namely, they simulate a fixed number N

of random walks with fixed length L emanating from

the nodes of G and then capture co-ocurrence statistics

of pairs of nodes. Each path consists of a sequence of

visited nodes w1,w2, . . . ,wi, . . . ,wL. The first node w1

2

of each path, assimilated to a word in a textual corpus

(skip-gram model), is sampled from a prior distribution

P(w). The next nodes in the random walk are obtained

according to the transition matrix P. The context of wi

is given by the nodes/words surrounding it in a T−sized

window wi−T , . . . ,wi−1,wi+1, . . . ,wi+T . Then, the node-

context pairs (w, c) are given by (wi−r,wi) and (wi,wi+r)

for r = 1, . . . ,T . All these pairs are added to the mul-

tiset D used for learning with negative sampling. Neg-

ative sampling implies not only to consider likely node-

context pairs (w, c) but also b unlikely ones (w, c′): the

negative samples c′, are nodes that can be drawn from the

steady-state probability distribution of the random walk,

i.e. PN(i) = di/vol(G). This process is called Skip Gram

Learning with Negative Sampling (SGNS) and leads to

the following factorization (Levy and Goldberg, 2014):

M = XYT , with Mi j = log

(

#(wi, c j)|D|

#(wi)#(c j)

)

− log b , (2)

where: #(wi, ci) is the number of times the corresponding

node-context pair is observed,#(wi) is the number of times

the node i is observed and similarly for node #(c j); finally

log(.) is the element-wise logarithm and b is the number

of negative samples.

2.3. LINE and DeepWalk vs node2vec Factorizations

These strategies differ in the way they sample (and thus

vectorize) the graph for SGNS. LINE and DeepWalk rely

on first-order random walks whereas node2vec is driven

by second-order random walks.

2.3.1. LINE & DeepWalk.

LINE’s factorization is a direct result from the cost

function associated with SGNS.

This method aims to learn two representation matrices

X and Y, whose rows are denoted by xi and y j, respec-

tively. In particular, the latent representations of both the

word/node xi and the context y j are assumed to be corre-

lated with the existence of an edge between nodes i and

j, i.e. Ai j log g(xT
i

y j) is maximized, where g(.) is the sig-

moid function. Following Qiu et al. (2018a), this leads

to

xT
i

y j = log

(

vol(G)Ai j

did j

)

− log b ⇒

⇒ log
(

vol(G)D−1AD−1
)

− log b = XYT .
(3)

DeepWalk, on the other hand, leads to a more complex

factorization. Assuming that the first node of each random

walk is drawn from the steady state distribution, we have

that, when L→ ∞,

#(wi, c j)|D|

#(wi)#(c j)

p
→

vol(G)

2T















1

d j

T
∑

r=1

Pr
i j +

1

di

T
∑

r=1

Pr
ji















(4)

where
p
→ denotes convergence in probability. This yields

log















vol(G)

T















T
∑

r=1

Pr















D−1















− log b = XYT , (5)

which is equivalent to LINE for T = 1.

2.3.2. node2vec.

The underlying idea of this embedding is to add more

flexibility to the random walk. This is done by defining

two parameters p and q that control, respectively, the like-

lihood of inmediately revisit a node in the walk and mak-

ing the walk very local. To that end, node2vec needs to

evaluate the probability of the next nodes given the pre-

ceeding one in the walk, i.e. we have a 2nd-order ran-

dom walk. This walk is characterized by the hyperma-

trix P, where P
i(jk) denotes the probability of reaching i

from j given that the node preceeding j is k. Thus, the

2nd order random walk can be reduced to a 1st order one

on the edges of the graph (Benson et al., 2017) as it is

done in the implementation of node2vec. The station-

ary distribution Xik for this type of random walks satis-

fies
∑

k P
i(jk)Xik = Xi j. Qiu et al. (Qiu et al., 2018a) have

found that

#(wi, c j)|D|

#(wi)#(c j)

p
→

1
2T

∑T
r=1

(

∑

u XwiuPr
c j(wiu) +

∑

u Xc juPr
wi(c ju)

)

(∑

u Xwiu

)

(

∑

u Xc ju

)

(6)

and, despite the matricial expression for the factoriza-

tion is more elusive, the final factorization differs signifi-

cantly from those of DeepWalk and LINE.

