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Purpose: To measure the transverse relaxation time (T∗
2
) and apparent diffusion co-

efficient (ADC) of 19F-C3F8 gas in vivo in human lungs at 1.5T and 3T, and to de-

termine the representative distribution of values of these parameters in a cohort of 

healthy volunteers.

Methods: Mapping of ADC at lung inflation levels of functional residual capacity 

(FRC) and total lung capacity (TLC) was performed with inhaled 19F-C3F8 (eight 

subjects) and 129Xe (six subjects) at 1.5T. T∗
2
 mapping with 19F-C3F8 was performed 

at 1.5T (at FRC and TLC) for 8 subjects and at 3T (at TLC for seven subjects).

Results: At both FRC and TLC, the 19F-C3F8 ADC was smaller than the free dif-

fusion coefficient demonstrating airway microstructural diffusion restriction. From 

FRC to TLC, the mean ADC significantly increased from 1.56 mm2/s to 1.83 mm2/s 

(P = .0017) for 19F-C3F8, and from 2.49 mm2/s to 3.38 mm2/s (P = .0015) for 129Xe. 

The posterior-to-anterior gradient in ADC for FRC versus TLC in the superior half 

of the lungs was measured as 0.0308 mm2/s per cm versus 0.0168 mm2/s per cm for 
19F-C3F8 and 0.0871 mm2/s per cm versus 0.0326 mm2/s per cm for 129Xe. A con-

sistent distribution of 19F-C3F8 T
∗
2
 values was observed in the lungs, with low values 

observed near the diaphragm and large pulmonary vessels. The mean T∗
2
 across vol-

unteers was 4.48 ms at FRC and 5.33 ms at TLC for 1.5T, and 3.78 ms at TLC for 3T.

Conclusion: In this feasibility study, values of physiologically relevant parameters 

of lung microstructure measurable by MRI (T∗
2
, and ADC) were established for C3F8 

in vivo lung imaging in healthy volunteers.

1 |  INTRODUCTION

Currently, lung imaging with fluorinated gases (SF6, C2F6, 

C3F8, C4F8
1) MRI is not as well-characterized as hyperpolarized 

(HP) gas MRI, with a relative paucity in the literature. For ex-

ample, there have already been numerous longitudinal and clin-

ical studies performed with 3He and 129Xe gases.2-4 In addition, 

typical values of MR measurable parameters for gas phase 3He 
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and 129Xe have been characterized in vivo, such as T∗
2
,5-7 T1,

8 

T2,
9 and the apparent diffusion coefficient (ADC).10-13 These 

values have been used to optimize pulse sequence design for 

improved ventilation image quality,14-16 and also to inform dif-

fusion-weighted imaging (DWI) acquisition strategies for quan-

titative microstructural imaging with 3He and 129Xe.11,12,17

The inherently low MR signal and short T∗
2
 of fluorinated 

gases results in lower signal-to-noise ratio (SNR) and neces-

sitates lower image resolution when compared with HP gas 

imaging.18 Recently, there have been advances in sequence 

optimization for fluorinated gas imaging using ultrashort 

echo time and steady-state free precession methods.19,20 

However, to date, there has only been preliminary investi-

gation on whether fluorinated gas imaging can be used rou-

tinely to provide suitably robust quantitative measures of 

lung microstructure and function.21-23

1.1 | Transverse relaxation—T
∗

2

The T∗
2
 relaxation parameter has been shown to depend on phys-

iological changes in different tissues/organs with 1H MRI,24,25 

and is, therefore, an important parameter for quantitative imag-

ing. For C3F8 in phantoms, T1, T2, and T∗
2
 is approximately 6-8 

ms when diluted in nearly 100% O2 and approximately 18–20 

ms for undiluted (100%) C3F8 at 95.2 kPa. In contrast, for 129Xe 

and 3He the T1 reduces from hours to less than 30 s when mixed 

with O2
28,29 in the lungs, whereas the T2 is lower than 3 s. When 

measured in human lungs T∗
2
 is 28 ms and 14 ms at 1.5T and 

3 T for 3He30,31, respectively, and 52 ms and 24 ms at 1.5 T 

and 3T for 129Xe,6 respectively. The T∗
2
 of HP gases has also 

been shown to change with lung inflation level and decreases 

at distinct physical susceptibility interfaces, such as around the 

major blood vessels and at the diaphragm,6 though correlation 

with disease pathologies has not yet been studied. The T∗
2
 for 

C3F8 (measured through nonlocalized lung spectroscopy) has 

been shown to be sensitive to modulation of tissue magnetic 

susceptibility,23 thus the T∗
2
 may also be a sensitive marker of 

lung microstructure variation.

