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Abstract

The use of ultrasonic guided waves to probe the materials/structures for damage
continues to increase in popularity for non-destructive evaluation (NDE) and
structural health monitoring (SHM). The use of high-frequency waves such as
these offers an advantage over low-frequency methods from their ability to
detect damage on a smaller scale. However, in order to assess damage in a
structure, and implement any NDE or SHM tool, knowledge of the behaviour of
a guided wave throughout the material/structure is important (especially when
designing sensor placement for SHM systems). Determining this behaviour is
extremely difficult in complex materials, such as fibre-matrix composites, where
unique phenomena such as continuous mode conversion takes place. This paper
introduces a novel method for modelling the feature-space of guided waves in
a composite material. This technique is based on a data-driven model, where
prior physical knowledge can be used to create structured machine learning
tools; where constraints are applied to provide said structure. The method
shown makes use of Gaussian processes, a full Bayesian analysis tool, and
in this paper it is shown how physical knowledge of the guided waves can
be utilised in modelling using an ML tool. This paper shows that through
careful consideration when applying machine learning techniques, more robust
models can be generated which offer advantages such as extrapolation ability
and physical interpretation.

Keywords: guided waves, feature space modelling, machine learning,
structural health monitoring, composite plate waves

1. Introduction

In engineering applications, the use of complex materials, such as composite2

or porous materials can offer benefits thanks to their high strength-to-weight
ratio [1], amongst other advantages. However, with the increased usage of such4

materials, also comes the ability of building larger structures; an example being
the ever-increasing size of wind turbines due to the use of glass-fibre reinforced6
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polymer for the blades [2]. With larger structures also comes an increasing need
for robust structural health monitoring systems in order to prolong life and8

reduce costs associated with maintenance, down time and repair of large-scale
structures [3]. There are numerous strategies to perform structural health10

monitoring, many of which involve the use of frequency-based behaviour of
the system [4]. Increasingly, high-frequency methods are being used, as they12

have an ability to detect defects on a smaller scale thanks to the analogy with
diffraction theory, where a change in waves only occurs when they pass through14

diffractors of small enough size relative to their wavelength. One such example of
these is to use ultrasonic guided waves (UGWs), where a guided wave is induced16

within structure which acts as a wave-guide, and analysis of the ‘wave-packet’
as it arrives in certain locations can give indications of inhomogeneities in the18

material.
There have been many advances in the modelling of composite materials,20

such as in terms of the fatigue damage [5]; a comparative review of state-of-the-art
modelling methodologies for damage in composites has been made by Orifici et22

al. [6], in which they discuss many issues such as length scales and implicit
modelling. Time-space modelling of guided waves can be solved analytically24

for isotropic materials [7] or using numerical methods for layered composites
[8]; however, the complexity of these calculations becomes substantial when26

modelling the interaction with damage or for a fibre-composite. One primary
issue with composites is the phenomena of continuous mode conversion (CMC)28

[9, 10]. This can be conceptualised as secondary guide behaviour of the fibres
within the material, which for quasi-isotropic materials, with increased randomness30

of lamina orientation, it may be possible to model with a set lay-up configuration
[11].32

Along with the increase in available computing power, recent years have
shown a continuous increase in adoption of machine learning (ML) techniques34

applied to engineering modelling problems in order to overcome barriers in
physic-based modelling, though not always successfully [12]. Many of these36

methods are applied to a dataset to generate a model of certain behaviour;
however, this can limit applications. It is only reasonable to assume that a model38

fits the specific material/structure, and generalisation cannot be implemented,
so changes in design or environment would require retraining of the model.40

In this paper, a series of structured machine learning tools are presented in
which physical knowledge is embedded by differing means. It is important to42

note this does not generate a directly interpretable model as material properties
are not introduced or extracted from the methodology. Instead, belief is embedded44

from prior knowledge of the physics which control guided wave features, creating
structured tools that are constrained by this physical knowledge.46

Using this novel method, study is done to investigate a novel path of understanding
and predicting some behaviour characteristics of guided waves by utilising enhanced48

machine learning tools that capture the uncertainty of modelling the attenuation
of such waves (important when designing ultrasonic monitoring systems on large50

scale structures like wind turbine blades). This paper focusses on one guided
wave feature, the maximum amplitude of the Hilbert envelope of a wave-packet52

and although this paper focusses on features like energy attenuation, there is
nothing to stop the implementation of this new view of modelling on other54

guided waves features.
This paper will discuss, briefly, the pertinent physics of guided waves in56
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Section 2 and then introduce the experimental setup used to demonstrate the
methodology in Section 3. The main contribution of this paper is presented58

in Section 4; in this section, increasingly sophisticated models are generated
which show how physical knowledge of the guided waves can help a machine60

learning strategy. This discussion begins with a purely physical one-dimensional
attention model which is then extended to the two-dimensional case for modelling62

features across the surface of a composite plate. These models are compared,
demonstrated and discussed in context of experimental data in Section 5. Finally,64

conclusions are made in Section 6 and possible future works are presented.

2. Physics of guided waves66

Guided waves are used in several engineering applications, such as non-destructive
evaluation (NDE) and structural health monitoring (SHM); with prior knowledge68

of how these waves behave, defects and inhomogeneities can be detected in
structures. Such waves undergo an interesting phenomena when they occur in70

particular structures, such as rods, hollow cylinders and plates; they propagate
primarily in the longitudinal direction perpendicular to oscillation and are known72

as guided waves. When such waves are guided due to propagation along the
surface of a medium, they are called Rayleigh waves. However, if a wave travels74

in a bounded medium, perpendicular to two surfaces, where the wavelength is
sufficiently long compared to the distance between these surfaces, often exhibited76

in plates, it is called a Lamb wave. Overviews of the derivations and characteristics
of such waves are well described by Rose [13] and Worden [14].78

2.1. Attenuation of guided waves

As Rayleigh waves propagate along a surface of a structure, their amplitude
A, decays with propagation distance [7], x, by

A(x) ∝ 1√
kRx

(1)

where kR is the real wavenumber. The attenuation of Lamb waves depends on80

many factors, although Pollock [15] states the four most important ones to be:

(i) geometric spreading,82

(ii) material damping,

(iii) dissipation into adjacent media,84

(iv) wave dispersion,

Attenuation of Lamb waves has been accurately modelled by the inclusion
of proportional damping through numerical and experimental studies [16, 17],
and the effect of propagation distance on the amplitude of the wave has been
described for geometric spreading [17] briefly,

A(x) ∝ A0

√

x0/x (2)

and material damping [13] as,

A(x) ∝ A0 exp (−ζix) (3)
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where A0 & x0 are the amplitude and distance at an initial location from a86

point source, and ζi is the attenuation coefficient of the viscoelastic medium.
Due to dispersive characteristics of Lamb waves, ζi is dependent on the central88

frequency of the wave. A key factor of guided waves in plates is the variety
of wave modes that propagate within a single wave-packet, which are split into90

two main types: symmetric, Sn, and antisymmetric, An, each of which has an
increasing number of modes with increasing frequency-thickness of the plates in92

question.

2.2. Anisotropic media and guided wave feature-spaces94

When Lamb waves propagate in anisotropic media, the modelling and solutions
become very complex, even more so when attempting to model their interaction96

with defects [18, 19, 20]. A crucial characteristic of guided waves in fibrous
materials such as carbon-fibre-reinforced-polymer (CFRP) is the phenomena98

of Continuous Mode Conversion (CMC) [15], as shown by Mook et al [9] and
Willberg et al [10], where the boundaries of layers or weaves cause conversion of100

S0 modes into A0 with frequent enough occurrence that they can be considered
continuous along the propagation path. At propagation paths through the fibres,102

the energy of all modes is reduced thanks to this phenomena.
In order to use guided waves in damage detection strategies, a baseline state104

must first be determined, which is often done through the use of features which
change in the presence of damage [4]. Determination of a baseline model can106

be either model driven, data driven, or a combination of both. As discussed
with the example of guided waves in a fibre composite, analytical/numerical108

models can be difficult to develop and may not be robust enough to reasonably
assume an accurate baseline state. Thus, there has been an increase in the use110

of purely data-driven models to determine a baseline state [21]; however, it is
then reasonable to assume this baseline state only applies to nominally-identical112

scenarios/structures from which the data are collected. Since models generated
from such methods are general and not specific to the scenario of interest,114

enhancing the data-driven models may be valuable in order to offer advantages,
such as extrapolability, whilst maintaining accuracy from real data.116