3. Node vs Edges Embedding

3.1. The Line Graph

In this paper, we are mainly concerned with the impact

of embedding the edges of G instead of its nodes. This

3

0 20 40 60 80 100 120 140 160
Degree

0

100

200

300

400

500

Co
un

t

Degree Histogram (cora-nodes)

0 25 50 75 100 125 150 175 200
Degree

0

50

100

150

200

250

300

350

Co
un

t

Degree Histogram (cora-edges)

0 20 40 60 80 100
Degree

0

100

200

300

400

500

Co
un

t

Degree Histogram (citeseer-nodes)

0 20 40 60 80 100 120
Degree

0

50

100

150

200

250

Co
un

t

Degree Histogram (citeseer-edges)

0 50 100 150 200 250
Degree

0

50

100

150

200

Co
un

t

Degree Histogram (wiki-nodes)

0 100 200 300 400 500
Degree

0

50

100

150

200

Co
un

t

Degree Histogram (wiki-edges)

0 200 400 600 800 1000
Degree

0

20

40

60

80

100

Co
un

t

Degree Histogram (facebook-nodes)

0 250 500 750 1000 1250 1500 1750
Degree

0

50

100

150

200

250

300

350

Co
un

t

Degree Histogram (facebook-edges)

0 100 200 300 400 500 600
Degree

0

50

100

150

200

250

300

350

400

Co
un

t

Degree Histogram (ppi-nodes)

0 200 400 600 800 1000
Degree

0

50

100

150

200

250

Co
un

t

Degree Histogram (ppi-edges)

Figure 3: Degree histogram of the original (left) and line (right) graph.

means that a word wi in the previous expressions is not

yet associated with a node of G but with a node of its

line graph ℓG. The nodes of ℓG are the edges of G and

there is an edge in the line graph if two edges in G share

a node. More formally, given the n × m incidence matrix

B, where n and m are the number of nodes and edges,

respectively, of G, and Biα is 1 if the link α is related to

node i and 0 otherwise, we have that the elements of the

m×m adjacency matrix C of ℓG are Cαβ =
∑n

i=1 BiαBiβ(1−

δαβ). The term (1 − δαβ) is introduced to avoid self-loops

in the line graph (when α = β it is set to 0).

0 500 1000 1500 2000 2500
Node

0

5000

10000

15000

20000

25000

30000

Co
un

t

cora-nodes

0 1000 2000 3000 4000 5000
Edge

0

500

1000

1500

2000

2500

3000

3500

4000

Co
un

t

cora-edges

0 500 1000 1500 2000 2500 3000 3500
Node

0

2500

5000

7500

10000

12500

15000

17500

Co
un

t

citeseer-nodes

0 1000 2000 3000 4000
Edge

0

500

1000

1500

2000

2500

3000

3500

4000

Co
un

t

citeseer-edges

0 500 1000 1500 2000 2500
Node

0

2500

5000

7500

10000

12500

15000

17500

20000

Co
un

t

wiki-nodes

0 2000 4000 6000 8000 10000 12000
Edge

0

1000

2000

3000

4000

5000

6000

Co
un

t

wiki-edges

0 500 1000 1500 2000 2500 3000 3500 4000
Node

0

5000

10000

15000

20000

Co
un

t

facebook-nodes

0 20000 40000 60000 80000
Edge

0

1000

2000

3000

4000

5000

6000

7000

Co
un

t

facebook-edges

0 500 1000 1500 2000 2500 3000 3500 4000
Node

0

5000

10000

15000

20000

25000

Co
un

t

ppi-nodes

0 5000 10000 15000 20000 25000 30000 35000 40000
Edge

0

1000

2000

3000

4000

Co
un

t
ppi-edges

Figure 4: Walk histogram of the original (left) and line (right) graph.

3.2. Spectral Analysis

Some interesting properties of line graphs ℓG vs G:

• Boosted edge density. A single node i in G leads to

a clique of di(di − 1)/2 edges in ℓG (see Fig. 1). De-

spite this gives a high prominence to notable nodes

of G, it flexibilizes community detection (Evans and

Lambiotte, 2009). In addition, the steady state dis-

tribution of a random walk in ℓG is PN(α(i, j)) =

dα/vol(ℓG) where dα = di + d j − 2 and vol(ℓG) =
∑

α,βCαβ =
∑n

i=1 di(di − 1).