1.2 | Apparent diffusion coefficient

In lung imaging with HP 3He and 129Xe, DWI is routinely 

used to probe the lung microstructure using the measurement 

of ADC and theoretical models of multiple b-value HP gas 

DWI.10,32-34 The measured ADC is sensitive to changes in 

alveolar dimensions with diseases, such as emphysema,11 

idiopathic pulmonary fibrosis,35,36 and chronic obstructive 

pulmonary disease.37,38 Furthermore, even relatively small 

ADC changes related to lung inflation level,39,40 age,41 and 

physiological distribution within the lungs42 are observable.

ADC measurements with fluorinated gases have been per-

formed in rats with C2F6
43,44 and SF6,

45 demonstrating that 

there is restricted diffusion and that the ADC is larger in em-

physematous lungs. In contrast to measurements made in ex-

cised lungs with 100% C2F6
46 and C3F8,

47 performing in vivo 

ADC measurements with 79% C3F8 + 21% O2 will accurately 

provide a normative range of values and distribution across 

healthy subjects. Furthermore, such a study will establish the 

feasibility of performing in vivo C3F8 ADC studies with the 

constraints imposed by the sensitivity of a thoracic radiofre-

quency (RF) coil, breath-hold limitations on image acquisition 

time, and the variability of gas concentration through voluntary 

continual breathing rather than controlled pumping.

1.3 | Overview

Determining the relative sensitivity and achievable quality of 

DWI with C3F8 in relation to 129Xe was one aim of this study. 

Furthermore, the value and distribution of T∗
2
 in vivo is also 

unknown. Therefore, in this study theT
∗
2
 and ADC with 19F 

imaging of 79% C3F8 + 21% O2 was investigated in the lungs 

of healthy volunteers. In the same eight volunteers, T∗
2
 map-

ping was carried out and the change from TLC to FRC was 

evaluated at 1.5T. In addition, T∗
2
 mapping at TLC was per-

formed at 3T in seven of the volunteers to evaluate the field 

strength dependence of T∗
2
. To determine the sensitivity of 

C3F8 ADC to changes in lung microstructural length scales, 

the differences obtained at FRC or TLC, and the regional dis-

tribution within the lungs, was investigated in eight healthy 

volunteers. ADC mapping with 129Xe was carried out in six 

of the volunteers as a means of comparison with the equiva-

lent established and higher SNR HP gas techniques.

2 |  METHODS

2.1 | Overview

In total, eight subjects, seven male and one female (S1-S8, 

aged 29 ± 4 years), were imaged following informed con-

sent. All in vivo MRI experiments were performed under the 

approval of the UK National Research Ethics Committee and 

the local National Health Service research office. The clinical 

grade 79% C3F8/21% O2 gas mixture (BOC Special Products, 

Guildford, UK) was inhaled from a 25-L reservoir bag via 

a mouthpiece and three-way valve and mouthpiece (Hans 

Rudolf, Shawnee, KS). Hyperpolarization (~30%-40%) of 

86% enriched 129Xe gas was performed in house using the 

spin-exchange optical pumping method48 under the cor-

responding author’s UK MHRA manufacturing regulatory 

license.
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2.2 | Radiofrequency coils

1H and 19F imaging was performed at 3T (Philips Ingenia; 

Philips, Andover, MA) using an elliptical transmit/receive 

quadrature birdcage coil (RAPID Biomedical, Rimpar, 

Germany). Experiments at 1.5T (GE HDx; GE Medical 

Systems, Milwaukee, WI) with 19F were performed with an 

in-house constructed transceiver array,49,50 which improves 

the average SNR by a factor of approximately 5 throughout 

the lung region when compared with a single transceiver 

vest coil. 129Xe imaging at 1.5T was performed with a flex-

ible transceiver vest coil (Clinical MR Solutions [CMRS], 

Brookfield, WI).