As mentioned above, this paper focusses on one guided wave feature, which
is indicative of the amplitude of the first asymmetric mode. However, this118

does not limit the ideas, or even methods, of the work to just this feature; any
energy-based features may be modelled with the same or a similar strategy, and120

the process of incorporating prior knowledge for other physics-based features
can follow quite readily. For example, the time-of-flight modelling could be122

augmented by using prior knowledge of the dispersion characteristics of guided
waves in the material.124

3. Experiment

Guided waves were initiated in a CFRP plate by excitation of a piezo-electric126

transducer (PZT), the location of which can be seen in Fig. 1a. The PZT was
actuated with a square pulse of temporal width tpw, which would result in a128

frequency excitation range up to 1/tpw Hz being excited, allowing multiple wave
modes to be excited within the plate. A Polytec scanning laser vibrometer was130

used to measure the out-of-plane surface velocity of the induced wave-packets
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on the opposite side to the PZT, where the recording start was synchronised132

with the function generator attached to the PZT. Each wave-packet was then
fed through a simple feature extraction process to generate a two-dimensional134

feature-space map of the maximum of the Hilbert envelope, hm, over the surface
of the plate. Specific details of the experimental setup are shown in Section 3.136

Plate dimensions 300mm x 300mm x 1mm
Layup [90/0/90]s, Epoxy matrix
PZT Location 150mm x 150mm
Pulse width 1µs
Excitation bandwidth 1MHz
Signal record length 4ms
Pre-trigger 400µs
No. scan points 8314
No. of averages 50

Table 1: Details of experimental setup used to acquire feature-space data.

The results of the experiment showing the raw data feature-space map of
hm over the surface of the plate can be seen in Fig. 1b. One can clearly see the138

effect of the fibres on the amplitude of the first asymmetric mode; thanks to
the phenomena of continuous mode conversion, the amplitude is greater when140

propagating along the fibres compared to when propagating across the fibres.
This experimental procedure, though simple, is pivotal for the advanced tools,142

which will be presented later, in order to aid ‘black-box’ data-based ML tools
for development of a informed, data-driven (IDD) model. It is important to144

note the noisy data produced as a result of the low-signal-to-noise ratio that
occurs from poor reflectivity of the material.146

(a)

(b)

Figure 1: (a) Diagram showing a top down view of the experimental setup and location of
PZT on the 300mm x 300mm CFRP plate and (b) results of feature-space map of hm over
the surface of the plate from raw data, represented in log10 scale for viewing purposes.
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4. Structured machine learning tools

This section will discuss how, on the basis of physical understanding of the148

guided waves, data-based models of guided wave features in composites can be
developed. Initially, a one-dimensional attenuation model is considered. This150

choice allows insight into the effect and contribution of the first two attenuation
mechanisms described by Pollock[15], geometric spreading and material damping.152

Following this investigation, two-dimensional Gaussian process models are considered.
After considering the effectiveness of a ‘black-box’ approach where the model154

is purely based on the data it has seen. The knowledge of the guided waves
is included through two techniques; one of which is through incorporation of156

a mean function in the radial direction from the source. The mean function
models the one-dimensional attenuation, i.e. it models the geometric spreading158

and material damping in the composite. The second approach is to include the
physical knowledge of the guided waves through modifications to the kernel of160

the Gaussian process.

4.1. One-dimensional attenuation modelling162

The one-dimensional model of the wave attenuation here is based on a
Bayesian linear regression (BLR). A full description and some derivations for
this method are provided by Murphy [22], but a short introduction is given in
Appendix A. Several basis expansions of propagation distance x were tested
in combination in this work, the full model is shown in Eq. (4). These basis
expansions correspond to different attenuation mechanisms associated with damping,
geometric spreading and a combination of the two; these models are shown in
Table 2. The parameters (Φ = {φ1, φ2, φ3}) are switching parameters (φn =
0, 1) which control the combination of functions shown in Eq. (5b).

A(x) = βφ1

1 (exp(−β2x))
φ2

(

x−1/2
)φ3

(4)

The model shown above is not a linear form that can be represented by Eq.
(A.1), however, by taking the natural log of Eq. (4) a linear-in-the-parameters164

model can be developed. This is shown below in Eq. (5b).

f(x) = ln(A(x)) = (ln(β1)) · φ1 − (β2x) · φ2 + (ln(x−1/2)) · φ3 (5a)

f(x) = ln(A(x)) = w1 · φ1 − (w2x) · φ2 + (ln(x−1/2)) · φ3 (5b)

The values of β1 and β2 can be recovered by exponentiating w1 and w2 respectively.166

Model Basis Linear Form Basis Parameters

A1(x) = β1 exp(−β2x) f(x) = ln(β1)− β2x Φ1 = [1, 1, 0]

A2(x) = β1x
−1/2 f(x) = ln(β1) + ln(x−1/2) Φ2 = [1, 0, 1]

A3(x) = β1 exp(−β2x)x
−1/2 f(x) = ln(β1)− β2x+ ln(x−1/2) Φ3 = [1, 1, 1]

Table 2: Bayesian linear regression model basis expansions
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4.2. Two-dimensional attenuation modelling

So far, it has been shown how physical attenuation phenomena can be168

modelled as a Bayesian linear regression along one dimension. Now, attention
turns to modelling the two-dimensional input feature space, which will be shown170

in Section 5 on a composite plate. If such a plate were homogeneous, modelling
of the features along any one direction would provide an adequate model of the172

two-dimensional feature space. However, in non-homogeneous materials — such
as composites — this is no longer sufficient. Instead, the attenuation changes174

with direction, and therefore the model of the space must be able to capture
changes in behaviour across the two dimensional field. For waves propagating176

from a point source, it can be helpful to think that there is a radial and angular
component to the function over the space which describes the feature of interest.178

To build such a model it is necessary to have a tool which can model data
across a two-dimensional space on the basis of observed data and which can be180

guided by belief about the physical phenomena. For this, a machine learning
approach is adopted; the tool chosen for the job is a Gaussian process (GP).182

The Gaussian process is a flexible Bayesian regression method which works by
placing a prior over functions, which is then updated, on the basis of data, to184

return a posterior distribution over functions [23, 24]. A brief introduction to
Gaussian processes can be found in Appendix B.186

The kernel used in the GP is a significant modelling choice, and modifications
of these provides structure through embedding prior belief of the model. These188

kernels are computed as any other kernel; linear pair-wise distances between
points to form a covariance matrix. More detailed theory can be found in190

Appendix B and practical implementation can be found in [23]. There are a
number of choices available for the kernel function, each of which embeds a192

different prior belief as to which family of functions f(x) is drawn from. For
example, if a linear kernel is used, the solution to a Bayesian linear regression194

is recovered. More commonly, nonlinear kernels will be chosen, as many tasks
require regression of nonlinear functions; popular choices include the use of the196

Squared-Exponential (SE) kernel or the Matérn class of kernels. In most cases
the mean function is set to zero in the prior; however, in this work it will be198

important to consider if the mean functional behaviour can be specified by the
physics of the guided waves.200

An important characteristic of GPs is that standard stationary kernels operate
based on the Euclidean distance between two points, and so map covariances202

well when using a Cartesian space input. However, the physics and behaviour
of guided waves is described here using the polar coordinate system, as they are204

emitted from a point source. Therefore, this attribute must be considered when
utilising GPs for modelling the feature-space of guided waves. Padonou and206

Roustant [25] outline a method of applying GPs to a polar input space, where
separate kernels are applied to the angular and radial dimensions separately,208

before combing to generate an overall covariance function.