4

• Redundant spectrum for m > n. Let λ1(ℓG) ≥

λ2(ℓG) ≥ . . . ≥ λm(ℓG) be the spectrum of C. Then,

for m > n, λn+1(ℓG) = . . . = λm(ℓG) = −2. As a

result, λi(L(ℓG)) ≥ 4, for the largest m − n eigenval-

ues of L(ℓG), the unnormalized Laplacian matrix of

ℓG (Yan, 2002). This may reduce significantly the

medium-large eigenvalues of L(ℓG) with respect to

those of L(G), that is increase those of I−L(ℓG) wrt

those of I − L(G) (see Fig. 2).

• Majorization of the spectrum of the Laplacian of

ℓG. For k−regular G, we have that ℓG is 2(k −

1)−regular (see Ramane et al. (2005)). This is

consistent with Biggs (1974) (Thm.8 in Chapter 3)

where λi(ℓG) = λi(G) + 2 − k for i ≤ n. This im-

plies that λi(L(ℓG)) = 2(k − 1) − λi(G) ≥ 0 for

i ≤ n. As a result, we have λ2(L(ℓG)) = 2(k −

1) − 2 + λ2(L(G)), i.e. λ2(L(ℓG)) > λ2(L(G)) for

k > 2. Since the normalized Laplacian of a k−regular

graph satisfiesL(G) = 1
k
L(G), and similarly we have

L(ℓG) = 1
2(k−1)

L(ℓG), it is straightforward to obtain

λ2(L(ℓG)) < λ2(L(G)) for k > 2. Therefore, the

spectral gap of G majorizes that of ℓG in regular

graphs and this leads to larger mixing times in ℓG

wrt G.

We conjecture that the above majorization is also

valid for non-regular graphs, because it is consistent

with our observations. In Fig. 2 we show that the

largest part of the spectrum of I−L in the line graph

majorizes that of G. Since the spectrum driving

DeepWalk is (approximately) of the form 1
T

∑T
r=1 µ

r
i
,

this leads (in general) to small spectral gaps for the

line graphs, and thus large mixing times (green lines

show the real spectra driving random walks in Deep-

Walk; in all cases, T = 10). Large mixing times tend

to reduce the redundancy of the embeddings, since

the random walks typically sample far from the sta-

tionary distribution (e.g. they surf far from notable

nodes) (see Mohaisen et al. (2010)). We will see the

impact of this fact in the Experimental Section.

Taking the regular case as a departure point, solving

the majorization conjecture (specially its impact in

mixing times) in forthcoming work requires a careful

look of other families of graphs. For instance, Ben-

jamini et al. (2014) proved that the mixing times of

random graphs is Θ(log2 n), where n is the number

of nodes, and this leads to Θ(log2 m) mixing times in

line graphs. In addition, solving this question also re-

quires to analyze the not scale freedom of line graphs

obtained from scale-free ones. We will explore this

point in the following section.

4. Experiments and Discussion

4.1. Datasets (Networks)

In our experiments, we have used the following

datasets:

• CiteSeer for Document Classification (Sen et al.,

2008). Citation network containing 3312 scientific

publications with 4676 links between them. Each

publication is classified in one of 6 categories.

• Cora (Sen et al., 2008). Citation network containing

2708 scientific publications with 5278 links between

them. Each publication is classified in one of 7 cate-

gories.

• Wiki 1. Contains a network of 2405 web pages with

17981 links between them. Each page is classified in

one of 19 categories.

• Facebook social circles (McAuley and Leskovec,

2012). Consists of 4039 nodes (users) and 88234

links between them, organized in 10 categories

(groups of users).

• Wikipedia Part-of-Speech (POS) (Mahoney,

2011). Co-ocurrence of words appearing in the first

million of the bytes of the dumping of Wikipedia.

The categories correspond to the labels of Part-of-

Speech (POS) inferred by the Stanford POS-Tagger.

Contains 4777 nodes, and 92517 undirected links.

Each node may have several labels. We have 40

labels (categories).