2.3 | Imaging

Table 1 lists the various imaging acquisition parameters for 

both C3F8 and 129Xe scanning. In vivo 19F-C3F8 T
∗
2
 measure-

ments were performed at 1.5T (FRC and TLC for eight sub-

jects) and at 3T (TLC for seven subjects). In addition, in vivo 

ADC measurements at 1.5T with 19F-C3F8 (FRC and TLC 

for eight subjects) and 129Xe (FRC and TLC for six subjects) 

were performed and compared. Details of sequence, parame-

ter choice, and scan procedures used in this work are included 

in following sections.

2.3.1 | T
∗

2
 mapping

At 1.5T, 19F T∗
2
 mapping was performed at lung-inflation lev-

els of TLC and FRC, with the following sequence of breath-

ing maneuvers: (1) Four deep breaths were taken of the gas 

mixture via a three-way valve from a 25-L Douglas bag to 

fully saturate the lungs; (2) imaging was then performed 

under breath-hold apnea at TLC (22 s); (3) the volunteers 

then exhaled through the three-way valve and continued to 

breath normally with inhaled gas coming from the Douglas 

bag; and (4) once the volunteer signaled they were able to 

commence a second breath-hold, imaging was repeated after 

exhalation to FRC.

From multiecho SPGR acquisition sequences the signal 

for each echo time (S
n
𝑒𝑐ℎ𝑜

) was fit voxel-wise according to:

where ΔTE is the spacing between echoes, n
𝑒𝑐ℎ𝑜

 is the echo 

number and S1 is the amplitude of the first echo image. The 

fitting was performed only on pixels with an SNR>10 for the 

first echo at 1.5T (Δ𝑇𝐸 = 2.3 ms) and at 3T (Δ𝑇𝐸 = 1.5 ms).

This corresponds to at least ≥2.5 noise SD for n
𝑒𝑐ℎ𝑜

 = 2, the 

recommended SNR threshold for pixel-wise truncation of mea-

surements,51 for T∗
2
 >1.7 ms at 1.5T and T∗

2
 > 1.1 ms at 3T. To 

evaluate the distribution of T∗
2
 within the lungs, averaged his-

tograms of the T∗
2
 values from all slices and axial, sagittal, and 

coronal plots of the maps were produced.

2.3.2 | Apparent diffusion coefficient

The signal after an applied trapezoidal bipolar gradient (Sb) 

is characterized by:

where S0 is the signal without diffusion gradients, the ADC is 

the apparent diffusion coefficient, and the b-value and the dif-

fusion time (Δ) of the applied pulse are described in the work 

by Al and Da.34 For effective lung DWI, the length scale of 

the confining structure (ls) of the alveoli must be of the same 

magnitude as the free diffusion length (l
d
=
√

2D
0
Δ) or the 

gradient dephasing length (lg =
(

D
0
∕�G

)1∕3
), which is the aver-

age length that a spin must diffuse to dephase by 2π radians.52 

Figure 1 shows the different length scale regimes in relation  

to potential DWI conditions typically achieved with  

(1)
S

n
𝑒𝑐ℎ𝑜

∝S1e
−

ΔTE(n𝑒𝑐ℎ𝑜−1)
T
∗
2 ,

(2)S
b
=S

0
e
−bADC

T A B L E  1  Imaging parameters for the characterization of different MR parameters

Measurement TE (ms) TR (ms) BW (±kHz) Matrix (pixels3) FOV (cm3) FA (°) Average Breath-hold (s)

1.5T–19F T∗
2

1.9/4.2/6.6 13 6.94 32 × 26 × 16 40 × 32 × 24 80 4 22

3.0T–19F T∗
2

1.3/2.8/4.3 6.5 11.7 53 × 22 × 16a 40 × 33 × 24 45 4 17

1.5T–19F ADC 5.9b 10.4 3.01 32 × 26 × 10 40 × 32 × 30 80 4c 22

1.5T–129Xe ADC 14.1 17.4 6.94 64 × 52 × 18 40 × 32.5 × 24 3.1 1 16

Abbreviations: BW, bandwidth; FA, flip angle; FOV, field of view; TE, echo time; TR, pulse repetition time.
aElliptical shutter applied (78% acquired in phase encode directions). 
bPartial Fourier encoding. 
cTwo breath-holds, for double the number of stated averages. 
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129Xe (D0 = 14 mm2/s9) and 3He (D0 = 86 mm2/s9) in air, and 