4.3. General nonlinear kernels210

It will be important to consider how the GP would model the data if no
restrictions were placed on it with respect to the physical behaviour of the guided212

waves. This type of model will provide a benchmark against which the proposed
models can be compared. Two important properties, which certain kernels214
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possess, are stationarity and isotropy. A stationary kernel is only dependent
upon the difference between any two points, not the absolute values of those216

points. An isotropic kernel is invariant to translation or rotation of the input
data; practically, this appears as the covariance being only dependent on the218

absolute difference between two data points [23]. These properties will be
important when discussing what is desired from a kernel to model the features220

of guided waves.
One such stationary and isotropic kernel, is the popular squared-exponential

(SE) kernel [23]. This kernel is given by,

kSE(x,x
′) = σ2

f exp

{

−||x− x′||22
2ℓ2

}

(6)

An alternative general nonlinear kernel is the Matérn 5/2 kernel (as applied here
to the radial dimension); this well-established kernel is used as it offers smooth
shapes and is defined as,

kmat(x,x
′) =

(

1 +

√
5|x− x′|

ℓ
+

5|x− x′|2
3l2

)

exp

(

−
√
5|x− x′|

ℓ

)

(7)

The simplest and perhaps most obvious choice for mapping the features222

across a composite plate would be to set x = {x, y}, the cartesian coordinates
of a location on the plate. This method imposes the prior belief that the feature224

being modelled across the plate will vary smoothly in a nonlinear manner with
respect to the x and y coordinate.226

However, since it is known here that the waves are generated from a point
source in the centre of the plate and that these will propagate from that point,
the behaviour would be better modelled in a set of polar coordinates. For the
general case, here the work of Padonou and Roustant [25] is followed, and a
detailed description is provided in Appendix C. An important distinction of
the polar kernel is the definition of distances between points, specifically in the
angular dimension where, for example, a point with angle 359◦ should have a
high covariance with 1◦ if the radii are also close. The general polar kernel is
defined as,

k2(x,x
′) = σ2

f

(

1 + σ2
f,rkmat(ρ, ρ

′)
) (

1 + σ2
f,akW(θ, θ′)

)

(8)

where σf,m and σf,a act as weights representing the influence of changes in each
dimension on a change in the output.228

Since the GP is a generative model over functions, it is possible to sample
realisations of possible functions from the distribution, allowing the user to230

understand the type of functions that the kernel will generate. Using this
method, four prior realisations were generated from the polar kernel shown232

in Eq. (8) and can be seen in Fig. 2. It can be seen that the functions generated
appear to operate separately on each dimension ρ and θ. A key characteristic234

to note, is that there is no discontinuity as θ moves through 2π to zero in
the angular direction; this is as a result of the Wendland-C2 function kernel236

(Eqs. (C.1) and (C.2)). Further discussions on the characteristics of such a
kernel can be found in [25]. For this work, the polar kernel will serve as an238

alternate model where there is very little restriction placed on the functions
that can be modelled.240
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Figure 2: Selection of four random polar space functions randomly generated from covariance
function represented in Eq. (8), with hyperparameter values of τ = 4, l = 1 and σ2

f,m =

σ2
f,a = 1.

4.4. Mean function modelling of attenuation

From this point onwards, the model learning will make use of prior knowledge242

of guided wave propagation. This informed model learning will begin by considering
how a mean function m(X) can be used to introduce a physical basis to the244

model. There is no restriction on this mean function given that it is known.
Mathematically, it is trivial to include the mean function (if known) through246

simply subtracting the expected mean function from the target data and training
on the residuals,248

ỹ = y −m(x) (9)

This can be interpreted as learning the difference or discrepancy between
this chosen mean function and the generating function of the data. In this
scenario, the mean functionm(x) = φ(x)w is the model described in Section 4.2,
the one-dimensional Bayesian linear regression model. Since the weights of the
model vary depending on propagation direction with respect to fibre orientation,
it is necessary to simultaneously learn the distribution of w the weights of the
BLR and the hyperparameters of the GP. Therefore, the linearised form shown
in Eq. (5b) is used and the target data becomes,

ỹ = ln(y)− ln(ρ−1/2)−m(x) (10)

and the steps for training and expected values of the mean and variance can
be followed in [23]. This solution can be interpreted as finding the mean one250

dimensional behaviour across all propagation directions. This mean behaviour
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is then compensated by the GP to fit the observed data and learn the latent252

function which describes it.

4.5. Functional priors through kernel design254

An alternative to using the mean function to include what is known about
guided waves, is to modify the kernel. It is possible to restrict the family of256

functions a priori to generate only functions which are plausible, given physical
understanding of the guided waves. This restriction is the key advantage of the258

proposed Bayesian approaches in this paper.
All of the models which are generated from this point onwards will consider260

the propagation of the guided waves to occur in a polar coordinate system, where
the source is located at radius ρ = 0, i.e. the source is at the origin. Since the262

kernel which defines the process will be composed of the ANOVA combination
of the radial component and the angular component, it is possible to consider264

how to modify each of these components individually.

4.5.1. Imposing rotational symmetry in the feature space266

It can be seen in Fig. 1b, that the energy of the wave exhibits a symmetry on
the plate. Physically, this makes sense given what is known about the symmetry
in the orientation of the fibres in the lay-up; it is therefore desirable to exploit
this in the kernel. Eq. (11) was designed to model this symmetric behaviour.
The strictly periodic kernel is applied to the angular dimension, where n can be
altered to include the number of axes of symmetry,

ksym(θ, θ
′) = (α1 + α2 cos(2nd2)) , n ≥ 1 (11)

d2 = arccos(cos(θ − θ′)) is the geodesic distance, n the number of symmetry
axes required, α1 is the offset term, and α2 the amplitude hyperparameter.268

Sample functions from this prior are shown in Fig. 3a. These samples show
the strict periodicity that this kernel imposes. Notably, this form of kernel270

does not enforce the phase of the function. Instead, as data are observed,
the posterior distribution — or function that is learnt — adapts to the phase272

information in the data. This adaptability is a benefit since enforcing phase
within the kernel may lead to issues if the fibre orientation is not known exactly.274

The primary issue with the strictly periodic kernel is the assumption of
consistent rate of variation in the function with θ, which may make Eq. (11) too276

restrictive to model accurately the guided wave feature space. It is clear to see
in Fig. 1b, that the energy of the wave decays rapidly in the transition between278

propagation along fibres and across fibres as the angle θ varies. Therefore,
flexibility was introduced by an additive combination of the strictly-periodic280

kernel and the squared-exponential kernel previously shown in Eq. (6).
As well as allowing varying rate of change with θ, a combined kernel also

reduces some of the restrictions that are imposed with the pure strictly-periodic
kernel Eq. (11). An additive combination was used as opposed to multiplicative,
as this does not generate large variations in amplitude between period peaks and
allows for the kernel to capture the symmetry, while still allowing some variation
to take place. The additive combination can be considered an ‘OR’ operation
[26], the resulting kernel applied to the angular dimension is given by,

kang(θ, θ
′) = σ2

f,sqe exp

(

−d22
l21

)

+ σ2
f,sym (α1 + α2 cos (nd2)) (12)

10



Figure 3: Selection of random priors for the angular kernel designs, over a full circle range, for
(a) strictly-periodic kernel (Eq. (11)), (b) squared-exponential kernel (Eq. (6)), (c) multiplied
combination and (d) additive combination of the kernels (Eq. (12)). Each line represents a
different random function drawn from these priors.

An important point of the resulting kernel is that it is stationary, as it is only282

proportional to the distance between points, rather than their values. This
means that the kernel is unaffected by translation or rotation of the coordinates,284

a key advantage when modelling in the angular dimension.

4.5.2. Kernel forms for radial attenuation286

As discussed in Section 2, two known and documented attenuation mechanisms
can be modelled; these are shown in Eqs. (2) and (3). Attenuation effects due
to viscoelastic damping of a material can be embedded into the priors through
the use of an exponential decay (ED) kernel, where propagation distance x is
replaced with ρ,

ked(ρ, ρ
′) = exp (−ρl) · exp

(

−ρ′⊤l
)

(13)

Attenuation effects due to geometric spreading can be modelled through the use
of a polynomial kernel (Eq. 14), where p = −1/2, in order to represent Eq. 2.

kpol(ρ, ρ
′) = (ρ · ρ′⊤)p (14)

Prior draws from both the ED and polynomial kernels can be seen in Figs.
4(a) and 4(b) respectively. Both kernel functions embed decay with respect to288

propagation distance ρ, but each model shows a different mechanism for this

11



Figure 4: Selection of random priors for the radial kernel designs, for (a) exponential decay
kernel (Eq. (13)), (b) square-root decay (Eq. (14)), (c) multiplicative combination (Eq. (15))
and (d) additive combination of the kernels. Each line represents a different random function
drawn from these priors.

decay. The kernel chosen to represent decay due to the geometric spreading will290

always tend to infinity as ρ → 0 and this limitation should be considered.
To illustrate the use of these kernels, multiplicative and additive combination

of these two attenuation mechanism kernels can be seen in Figs. 4(c) and 4(d)
respectively. A multiplicative combination of the attenuation mechanisms aligns
more closely with physical understanding and the discussion presented in [17],
since the kernels operate to reduce the energy in the wave simultaneously and do
not subtract energy, but rather reduce it. As such, a kernel to model attenuation
along the radial direction is proposed as the multiplicative combination of the
exponential decay (Eq. (13)) and polynomial (Eq. (14)) kernels; this is

krad(ρ, ρ
′) = σ2

f,r(ρ · ρ′⊤)p ·
(

exp (−ρl2) · exp
(

−ρ′⊤l2
))