• Protein-Protein Interactions (PPI) 2 (Breitkreutz

et al., 2008). We use a subgraph of the PPIs associ-

ated with the Homo Sapiens. The network has 3890

1https://github.com/thunlp/MMDW/
2https://downloads.thebiogrid.org/BioGRID

5

0 20 40 60 80 100
Training %

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

cora

0 20 40 60 80 100
Training %

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

wiki

0 20 40 60 80 100
Training %

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

citeseer

0 20 40 60 80 100
Training %

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

ppi

0 20 40 60 80 100
Training %

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

pos

node2vec (nodes) deepWalk (edges) deepWalk (nodes) node2vec (edges)

0 20 40 60 80 100
Training %

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

facebook

Figure 5: Evolution of the performance as a function of the fraction of known labels in the training set (Micro-F1 score)

Table 1: Properties of the datasets

Nodes Edges Line graph edges Gap Con. comps. Labels Multi-label

wiki 2405 12761 355644 0.000000 45 19 no

cora 2708 5278 52301 0.000000 78 7 no

citeseer 3327 4676 27174 0.000000 438 6 no

ppi 3890 38739 3018220 0.000000 35 50 yes

pos 4777 92517 49568882 0.576132 1 40 yes

facebook 4039 88234 9314849 0.000837 1 10 yes

nodes and 76584 links. Each node may have several

labels corresponding to the 50 possible categories.

Facebook, PPI and POS have been retrieved from

SNAP 3 (Leskovec and Krevl, 2014). CiteSeer and Cora

have been retrieved from LINQS 4.

See Table 1 for details of these datasets. All the net-

works are considered as undirected graphs. Nodes in ℓG

corresponding to edges in G that connect nodes of differ-

ent classes, will be assigned to both classes. These nodes

3https://snap.stanford.edu/node2vec/
4https://linqs.soe.ucsc.edu/data

of ℓG will be considered inter-class nodes (border nodes).

On the other hand, edges connecting nodes of the same

class will be considered intra-class nodes in ℓG. Thus,

originally single-labelled networks are transformed into

multi-label networks when their line graph is computed.

In the case of originally multi-label graphs, it is general-

ized as follows: the set of labels of a node α(i, j) in ℓG is

obtained as the union of the sets of labels of i and j in G.

In the next table we show the amount of inter-class and

intra-class nodes in originally single-label datasets:

6

−60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

t-SNE ppi-node2vec

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

t-SNE pos-node2vec

−80 −60 −40 −20 0 20 40 60
−80

−60

−40

−20

0

20

40

60

80

t-SNE facebook-node2vec

−60 −40 −20 0 20 40 60

−40

−20

0

20

40

60

t-SNE wiki-node2vec

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

t-SNE ppi-edge2vec

−40 −20 0 20 40

−40

−20

0

20

40

t-SNE pos-edge2vec

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60
t-SNE facebook-edge2vec

−100 −75 −50 −25 0 25 50 75 100

−75

−50

−25

0

25

50

75

t-SNE wiki-edge2vec

Figure 6: t-SNE embeddings. Original graph (top) and line graph (bottom), for PPI (first column), POS (second column), Facebook (third column)

and Wiki (fourth column) databases.

Table 2: Micro-F1

node2vec DeepWalk NetMF
CTE LLE

Nodes Edges Nodes Edges Nodes Edges

citeseer 0.591071 0.768626 0.595833 0.780930 0.595833 0.782386 - -

cora 0.808715 0.903557 0.817578 0.920538 0.824963 0.900414 - -

wiki 0.663342 0.840709 0.692436 0.859129 0.684954 0.852148 - -

pos 0.447845 0.697572 0.471620 0.696640 0.449926 - 0.375037 0.393165

ppi 0.197435 0.590731 0.205786 0.609937 0.236206 0.610787 - -

facebook 0.911516 0.999900 0.911516 0.999900 0.910182 - 0.239217 0.231214

Inter-class nodes Intra-class nodes

wiki 4526 (35%) 8235 (65%)

cora 1003 (19%) 4275 (81%)

citeseer 1190 (25%) 3486 (75%)