C3F8 mixed with 79% O2 (D0 = 2.7 mm2/s26) for an average 

alveolar diameter of ls at approximately 250 µm.53

For DWI with 129Xe Δ = 8.5 ms54 and b = 0.12 s/mm255 

the geometrical parameters derived from models of the 

acinar airway closely match those obtained with 3He Δ = 

1.6 ms, that has been shown to be effective for character-

izing lung microstructure54; therefore, this diffusion time 

was used for 129Xe DWI in this study. For C3F8 DWI, Δ = 

2.2 ms and b = 0.18 s/mm2 with a gradient echo sequence 

was used, matching that used previously with C2F6.46 This 

was expected to put the measurements in the localization 

regime (see Figure 1), where the ADC signal is dominated 

by diffusional restriction at the boundaries of the lung alve-

olar structure.56 To determine the sensitivity of C3F8 ADC 

to changes in airway microstructural dimensions caused 

by lung inflation, the ADC was measured at both FRC 

and TLC and compared with the equivalent 129Xe ADC 

measurements.

For 19F ADC imaging, the same breathing maneuvers 

were followed as for T∗
2
 imaging, except that two additional 

images were acquired at breath-holds of TLC and FRC (22 s 

each) obtained sequentially while breathing from the same 

25-L Douglas bag. The two images obtained at the same in-

flation level were averaged together for increased SNR. To 

perform an independent measurement of the D0 the same 

ADC measurement was performed with the Douglas bag on 

three separate occasions. For 129Xe imaging, a 1-L bag of gas 

was inhaled from FRC consisting of 400-mL N2 gas mixed 

with 600-mL 129Xe.48 The volunteers then either breathed in 

room air to TLC or exhaled to FRC prior to imaging during 

breath-hold (16 s).

All C3F8 and 129Xe DW images were thresholded so that 

only voxels with SNR >1557 were used in the calculation of 

ADC. To evaluate the distribution of ADC values at FRC and 

TLC, histograms of 129Xe and 19F ADC averaged over all 

slices were plotted for all volunteers. Furthermore, similar to 

the process carried out in Fichele et al,42 the ADC gradient in 

the anteroposterior direction was calculated by first visually 

identifying the center of the lungs and then plotting the aver-

age ADC for each of the slices/pixels relative to the center for 

all volunteers together.

3 |  RESULTS

3.1 | Transverse relaxation—T
∗

2

Maps of T∗
2
 in central axial, coronal, and sagittal slices for 

volunteer S1 are shown at 1.5T at FRC in Figure 2A, at TLC 

in Figure 2B, and at 3T at TLC in Figure 2C. The T∗
2
 val-

ues are much lower than those found in phantoms where T∗
2

~T2~T1 = 18-22 ms.20 Also, a clear decrease in T∗
2
 is observed 

around the intrapulmonary vessels and the diaphragm, where 

tissue-air bulk magnetic susceptibility gradients are high-

est. The recorded mean values for all volunteers are listed in 

Table 2 along with the p value for the paired t test comparing 

changes between the mean T∗
2
 at FRC and TLC (1.5T) and 

also between TLC at 1.5T and 3T, which is demonstrated 

clearly in the histograms of the T∗
2
 maps shown in Figure 2D.

3.2 | Apparent diffusion coefficient

ADC measurements made in the Douglas bag alone deter-

mined a D0 of 2.54 ± 0.06 mm2/s for the C3F8/O2 mixture. 

ADC maps generated from C3F8 imaging in volunteer S5 

are shown in Figure 3A (at FRC) and Figure 3B (at TLC). 

The mean 19F-C3F8 ADC histograms from all volunteers are 

shown in Figure 3C.

Because of our chosen rejection criterion of SNR <15 on 

voxels when mapping ADC, there was a consistent exclusion 

of areas around the major pulmonary vessels, and in some 

regions around the diaphragm of volunteers in C3F8 imaging. 

This was caused by the reduced signal from lower T
∗
2
 and 

partial voluming in these regions, as observed in Figure 1,  

and also the longer TE required for the ADC sequence. 