(15)

4.5.3. Combined two-dimensional kernel292

It has been shown how understanding of the physical processes involved
in attenuation of guided waves can be used to impose prior belief in the GP294

machine learning model along each of the radial and angular dimensions. It
remains to explain how these may be combined to form a meaningful prior over296

the two-dimensional feature space.
Following closely the approach of [25] for the general nonlinear kernel in polar

coordinates, the two kernels described in Eqs. (12) and (15) will be combined
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using an ANOVA approach,

k3(x,x
′) =

(

1 + σ2
f,akang(θ, θ

′)
) (

1 + σ2
f,rkrad(ρ, ρ

′)
)

(16)

where x = {{θ, ρ}1, ..., {θ, ρ}m}.298

Again, it is possible to draw samples of the functions, now in the two-dimensional
space, to visualise the restrictions which have been placed on the functions that300

can be modelled. Four prior draws from a GP with zero mean and the covariance
defined in Eq. (16) can be seen in Fig. 5. It should be noted at this point that the302

input units and output values are non-dimensional, and the figures showcase key
characteristics imposed by the kernels by displaying functions that are samples304

from an arbitrary prior. It is reassuring that these prior draws match, at least
visually, the behaviour that would be expected in the data being modelled.306

This type of prior predictive checking can be invaluable for confirming that the
assumptions built into the model are reasonable. A key feature that can be308

seen is the symmetry that this introduced in the angular dimension without
requiring a fixed phase to be specified. It can also be seen that slight variations310

from this symmetry are possible due to the inclusion of the squared-exponential
kernel in Eq. (12). The decay in the radial direction as a result of the kernel312

shown in Eq. (15) is also clearly seen. As a result of these characteristics it has
been shown how a GP kernel can be designed in such a way that it is applicable314

to modelling the attenuation of guided waves in a two-dimensional space.
A second kernel was also tested with the same radial component as described316

in Eq. (15), but with an alternative angular kernel. For this method, kang(θ, θ
′)

becomes a modified version of Eq. (C.2), where the geodesic distance is instead318

defined as d2(θ, θ
′) = arccos(cos(2n(θ − θ′))), where n is again the number of

symmetry lines required. This alteration was done to still enforce symmetry but320

allow a more flexible modelling of the functions being considered in the angular
dimension. This kernel has the form,322

k4(x,x
′) =

(

1 + σ2
f,akW(θ, θ′)

) (

1 + σ2
f,rkrad(ρ, ρ

′)
)

(17)

So far, only samples from each GP have been shown. However, it is possible
to recover the distribution over the model in closed form. Since the mean324

function chosen in most models is simply zero across the complete space, the
prior mean is not very informative. The prior variance, however, is of interest326

to consider. In Fig. 6 the prior variances of Eqs. (16) and (17) are shown. It
is important to remember that this is the variance in predictions made by the328

model before the information from any data has been included. The variance for
both of these kernels is seen to decay as the distance from the source increases.330

The model will tend towards infinity at ρ = 0 for two reasons; the kernels are
non stationary [23], and due to the exponential decay included through Eq.332

(13), the function values themselves will tend towards infinity as seen in Fig. 5.
This limitation of the models should be considered and care should be taken if334

predicting close to ρ = 0. However, in the experimental data used in this study
the waves are generated by means of a piezoelectric actuator. This means that336

the source of the guided waves is not a point source and the models should not
be used within the region covered by the piezoelectric actuator.338

4.6. Overview of modelling approaches

Up to this point, it has been discussed how one might construct a GP340

kernel which can represent the behaviour of guided wave attenuation. It is
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Figure 5: Selection of four random polar space functions, selected from 1000 random functions
generated from covariance function represented in Eq. (16), with hyperparameter values of
Θk = {1, 10, 10, 1, 1, 1, 1, 1, 0.001}. Here the functions are non-dimensional as the functions
are samples from an arbitrary prior.

worth reviewing the models which will be compared when results are shown on342

experimental data. Table 3 shows a summary of all six models which will be
compared in this study.344

As a baseline, model A is the archetypal Gaussian process model with a
zero-mean function and the use of the squared-exponential kernel operating on346

two inputs, the x and y coordinates on the plate. This provides a benchmark
where no knowledge of the guided-waves is included.348

The second model (B) is a demonstration of the use of the polar coordinate
GP of [25]. This model also contains no specific reference to the physical350

mechanisms in guided-waves, but does make use of the knowledge that the
guided-waves propagate radially from a source. The use of a polar coordinate352

system in this case is a sensible choice given the structure of the data being
used. This method serves as another benchmark demonstrating an approach354

which requires very little understanding of the physical mechanisms involved in
guided wave propagation.356

Model C is the first model where a specific physical process is included.
In this case, the model of wave attenuation A3(x) (Table 2) is used along the358

radial direction as the mean function. The kernel used is the same flexible polar
kernel as in model B — that proposed in [25]. Importantly, this kernel remains360

flexible to influence the model in both the radial and the angular dimensions,
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Figure 6: Prior variances over polar coordinate space from kernel E (left) and kernel F (right),
represented by Eqs. (16) and (17) respectively. Variances are plotted in log10-scale for viewing
purposes.

potentially correcting for any unmodeled phenomena along the radial dimension362

in the mean function.
Model D restricts the flexibility of Model C by removing the dependence364

of the kernel on the radial dimension. The GP used here relies on the mean
function to capture all of the radial behaviour through A3(x) and the covariance366

to capture all the variation in the angular dimension. This implies that the
data can be generated by some function, offset from the mean, which is only368

dependent upon the angle being considered. This model should be considered
with care since it is highly restrictive.370

Model E removes the use of the mean function; instead the knowledge of
the guided waves is embedded directly in the kernel as a functional prior. This372

model enforces periodicity in the angular dimension and embeds the physical
attenuation models in the radial direction by means of the kernel described in374

Eq. (16). Model F is very similar to the model E but with the kernel defined as in
Eq. (17), with the modification to the angular component described previously.376

Model Mean m(x) Covariance k(x,x′) Input space

A 0 kSQE(x,x
′) Cartesian

B 0 k2(x,x
′) Polar

C A3(ρ) k2(x,x
′) Polar

D A3(ρ) kW(θ, θ′) Polar
E 0 k3(x,x

′) Polar
F 0 k4(x,x

′) Polar

Table 3: Table of GP strategies tested for feature-space mapping, showing the properties and
characteristics of each model.

Appendix D provides a reference in which each of these kernel forms can be
compared and in which the hyperparameters are listed. The reader may find378

this a useful companion if planning to reproduce the methodology from this
work.380

4.7. Hyperparameter learning

Thus far, the kernels of the GP have been presented as priors over the382

functions which that GP will generate. These modelling strategies have allowed
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embedding of physical processes governing the behaviour of guided waves in384

a flexible and rigorous manner. However, each of these kernels has a small
number of associated hyperparameters which govern the characteristics of the386

family of functions they represent. It is necessary, therefore, to review how a
user may practically ascertain the values of these hyperparameters. As with388

many problems in machine learning, and indeed engineering, this boils down to
an optimisation problem. The specific form of this problem will now be shown.390

The hyperparameters vary depending upon the form of the kernel, but for
generality Θk is considered to be the vector of hyperparameters for whichever392

kernel is being used. For example, in the case of the kernel proposed by [25],
this vector is defined as Θk = {l, σ2

f,r, σ
2
f,a, τ}; whereas, for the kernel in Eq.394

(16) which is used in model E, this vector is Θk = {l1, α1, α2, σ
2
f,sqe, σ

2
f,sym,

l2, σ
2
f,r, σ

2
f,a, σ

2
n}. The hyperparameters each control distinct and important396

characteristics to the kernel. As an example for the kernel used in model E (Eq.
(16))), these characteristics are interpreted as follows:398

(i) l1 and l2 are the characteristic length scales of the SE kernel and ED kernel
respectively.400

(ii) α1 and α2 represent the offset and scaling term for the sine-wave-based
strictly-periodic kernel.402

(iii) σ2
f terms are scaling factors for individual kernels which control their

relative importance when combined.404

(iv) σ2
n is the noise variance parameter related to the expected measurement

noise on the signal.406

In this work, the parameters of the mean function are also included in the
optimisation routine to estimate them synchronously with the hyperparameters408

of the kernel. This optimisation problem is most commonly cast as the maximisation
of the marginal likelihood of the Gaussian process which is available in closed410

form [23]. This optimisation strategy has several advantages such as leveraging
the Bayesian Occam’s Razor [27]. For computational reasons this method is412

realised practically as a minimisation of the negative log marginal likelihood

(NLML), more details of which can be found in [23] and Appendix B.414

As such, the optimisation task at hand is formally to estimate,

Θ̂ = arg min(− log p(y|Θ)) (18)