4.2. Random walk analysis

The above spectral analysis leads to explain the be-

haviour of random walkers surfing the line graphs instead

of the original graphs. The larger density of ℓG wrt to that

of G, and the spectral majorization (leading to a larger

mixing time) suggest that the walkers explore more effi-

ciently ℓG than G (i.e. they explore more in-depth the

line graphs than the original graphs). This is partially

due to the fact that line graphs usually loose the power-

law property of the original graphs when they are scale-

free. Wang et al. (2016) showed that if one assume that

the degree of nodes are independent, then line graphs of

scale-free graphs follow a power law of slope αℓG = 2

smaller than that of the original scale-free graphs (with

αG = 3). However, as the preferential attachment prop-

erty of scale-free graphs rules out degree independence,

scale-freedom is not preserved in line graphs. In Fig. 3

there are represented the histograms of node degrees for

each dataset, both considering the original graph (left)

and its line graph (right). It can be observed that the line

graphs tend to spread the histogram, specially in the case

of denser graphs (wiki, ppi, facebook).

A second fact that explains the efficiency of random

walkers on line graphs is assortativity (preferential con-

nection to nodes with the same properties). Wang et al.

(2016) derivated a formula for the assortativity of a line

graph ℓG as a function of that of its original graph G.

There is clearly a non-linear dependence between both as-

sortativities, and more interestingly the assortativities of

line graphs are larger (and usually positive) than those of

7

Table 3: Macro-F1

node2vec DeepWalk NetMF
CTE LLE

Nodes Edges Nodes Edges Nodes Edges

citeseer 0.544490 0.730930 0.545774 0.745995 0.555131 0.746387 - -

cora 0.798782 0.898863 0.804928 0.917838 0.817348 0.895754 - -

wiki 0.528603 0.764205 0.597948 0.787771 0.536270 0.759482 - -

pos 0.084183 0.773035 0.094148 0.774001 0.081939 - 0.041637 0.033617

ppi 0.168237 0.566912 0.178405 0.587934 0.206204 0.594749 - -

facebook 0.821899 0.999377 0.822243 0.999407 0.818303 - 0.108742 0.045155

the original graphs with negative assortativities. Since the

assortativity is related to the clustering coefficient, it turns

out that line graphs are (usually) better clustered than the

original graphs.

The confluence of both the non-power law behaviour

and higher assortativity of line graphs makes random

walks to surf line graphs in a different (more efficient

way). There is a smaller number of key nodes (with low

probability of scape from them) and the exploration be-

comes more entropic. As a result, the embedding become

less redundant (more informative). For instance, in Fig. 4

we show the walking histogram of these graphs, i.e. how

many times each node if traversed by a random walk. In

this case it is much more clear how line graph helps to

distribute the walks among the nodes.

4.3. Classification experiments

The classification experiments aim to compare the ef-

fectiveness of node (original graph) and edge (line graph)

embeddings to discriminate between different communi-

ties in the network.

These experiments are performed by training a logis-

tic regression classifier with the embedding vectors corre-

sponding to 50% of the nodes, and tested with the remain-

ing vectors, using the OpenNE framework 5. We compare

the classification results obtained with different embed-

ding methods: node2vec (Grover and Leskovec, 2016b),

DeepWalk (Perozzi et al., 2014b), NetMF 6 (Qiu et al.,

2018b), LLE (Locally Linear Embedding, Roweis and

5https://github.com/thunlp/OpenNE
6NetMF implementation has been retrieved from https://

github.com/xptree/NetMF/

Saul (2000)) and CTE (Commute Time Embedding, Qiu

and Hancock (2007)). In case of node2vec, DeepWalk

and NetMF, we compare the embedding obtained both

from the original graph (node embedding) and from its

line graph (edge embedding). The obtained results are

presented in Tables 2 (Micro-F1 score) and 3 (Macro-F1

score). Some cells in the results tables have been left in

blank due to computational limitations.

In this experiment, we observe that in all cases the edge

space is more convenient in order to classify in different

communities. In addition, when the number of edges is

much higher than the number of nodes, the obtained gain

is also higher (facebook, pos, ppi, and wiki). We can also

observe that a high ratio of intra-class connectivity (cora)

also favors to obtain better classification results. In these

cases, density of intra-class connectivity is boosted by line

graphs.

The default values for p and q in node2vec are p = q =

1. After optimizing p and q in the range {0.25, 0.5, 1, 2, 4}

the maximum improvement of node2vec wrt DeepWalk

in the classification score is 0.014 (micro and macro). Re-

garding spectral embeddings, CTE and LLE have been

only tested in networks with a single connected compo-

nent (pos and facebook). In particular, commute times

(CTE) have a poor performance in multi-label classifica-

tion because their factorization relies on the Green’s func-

tion and this means that only the inverse of each eigen-

value is considered. However, DeepWalk is controlled by

a polynomial associated with each eigenvalue.