For all results in this paper, Eq. (18) was optimised using the quantum

particle swarm technique [28]. Discussion of this choice can be found in [29].416

5. Results

Having developed a number of approaches for modelling of guided-wave418

features, it is necessary to demonstrate the differences between each of these
on an experimental dataset. The dataset is chosen is the composite plate420

described in Section 3. Initially, it will be shown how the one-dimensional
models described in Section 4.2 can be applied along a fixed radial direction.422

Following this, the two-dimensional models laid out in Table 3 will also be
compared.424
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5.1. One-dimensional attenuation models

The models shown in Section 4.2 are compared for two different cases; the426

first is where data are collected along the fibres in the weave and the second
when across the fibres. The NMSE is calculated for both the training set and428

the test data sets. Figure 7 and Table 4 show the results of this process. From
the values of the NMSEtr and NMSEt for both propagation orientations, it430

appears that the multiplicative combination of geometric spreading and material
damping is the most promising model for the attenuation of the energy of the432

first antisymmetric mode for all propagation directions in a CFRP plate. It is
also interesting to note the increased quality of fit of model Φ2 in comparison434

to Φ1 indicates that geometric spreading has a larger effect on the attenuation
of the energy than material damping.436

(a) (b)

Figure 7: Models of attenuation of the energy of the first antisymmetric mode using model
Φ3 for propagation directions (a) along the fibres and (b) through the fibres. The estimated
mean function is plotted with a solid red line and the 95% confidence interval is shown with
dashed red lines.

When modelling the attenuation of the guided-waves propagating through
the fibres, the 95% confidence intervals, seen in Fig. 7, are much smaller, which438

is due to the less noisy distribution of values for hm around the estimated mean.
Physically, this could be envisaged as the increased number of boundaries for the440

wave to propagate through causing more frequent mode conversion and so there
is a more consistent energy dissipation as it tends towards continuous mode442

conversion [9, 10]. In contrast, when propagating along the fibres, the wave
mode is relatively uninterrupted in comparison, and so its initial energy has a444

strong effect on the resulting shape. Furthermore, attenuation due to geometric
spreading is more likely to be described with Eq. (2) during CMC. However,446

this is currently an assumption, experimental validation of this is planned as
future work.448

As can be seen in Table 4, the confidence in the mean weights (which
increases as σw decreases), is similarly large for model Φ1 but is much more450

confident for model Φ2 when being applied across the fibres. This observation
may also form the basis for further investigation.452
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β1 β2 σ2 σw NMSEtr NMSEt

Along fibres
Φ1 0.001523 0.01215 9.403 0.1532 0.13203 0.10548
Φ2 0.004844 8.199 0.0640 0.21864 0.11664
Φ3 0.005934 0.00288 6.558 0.1068 0.17489 0.14795

Through fibres
Φ1 0.000729 0.01277 7.464 0.1321 0.10191 0.09018
Φ2 0.002332 4.224 0.0371 0.10084 0.09088
Φ3 0.002685 0.00229 3.548 0.0628 0.08470 0.07404

Table 4: Table of results from 1D attenuation modelling using BLR; w1 & w2 are model
weight parameters, σ2 is the estimated variance of the function, σw is the estimated variance
of the weights, NMSEtr is the negative mean squared error between the model and the
dataset used for training, and NMSEt is between the model and the independent validation
set.

5.2. Two-dimensional Gaussian process models

In this section, the various approaches to modelling the two dimensional454

feature space summarised in Table 3 will be compared. Models are compared
visually and based upon a number of metrics as described in Appendix E. The456

quantitative assessment of the models is discussed in Section 5.3. These metrics
are the log marginal likelihood LML, which is a measure of how well the model458

fits the training data. Next, the predictive log likelihood of an independent
test set, considered in the case where every prediction is assumed independent460

PLLi, and when the predictions are assumed correlated PLLc. Finally, the
normalised mean squared error NMSE of the mean fit to the independent test462

set is also computed. This final metric should be treated with care, since it
does not represent the quality of the uncertainty quantification in the model fit.464

The most rigorous test of these models can be considered to be the correlated
predictive log likelihood which captures the full correlation of the predictive466

model including the mean, variance and covariance predictions. For all graphical
representations shown, the data is presented in the log10 scale, but the models468

were all trained directly on the values of hm. Therefore, the units for the figures
are in log10(mm).470

5.2.1. Uninformed Gaussian process models

Fig. 8 shows the mean predictions of the two uninformed GP models (A and472

B in Table 3). It can be clearly seen, that even without specific prior knowledge,
the use of polar coordinate system (model B) offers a significant improvement474

over the Cartesian approach (model A). Model A appears to be an ‘out-of-focus’
copy of the original data, whereas model B has generated a smoother function476

which is more likely to represent the physical mechanisms by which the wave
operates. Even this simple consideration of the structure of the data being478

modelled leads to far more consistent results from the model. The quality of
the fits for each of these models is compared qualitatively in Table 5 along with480

the other GP models.
Since the wave attenuation data naturally follows (approximately) a polar482

behaviour, one could envisage this problem as the GP trying to learn the
mapping of Cartesian to polar spaces as well as the mapping from the polar484

to the feature-space. This two-stage mapping is being attempted through a

18



single kernel and significantly complicates the modelling problem, thus, it is486

likely to underperform a model specified in the correct space. Further to this,
it is concerning that the Cartesian model may have attempted to model some488

of the structure in the measurement noise. This is again a topic of further
investigation for the future.490

However, as can be seen in Fig. 8b, by learning the model through a uninformed
kernel operating on the polar coordinates, a more believable model of the feature492

space is learnt. These results show that even when implementing machine
learning methods with no direct embedding of the physical process, the space494

in which the function operates must still be taken into account.

(a) (b)

Figure 8: Results of uninformed ‘black-box’ GPs; (a) GP strategy A and (b) GP strategy B.
The units are in log10(mm).

5.2.2. Guided wave mean functions496

Models C and D in Table 3 show the two approaches where mean function
behaviour is included in the model to capture the expected behaviour of the498

guided waves. Both of these models make use of the third one-dimensional
attenuation model from Section 4.2, which includes both geometric spreading500

and viscoelastic damping. Model C couples this mean behaviour in the radial
direction with the flexible polar kernel used in model B, this allows the GP to502

learn functional behaviour in both the radial and angular dimensions. Model D
is more restrictive and it is assumed that the mean function captures all of the504

radial behaviour and the GP only models functional behaviour in the angular
dimension.506

The resulting mean predictions on an independent test set for each of these
models are shown in Fig. 9. Considering the prediction shown in Fig. 9a, a508

‘banding’ effect is seen as a circular structure centred on the origin. This
‘banding’ is most prominent in areas of propagation through the fibres and510

less prominent in the central region, around the wave source. This banding can
be explained by considering how the mean function is included in the model.512

The mean function m(x) is likely to fit the mean of the ρ dimension well as
the two dominant attenuation mechanisms captured. The inclusion of the mean514
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function in a Gaussian process can be imagined as subtracting this function from
the relevant dataset. When the mean function captures most of the behaviour,516

only unstructured data should be left to be modelled by the GP covariance, i.e.
the noise in the system. In the results shown here, the mean function fits the518

data well and the unstructured data along the radial ρ dimension is still modelled
in Eq. (7). The GP can still attempt to find a structure in unstructured data.520

An interesting note from this result is that if there were functional information
in the data still to be inferred, this would be picked up by the covariance kernel.522

In this case it is believed that the banding artefact may be due to the GP
modelling structure in the noise on this realisation of the measurement, it is524

expected that if further training data were included, this effect would diminish.

(a) (b)

Figure 9: Results of informed model generated using generic kernels and inclusion of a mean
function in the GP, with (a) model C, the full polar kernel, and (b) model D, the GP only
modelling angular behaviour. The units are in log10(mm).

To avoid this issue, and assuming that the mean function models well the526

radial attenuation behaviour, model D does not include the radial component
in its covariance kernel, so it has covariance given by Eq. (C.1). The results of528

training the model with exclusion of the radial kernel can be seen in Fig. 9b, in
which it can be seen that the banding artefacts are no longer evident. However,530

the model also appears to lose accuracy as the value of hm attenuates much more
quickly away from the source than is seen in Fig. 1b. The loss of the banding532

artefacts demonstrates that it is the inclusion of this radial dimension in the
kernel which leads to this phenomenon. These models will also be compared534

quantitatively once all models have been shown qualitatively.

5.2.3. Kernels capturing guided wave behaviour536

The final two models (E and F) attempt to embed understanding of the
guided-waves by directly modifying the prior belief in the model through kernel538

design.
The estimated mean predictions on an independent test set for each of these540

models are shown in Figs. 10a and 10b. It is clear in these results, how even the
small changes between the two kernels can significantly impact the function542

space that is learnt. Comparatively, model E (Fig. 10a) leads to a much
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‘smoother’ result in comparison to model F (Fig. 10b). Fewer high-frequency544

components are seen in the angular dimension leading to this appearance. This
difference is due to the differences in the prior belief imposed in the angular546

kernels for each of these models.

(a) (b)

Figure 10: Results of informed model generation using non-generic kernels, here indicating
the expected mean function over the entire space when modelling with (a) GP strategy E and
(b) GP strategy F. The units are in log10(mm).

An interesting result seen here is the spreading of energy away from the fibre548

orientation. This spreading could be physically explained by acknowledging the
secondary-guiding characteristics of the fibres themselves. As the waves travel550

along the fibres independently, they will lose some energy into adjacent media
(i.e. the epoxy matrix). This will manifest itself as energy spreading in a552

different direction to the fibre orientation.
Visually, kernel E appears to allow the capture of the spreading of the wave554

energy better. In Fig. 10b it appears that the decay of energy is not captured
well and that energy is only propagating along the fibres, not across. The556

periodicity enforced in model F is obvious to see in the significantly lower
value ‘band’ at approximately θ = {20◦, 110◦, 200◦, 290◦}. The kernel used558

in model E offers greater flexibility in symmetry as a result of the additive
combination of the SE kernel along the angular dimension. For both kernels, the560

predictive mean has less variation in the function modelling wave propagation
along the fibres, and is a less smooth function when propagating through the562

fibres. This difference could be improved by increasing the signal-to-noise ratio
of the experiment. This alteration will help model areas of high attenuation564

(i.e. low energy); since the energy of the wave decreases significantly away from
the fibre orientation, the value of hm may not exceed the noise floor. Currently,566

in regions with large ρ the data becomes unstructured and it is difficult to
infer the function with as much confidence. It may also be worth exploring a568

heteroscedastic noise model in future work [30].
For both models E and F, the estimated variance over the surface generates570

similar results; this can be seen in Figs. 11a and 11b. Both models see a sharp
increase in variance towards the centre, this can be explained by examining572

the one-dimensional attenuation kernel proposed in Eq. (15). The polynomial

21



(a) (b)

Figure 11: Results of informed model generation using non-generic kernels, here indicating
the expected variance over the entire space when modelling with (a) GP strategy E and (b)
GP strategy F.

kernel Eq. (15) included in these models will result in functions that tend574

to infinity with ρ → 0. This kernel is used in multiplicative combination
with the exponential decay kernel Eq. (13), resulting functions with the same576

characteristic. The second kernel design results in a slight increase in variance
at approximately θ = {50◦, 140◦, 230◦, 320◦}. From physical interpretation of578

how fibres affect the energy of the waves, the variance should not increase at this
orientation if not also at θ = {40◦, 130◦, etc.}. For both kernel designs, there580

also appears a greater variance in the energy of the wave when propagating
along the fibres; this is likely a result of the short range of θ in which the wave582

has directly propagated away from the source along a single fibre.

5.3. Quantification of model performance584

Until now, the modelling approaches for guided wave features have been
compared in a qualitative manner. It has been discussed how certain models586

give rise to desirable characteristics in the latent functions being learnt, which
may obscure the physical behaviour.588

Model m(x) k(x,x′) LML PLLi PLLc NMSE

A 0 kSQE({x, y}, {x, y}
′) 24,301 3,745.1 3,770.9 4.424

B 0 k2({ρ, θ}, {ρ, θ}
′) 50,012 9,964.4 9,975.40 4.0567

C A3(ρ) k2({ρ, θ}, {ρ, θ}
′) 19,872 13,047.7 4,221.4 1,037.7

D A3(ρ) kW(θ, θ′) 14,950 11,176.6 3,326.9 29.9
E 0 k3({ρ, θ}, {ρ, θ}

′) 96,952 21,013.6 22,727.4 9.9422
F 0 k4({ρ, θ}, {ρ, θ}

′) 75,682 16,274.9 16,291.3 9.9133

Table 5: Table of qualitative assessment values for 2D GP modelling strategies tested,
indicating the log-marginal likelihood (LML), independent predictive log likelihood (PLLi),
co-dependent predictive log likelihood (PLLc), and normalised mean square error (NMSE).
Best values for each metric are highlighted in bold.

Table 5 shows the results of the GP models tested against the metrics
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previously described. These metrics allow insight into the accuracy and validity590

of resulting models, and also provides an opportunity to discuss what might be
meant by a “good model”. It is important to consider that any given model is592

only as good as what it will be ultimately used for. In the context of engineering,
specifically in NDE and SHM, these models will be used to make operational594

decisions about the system. As such, it should be considered whether the end
user is most interested in the point-wise prediction accuracy in which case the596

NMSE is the most appropriate metric. If instead, the models will be carried
forward into a risk-driven assessment, then capturing the full uncertainty in the598

model is important and the correlated predictive log likelihood will be the most
appropriate metric. In this work, a number of possible assessment criteria are600

presented; the onus is on the end user to choose the model which best captures
the characteristics of the data/function which are most important to them. It602

is the opinion of the authors that the most robust measure of how well the
functional behaviour of the feature space is captured is the correlated predictive604

log likelihood PLLc.
Turning attention to specific results from these experiments, the results for606

each of the six models under each metric are shown in Table 5. It can be seen
that models A and B result in the lowest NMSE scores, in other words that608

their point-wise predictions are closest to the observed test data. This result
may be expected since they are the most flexible models. Interestingly, model610

B, the informed polar coordinate model, also recovers the highest independent
predictive log likelihood. Interpreting this result; if one wants to predict only the612

behaviour at single points on the plate and is not concerned with the correlation
between these predictions, then this is the optimal model (from those tested).614

It is also seen in the log marginal likelihood LML that model B captures the
behaviour in the training data much better than model A.616

The inclusion of the guided-wave attenuation models as mean functions in
the GP (models C and D) appears not to produce desirable effects. These618

models perform worst in their representation of the training data LML and their
point-wise prediction capability NMSE. For this dataset, this is compelling620

evidence that the inclusion of the guided wave attenuation mechanisms through
a mean function does not lead to a useful model. As discussed, the models may622

be finding too much structure in the noise of the data used for training, especially
model C. This postulation is evident in the very high NMSE score, which would624

indicate that the model performs considerably worse than taking the mean of
the prediction data. However, it is also important to note the exceptionally626

large NMSE for model C (representing an error of ∼1038%), which is a result
of the estimated mean function resulting in a ’singularity’ towards the centre of628

the plate; m(x) → ∞ as ρ → 0.
Finally, considering models E and F, where the knowledge of the guided630

waves is used to modify the prior belief in the model, via the covariance kernel;
both of these models perform very well when considering their ability to model632

the training data assessed through the LML. When examining their performance
on the independent test set, it is seen that the NMSE score is around 9%634

compared to the 4% of models A and B; this along with their poor independent
predictive log likelihoods PLLi are indicators that the point-wise predictions636

from these models are not as good as models A and B. However, in terms of
capturing the complete function space they far exceed all the other modelling638

strategies. These approaches appear to best capture the underlying functional
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behaviour of the guided-wave attenuation. For this reason, these models can640

be considered to be the most suitable for de-noising or spatially up-sampling the
data. These two approaches may also be considered the most robust methodologies642

for modelling the guided-wave behaviour not currently described by governing
equations, e.g. outlying behaviour. This advantage has been achieved through644

incorporation of the physical mechanisms driving the attenuation in the prior
specification of the model, via modification of the covariance kernel.646

The results from this dataset and model would support the use of model E for
modelling the feature-space of hm for a guided wave in a CFRP plate. However,648

when using this strategy users should consider all models and the system being
modelled, as well as the level of physical knowledge that is currently available650

for said system.