In Fig. 5, we show the performance of classification

(Micro-F1 score) with different percentages of training

data (ranging from 10% to 90%). The line graph versions

of node2vec and DeepWalk clearly outperform their nodal

counterparts. The similarity in terms of performance of

8

node2vec and DeepWalk is due to the fact that the 2nd or-

der random walk of node2vec is not applied at the level

of edges (it is unfeasible for large networks). Finally,

in Fig. 6 we show the t-SNE embeddings for POS, PPI,

Facebook and Wiki datasets. Edge embeddings clearly

produce denser communities.

5. Conclusions

In this paper, we have contributed with empirical evi-

dence showing that embedding edges clearly outperforms

node-based embeddings in neural SGNS strategies. We

conjecture that this is due to the larger mixing times of

random walks in line graphs. We solve the conjecture for

regular graphs and contribute with characterizing the be-

haviour of random walks surfing on line graphs. In par-

ticular, we explain the fact that line graphs generate more

informative (more entropic, less redundant) embeddings

by analyzing some key combinatorial properties: density,

not scale free, positive assortativity and large clustering

coefficient.

Future work includes a detailed check of this conjecture

as well as more efficient (in time and space) strategies for

designing walkers on the line graphs. In addition, we are

studying the directed case (digraph) where the non-zero

spectrum of the transition matrix of the original graph is

preserved in the line digraph. In this case, given that the

edges have a source and a destination node, an edge can

be mapped directly to a single node (e.g., its destination

node in citation networks).

Acknowledgments

M.A. Lozano, M. Curado and F. Escolano are funded

by the project RTI2018-096223-B-I00 of the Spanish

Government.

References

Benjamini, I., Kozma, G., Wormald, N.C., 2014.

The mixing time of the giant component of a

random graph. Random Struct. Algorithms 45,

383–407. URL: https://doi.org/10.1002/rsa.

20539, doi:10.1002/rsa.20539.

Benson, A.R., Gleich, D.F., Lim, L., 2017. The spacey

random walk: A stochastic process for higher-order

data. SIAM Review 59, 321–345. doi:10.1137/

16M1074023.

Biggs, N., 1974. Algebraic Graph Theory. Cambridge

Mathematical Library. 2 ed., Cambridge University

Press. doi:10.1017/CBO9780511608704.

Breitkreutz, B., Stark, C., Reguly, T., Boucher, L., Bre-

itkreutz, A., Livstone, M.S., Oughtred, R., Lackner,

D.H., Bähler, J., Wood, V., Dolinski, K., Tyers, M.,

2008. The biogrid interaction database: 2008 update.

Nucleic Acids Research 36, 637–640. doi:10.1093/

nar/gkm1001.

Chung, F.R.K., 1997. Spectral Graph Theory. Conference

Board of the Mathematical Sciences (CBMS), number

92, American Mathematical Society.

Curado, M., Escolano, F., Lozano, M.A., Hancock, E.R.,

2019. Dirichlet densifiers for improved commute times

estimation. Pattern Recognit. 91, 56–68. doi:10.1016/

j.patcog.2019.02.012.

Evans, T.S., Lambiotte, R., 2009. Line graphs, link parti-

tions, and overlapping communities. Phys. Rev. E 80,

016105. doi:10.1103/PhysRevE.80.016105.

Grover, A., Leskovec, J., 2016a. node2vec: Scalable fea-

ture learning for networks, in: Proceedings of the 22nd

ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, San Francisco, CA,

USA, August 13-17, 2016, pp. 855–864. doi:10.1145/

2939672.2939754.

Grover, A., Leskovec, J., 2016b. node2vec: Scalable fea-

ture learning for networks, in: Proceedings of KDD,

pp. 855–864.

Leskovec, J., Krevl, A., 2014. SNAP Datasets: Stan-

ford large network dataset collection. http://snap.

stanford.edu/data.

Levy, O., Goldberg, Y., 2014. Neural word embedding

as implicit matrix factorization, in: Advances in Neural

Information Processing Systems 27: Annual Confer-

ence on Neural Information Processing Systems 2014,

December 8-13 2014, Montreal, Quebec, Canada, pp.