6. Conclusion and further work652

As computation capabilities and machine learning techniques are becoming
increasingly more accessible, the adoption of such methods to solve engineering654

problems is also becoming more prominent. This increasing use of such methods
can present many underlying issues with the results, such as unreasonable656

assumptions, lack of extrapolation capability and computational costs. However,
by implementing physical knowledge to guide learning, more robust models may658

be generated which can reduce many of these issues.
A barrier to the progression of using guided waves in an NDE or SHM660

strategy is the difficult of modelling the behaviour of these waves in complex
materials. The work presented here shows promising steps towards generating662

a physics-incorporated, data-driven model for the feature-space of guided-waves
in such materials. Several characteristics of such a strategy, which must be664

carefully considered to maintain robustness, have been discussed. This strategy
provides a key framework for the development of guided-wave models for complex666

materials — such as the ones used in this paper — by allowing modelling of
features which define the waves propagating throughout the material. The668

important distinction of this combined method, in comparison to physics or
data-driven-only methods, is that this allows physics to guide the model, whilst670

allowing unknown or undescribed physical mechanisms to be incorporated through
the data-driven aspect.672

When initially looking at the kernels chosen to represent different learning
strategies and levels of constraint, it is not clear which strategy will result in the674

optimal model output. By various qualitative assessment values it is possible
to see how each model fits in comparison to the validation data, in different676

aspects. By leaving the model uninformed, it is possible to get a closer fit to the
training and validation data in terms of difference between the predicted and678

measured values. However, by guiding the learning process using physics-based
implementation of the problem, it is possible to get a higher likelihood model.680

The work here has been shown for the case of modelling energy-based features
of a guided wave in a CFRP plate structure, and though these specific kernels682

cannot be directly applied to some other complex scenarios — such as complex
geometry, quasi-periodic materials, or other features such as time-of-flight —684

the kernels can be modified in the framework presented here to model such
systems. The structure is applied through the kernels to embed prior belief of686

the shape of the features over the topology being modelled.
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Further work will be done to embed structural knowledge into the modelling688

process — such as plate thickness, joints and layup information — in order to
improve extrapolation of data over guides of varying shape.690
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Appendices

A. Bayesian Linear Regression696

Traditional linear regression formulates a model using point estimates of a
set of parameters which “best” fit an available dataset, based on minimising an
L2-norm between the model predictions and the data. Instead, BLR aims to
establish a probability distribution of possible model parameters. The model
has the form,

y = w⊤φ(x) + ε, ε ∼ N (0, σ2) (A.1)

where φ is some basis for expansion of a p-dimensional data point x; w =
{w1, w2, ..., wp} are the associated weights of the basis expansion, and ε is
an additive Gaussian white noise distributed as N (0, σ2). The weights w

and the variance σ2 are the unknown. The Bayesian linear regression model
approach was chosen since it returns a quantified uncertainty. The task is then to
compute the posterior distribution of the parameters p(w, σ2|D). This posterior
distribution has the following form,

p(w, σ2|D) = NIG(w, σ2|wN ,VN , aN , bN ) (A.2)

with,
wN = VN (V−1

0 w0 +X⊤y) (A.3)

VN = (V−1
0 +X⊤X)−1 (A.4)

aN = a0 + n/2 (A.5)

bN = b0 +
1

2

(

w⊤

0 V
−1
0 w0 + y⊤y −w⊤

NV−1
N wN

)

(A.6)

where V0, w0, a0 and b0 are hyperparameters of the prior. It is possible to set
an uninformative prior for σ2 by applying a0 = b0 = 0. Also setting w0 = 0698

and V0 = g(X⊤X)−1 for any positive value g; leads to Zellner’s g-prior [31].
By having the prior variance proportional to (X⊤X)−1, it is ensured that the700

posterior is invariant to scaling of the inputs.
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B. Gaussian Process702

Conceptually, one can think of this process as estimating, rather than one
“best” fit through the data, a distribution over all the possible functions that704

could explain the data. By virtue of its construction, the marginal and conditional
distributions of any finite subset of data points in the function is Gaussian.706

In other words, any set of data modelled by the Gaussian process can be
represented by a multivariate Gaussian distribution. The benefit of this result708

is that computations are normally available in closed form; for example, the
conditional distribution of some new test points given the already observed710

data can be recovered exactly. The model is also nonparametric; the form of
the function which will fit the data does not need to be specified, i.e. it is not712

necessary to choose a basis, such as a polynomial one. Instead, the function
is modelled by representing the covariance in the data through a kernel or714

covariance function. This kernel is used to embed belief about which family

of functions the data have come from, e.g. a nonlinear or periodic function.716

The Gaussian process can be used to model nonlinear regression problems
of the form,

y = f(X) + ε ε ∼ N (0, σ2
nI) (B.1)

where y is a vector of N observed targets, X a matrix of N observed inputs in
D dimensions, and ε a vector of realisations from a zero-mean Gaussian white718

noise process with variance σ2
n.

A GP is fully defined by its mean and covariance function,

f(x) ∼ GP (m(x), k(x,x′)) (B.2)

The mean function, m(x) can be any parametric mapping of x, e.g. a
polynomial. The correlation between the targets is captured by the covariance
function which expresses the similarity between two input vectors x and x′. To
predict at a new test point x⋆, or set of test points X⋆, predictive equations are
used to determine the expected mean function E[f⋆] and expected covariance
V[f⋆] [23],

f⋆ ∼ N (E[f⋆],V[f⋆]) (B.3a)

E[f⋆] = m(x⋆) + k(x⋆, X)(k(X,X) + σ2
nI)

−1y (B.3b)

V[f⋆] = k(x⋆,x⋆)− k(x⋆, X)(k(X,X) + σ2
nI)

−1k(X,x⋆) (B.3c)

If predicting at noisy output locations, i.e. y⋆, it is trivial to add the noise720

variance σ2
nI to the predictive covariance in Eq. (B.3c). As such the GP returns

the posterior distribution over f⋆ or y⋆ as a Gaussian distribution.722

For practical implementation of a Gaussian process, the reader is recommended
to follow the guidance of Rasmussen [23]. The primary influence of the user724

when implementing a GP is in the choice of the kernel, which is calculated as
any other kernel; linear pair-wise distances between points to form a covariance726

matrix. Careful consideration of data should also be applied in implementation,
such as data type (scale, sign, etc.), data size and space on which it operates.728

Standard practice to determine the hyperparameters of a Gaussian process
is to maximise the marginal likelihood, which in practice is done by minimising730

the log marginal likelihood (NLML),

Θ̂ = arg min(− log p(y|Θ)) (B.4)
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where the negative log marginal likelihood of the Gaussian process is given by,732

− log p(y|X,Θ) =
1

2
log |Ky|+

1

2
y⊤K−1

y y +
N

2
log(σ2

n) (B.5)

When defining Ky = K(X,X) + σ2
nI, K(X,X) is the pairwise covariance

matrix of all of the training inputs and N is the number of data points.734

C. Polar GP

To make this modification is not as trivial as it may seem. Remembering
that the covariance function is a measure of similarity between two data points
it is necessary to define a kernel which encodes this. Specifically, it is necessary
to have high covariance between points that are close to each other in angle.
For example a point with angle 359◦ should have a high covariance with 1◦ if
the radii are also close. This will require modifications to the kernel in terms
of the distance used to assess how close points are together and also to the
covariance function itself. Padonou and Roustant [25] suggest two potential
definitions for a distance which fulfils this criteria, full details of setting up a
polar coordinates kernel can be found in that work but it is briefly reviewed

here. These two distances are: the chordal distance d1(θ, θ
′) = 2 sin

(

θ−θ′

2

)

or

the geodesic distance d2(θ, θ
′) = arccos(cos(θ−θ′)). Using these definitions, it is

possible to define the covariance in the θ dimension of a {ρ, θ} polar coordinate
system. The C2-Wendland function is used as the kernel, since this produces a
covariance of 0 when d2 = π and is strictly positive when d2 > π, both necessary
conditions for the polar kernel design. The C2-Wendland function is defined as,

Wc(t) =

(

1 + τ
t

c

)(

1− t

c

)τ

+

, c ∈ [0, π]; τ ≥ 4 (C.1)

When applying the Wendland function as the covariance function, the value of
c must change depending on the angular distance chosen,

kW =

{

kchord(θ, θ
′) = W2(d1(θ, θ

′))

kgeo(θ, θ
′) = Wπ(d2(θ, θ

′))
(C.2)

Here, the value of τ acts as a ‘steepening’ parameter on the angular covariance;736

this can be seen as the angular analogue to the inverse of the length scale
parameter described previously.738

To form a full polar covariance function, a different kernel is applied only on
the radial dimension of the input. This kernel could be any stationary isotropic740

kernel; in this work the Matérn 5/2 kernel is used as in [25]. In that case the
distance used in the Matérn kernel is the absolute difference between the two742

radial components |ρ− ρ′|. For the angular component, Eq. (C.1) is used with
the geodesic distance such that kernel kgeo is used.744

These choices define the covariance in the model along each of the directions
- the radial ρ and the angular θ. To form the total covariance it is necessary
to combine these two. It is known that the addition or pointwise multiplication
of any two valid covariance functions is itself a valid covariance [23]. In this
work an ANOVA combination [32] of the kernels in each dimension is used, as
in [25]. This allows variations in each dimension as well as the combination to
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contribute to variation in the function. The combined ANOVA kernel is defined
as,

k2(x,x
′) = σ2

f

(

1 + σ2
f,rkmat(ρ, ρ

′)
) (

1 + σ2
f,akW(θ, θ′)

)

(C.3)

where σf,m and σf,a act as weights representing the influence of changes in each
dimension on a change in the output.746

D. Kernels

Many of the kernels shown in this paper use the distance between data748

points, r, for their calculation; for this paper, x − x′ is the Euclidean distance
when data is in Cartesian coordinates or applied to ρ in polar coordinates and750

is defined by d2 = arccos(cos(θ − θ′)) when applied to θ in polar coordinates.