2177–2185.

9

Lovász, L., 1996. Random walks on graphs: A survey,

in: Miklós, D., Sós, V.T., Szőnyi, T. (Eds.), Combina-

torics, Paul Erdős is Eighty. János Bolyai Mathematical

Society, Budapest. volume 2, pp. 353–398.

von Luxburg, U., Radl, A., Hein, M., 2014. Hitting

and commute times in large random neighborhood

graphs. Journal of Machine Learning Research 15,

1751–1798. URL: http://dl.acm.org/citation.

cfm?id=2638591.

Mahoney, M., 2011. Large text compression bench-

mark. URL: http://www.mattmahoney.net/dc/

textdata.

McAuley, J.J., Leskovec, J., 2012. Learning to discover

social circles in ego networks, in: Advances in Neu-

ral Information Processing Systems 25: 26th Annual

Conference on Neural Information Processing Systems

2012. Proceedings of a meeting held December 3-6,

2012, Lake Tahoe, Nevada, United States., pp. 548–

556.

Mohaisen, A., Yun, A., Kim, Y., 2010. Measuring

the mixing time of social graphs, in: Proceedings

of the 10th ACM SIGCOMM Conference on Internet

Measurement, Association for Computing Machinery,

New York, NY, USA. pp. 383–389. doi:10.1145/

1879141.1879191.

Perozzi, B., Al-Rfou, R., Skiena, S., 2014a. Deepwalk:

online learning of social representations, in: The 20th

ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’14, New

York, NY, USA - August 24 - 27, 2014, pp. 701–710.

doi:10.1145/2623330.2623732.

Perozzi, B., Al-Rfou, R., Skiena, S., 2014b. Deepwalk:

Online learning of social representations, in: Proceed-

ings of KDD, pp. 701–710.

Qiu, H., Hancock, E.R., 2007. Clustering and embed-

ding using commute times. IEEE Trans. Pattern Anal.

Mach. Intell. 29, 1873–1890. doi:10.1109/TPAMI.

2007.1103.

Qiu, H., Hancock, E.R., 2007. Clustering and embed-

ding using commute times. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 29, 1873–1890.

doi:10.1109/TPAMI.2007.1103.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang,

J., 2018a. Network embedding as matrix factoriza-

tion: Unifying deepwalk, line, pte, and node2vec,

in: Proceedings of the Eleventh ACM International

Conference on Web Search and Data Mining, ACM,

New York, NY, USA. pp. 459–467. doi:10.1145/

3159652.3159706.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.,

2018b. Network embedding as matrix factorization:

Unifying deepwalk, line, pte, and node2vec, in: Pro-

ceedings of the Eleventh ACM International Confer-

ence on Web Search and Data Mining, ACM. pp. 459–

467.

Ramane, H., Walikar, H., Rao, S., Acharya, B., Hampi-

holi, P., Jog, S., Gutman, I., 2005. Spectra and ener-

gies of iterated line graphs of regular graphs. Appl.

Math. Lett. 18, 679–682. doi:10.1016/j.aml.2004.

04.012.

Roweis, S.T., Saul, L.K., 2000. Nonlinear dimension-

ality reduction by locally linear embedding. Science

290, 2323–2326. doi:10.1126/science.290.5500.

2323.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gal-

lagher, B., Eliassi-Rad, T., 2008. Collective clas-

sification in network data. AI Magazine 29, 93–

106. URL: http://www.aaai.org/ojs/index.

php/aimagazine/article/view/2157.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.,

2015. LINE: large-scale information network embed-

ding, in: Proceedings of the 24th International Con-

ference on World Wide Web, WWW 2015, Florence,

Italy, May 18-22, 2015, pp. 1067–1077. doi:10.1145/

2736277.2741093.

Wang, X., Trajanovski, S., Kooij, R., Mieghem, P., 2016.

Degree distribution and assortativity in line graphs of

complex networks. Physica A: Statistical Mechanics

and its Applications 445, 343–356. doi:10.1016/j.

physa.2015.10.109.

Yan, C., 2002. Properties of spectra of graphs and

line graphs. Applied Mathematics-A Journal of

Chinese Universities 17, 371–376. doi:10.1007/

s11766-002-0017-7.

10