D.1. Squared Exponential752

The squared exponential is a general nonlinear kernel which operates in a
D-dimensional real space, where r is the distance between two points x & x′.754

ksqe(x,x
′) = σ2

f exp

(

− r2

2l2

)

(D.1)

Hyperparameters. ℓ is the length scale, σ2
f is the scaling factor.

D.2. Matérn Class756

The Matérn class of kernels are general nonlinear kernels which operate in a
D-dimensional real space, and are specified by a scaling factor ν; in this case,758

ν = 5/2 is used,

kmat,ν=5/2(x,x
′) = σ2

f

(

1 +

√
5r

l
+

5r2

3l2

)

exp

(

−
√
5r

l

)

(D.2)

Hyperparameters. ℓ is the length scale, σ2
f is the scaling factor.760

D.3. Polynomial

The polynomial kernel is an inhomogeneous linear kernel which operates in762

a D-dimensional real space, and is specified by the coefficient p,

kpol(x,x
′) = σ2

f (x · x′ + σ2
0)

p (D.3)

Hyperparameters. σ2
0 ≥ 0 is the offset term trading off the influence of higher-order764

versus lower-order terms, σ2
f is the scaling factor.

D.4. C2-Wendland766

The C2-Wendland kernel is a stationary kernel which operates on the θ-dimension
of a real polar space, and was shown for use in Gaussian process modelling768

in [25]. c = 2 when d = d1(θ, θ
′) = 2 sin ((θ − θ′)/2) and c = π when d =

d2(θ, θ
′) = arccos(cos(θ − θ′)),770

kW(θ, θ′) = σ2
f

(

1 + τ
d

c

)(

1− d

c

)τ

(D.4)
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Hyperparameters. τ ≥ 4 is the variance steepening parameter, σ2
f is the scaling

factor.772

D.5. Exponential Decay

The exponential decay kernel is a non-general linear kernel which operates774

in a D-dimensional real space,

ked(x,x
′) = σ2

f exp (−xl) · exp
(

−x′⊤l
)

(D.5)

Hyperparameters. ℓ is the length scale, σ2
f is the scaling factor.776

D.6. Strictly Periodic

The strictly-periodic kernel is a non-general linear kernel which operates on778

the θ-dimension of a real polar space; the nature is enforced by the number of
equally distributed symmetry axes, n,780

ksym(θ, θ
′) = σ2

f (α1 + α2 cos (2nd2(θ, θ
′))) (D.6)

Hyperparameters. α1 & α2 are the relative weighting of the maximum value
and periodicity of the function respectively.782

D.7. Generic Polar

The generic polar kernel is an ANOVA combination of kmat and kW which784

operates on the {θ, ρ}-dimension real polar space,

k2(x,x
′) = σ2

f

(

1 + σ2
f,rkmat(ρ, ρ

′)
) (

1 + σ2
f,akW(θ, θ′)

)

(D.7)

Hyperparameters. σ2
f,r & σ2

f,a are the relative importance of changes in the786

radial & angular dimension respectively, σ2
f is the overall scaling factor.

D.8. Angular Informed788

The angular informed kernel is an OR combination of ksqe and ksym which
operates on the θ-dimension of a real polar space,790

kang(x,x
′) = σ2

f,sqeksqe(θ, θ
′) + σ2

f,symksym(θ, θ
′) (D.8)

Hyperparameters. σ2
f,sqe & σ2

f,sym are the relative scaling factors for each kernel.

D.9. Radial Informed792

The radial informed kernel is an AND combination of kpol, p = −1/2 and
ked which operates on the ρ-dimension of a real polar space,794

krad(x,x
′) = σ2

f,rkpol(ρ, ρ
′) · ked(ρ, ρ

′) (D.9)

Hyperparameters. σ2
f is the overall scaling factor.
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D.10. Informed Guided Wave, smooth & strictly periodic796

The first UGW-informed kernel is an ANOVA combination of kang and krad
which operates on the {θ, ρ}-dimension of a real polar space. The periodicity in798

θ is enforced and smooth,

k3(x,x
′) = σ2

f

(

1 + σ2
f,akang(θ, θ

′)
) (

1 + σ2
f,rkrad(ρ, ρ

′)
)

(D.10)

Hyperparameters. σ2
f,a & σ2

f,r are the relative importance of changes in the800

angular & radial dimension respectively, σ2
f is the overall scaling factor.

D.11. Informed Guided Wave, smooth & strictly periodic802

The second UGW-informed kernel is an ANOVA combination of kW and krad
which operates on the {θ, ρ}-dimension of a real polar space. The periodicity in804

θ is enforced but not necessarily smooth,

k4(x,x
′) = σ2

f

(

1 + σ2
f,akW(θ, θ′)

) (

1 + σ2
f,rkrad(ρ, ρ

′)
)

(D.11)

Hyperparameters. σ2
f,a & σ2

f,r are the relative importance of changes in the806

angular & radial dimension respectively, σ2
f is the overall scaling factor.

E. Performance Metrics808

It is necessary at this point to develop some metrics by which the models can
be assessed. For this purpose, the experimental dataset was split into a training810

set, xt and a test set xv, which consisted of 75% and 25% of the total dataset
respectively. The performance of each model is reported on both the training812

and the test data; it is important to consider the test data performance, as this
is the best indicator of which models are able to generalise, i.e. which will work814

best on new unseen data.
The first metric used here is the normalised mean squared error (NMSE)816

which can be computed for both training set (NMSEtr) and test set (NMSEt).
For descriptive purposes, the NMSE indicates how well the estimate of the818

output fits with the observed values. The NMSE will return a score of zero
when the predicted values are identical to those measured (this is impossible in820

the presence of any noise). A score of 100 is equivalent to simply taking the
mean of the observed data as the prediction at every instance. The calculation822

for the NMSE is,

NMSE =
100

nσ2
y

(y − y⋆)
⊤
(y − y⋆) (E.1)

where y is the vector of observed outputs and y⋆ the predicted outputs (in this824

case the mean of the predictive distribution from a Gaussian process). n is the
number of observations in y and σ2

y the variance of those observations.826

The second metric will be to compare the predictive likelihoods of the model.
This metric can be a more informative way of assessing the models as it takes
into account the uncertainty in the prediction as well as the quality of the
mean fit. The predictive likelihood is given as p (y⋆|x⋆,y,x); this will change
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dependent upon the model being assessed but since all models in this work have
a tractable Gaussian posterior it is given here by,

p (y⋆|x⋆,y,x) = N (E [y⋆] ,V [y⋆]) (E.2)

This work will use this quantity in two ways; the first will consider each prediction
to be independent, by not including the cross covariance terms in V [y⋆] the828

predictive variance matrix. The full covariance of the prediction will also be
considered from the Gaussian process, as this can give better insight into how830

well the function has been modelled.
To ensure computational stability these likelihood estimates are both calculated

in the log space. The first quantity will be referred to as the independent
predictive log likelihood PLLi, and is defined by,

PLLi =

N
∑

i

logN (yi|E[yi],V[yi],Θ) (E.3)

for N data points. This is the product over the predictive likelihoods for every
point, i.e. the joint likelihood if they were uncorrelated. The second will be
considered the co-dependent predictive log likelihood PLLc, defined by,

PLLc = log p(y|E[y],V[y],Θ) (E.4)

where PLLc is computed as the likelihood of the full multivariate Gaussian over832

the predictive points, including the predicted covariance between those points.
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