Figure 3D-F shows equivalent maps generated from 129Xe 

imaging in the same volunteer. The ADC maps in Figure 3 

F I G U R E  1  Schematic diagram of the three diffusion regimes 

placing the practical diffusion-weighted imaging conditions with 
19F-C3F8 (D0 = 2.7 mm2/s) in the context of common Δs and diffusion 

gradient field strengths (plotted from 4 mT/m to 32 mT/m) for the 

two hyperpolarized gases of 129Xe (D0 = 14 mm2/s) and 3He (D0 = 

86 mm2/s) for a length scale of ls = 250 µm, with l
d
=
√

2D
0
Δ and 

lg =
(

D
0
∕�G

)1∕3
. The approximate values used for comparison of 

19F-C3F8 and 129Xe in this study are indicated with arrows
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show regions of heterogeneous ADC near the heart and to 

the inferior of the lungs, as well as localized regions of lower 

than average ADC. Table 2 shows the mean ADC values for 

all volunteers and the p values for the paired t tests compar-

ing changes between the mean ADC at FRC to TLC for both  
19F-C3F8 and 129Xe.

F I G U R E  2  T
∗
2
 maps for 19F/C3F8 in central slices for a representative volunteer. A, Functional residual capacity (FRC) and 1.5T. B, Total lung 

capacity (TLC) and 1.5T. C, TLC and 3T. D, Mean T* histogram line plots in healthy volunteers with 19F/C3F8: at TLC and 1.5T, at FRC and 1.5T 

and at TLC and 3T. Bin widths are 0.5 ms and error bars show the standard deviation across all volunteers
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T A B L E  2  Summary of apparent diffusion coefficient and T∗
2
 parameter values measured in all volunteers

Volunteer

19
F-C3 F8T

∗

2
 (ms)

19
F-C3F8 ADC (mm

2
/s) at 1.5T

129
Xe ADC (mm

2
/s) at 1.5T

FRC at 1.5T SNR 

23.9 ± 5.0

TLC at 1.5T SNR 

27.8 ± 8.7 TLC at 3T SNR 23.5 ± 7

FRC SNR - 25.9 

± 6.3

TLC SNR 36.4 

± 6.3

FRC SNR  

25.2 ± 1.5

TLC SNR  

23.8 ± 4.6

S1 4.20 ± 1.56 5.55 ± 1.89 4.63 ± 2.08 1.70 ± 0.34 1.87 ± 0.37 2.23 ± 1.05 3.61 ± 1.19

S2 4.33 ± 1.65 5.22 ± 1.93 3.76 ± 1.47 1.49 ± 0.36 1.71 ± 0.41 2.56 ± 00.74 3.29 ± 0.72

S3 4.48 ± 1.30 5.15 ± 1.39 4.03 ± 1.93 1.70 ± 0.51 1.80 ± 0.54 2.38 ± 1.02 3.20 ± 0.96

S4 4.54 ± 1.54 5.65 ± 1.98 3.45 ± 1.35 1.39 ± 0.39 1.70 ± 0.48 2.32 ± 0.93 3.56 ± 1.17

S5 5.19 ± 1.97 5.52 ± 1.88 3.65 ± 1.57 1.33 ± 0.32 1.73 ± 0.42 2.66 ± 0.98 3.38 ± 0.81

S6 4.53 ± 1.68 5.19 ± 2.02 3.37 ± 1.45 1.81 ± 0.36 1.91 ± 0.38 2.76 ± 1.21 3.23 ± 0.74

S7 4.48 ± 1.57 5.49 ± 1.87 3.59 ± 1.44 1.49 ± 0.33 2.03 ± 0.45 N/A N/A

S8 4.10 ± 1.52 4.90 ± 1.72 N/A 1.57 ± 0.36 1.85 ± 0.43 N/A N/A

Total mean 4.48 ± 0.33 5.33 ± 0.26 3.78 ± 0.43 1.56 ± 0.17 1.83 ± 0.11 2.49 ± 0.21 3.38 ± 0.17

paired t test FRC 1.5T → TLC 

1.5T P = .0001

TLC 1.5T → TLC 3T P = .0009 FRC → TLC P = .0017 FRC → TLC P = .0015

Linear regression of 19F-C3F8 ADC (slope) 

mm2/s per cm + (intercept) mm2/s

Linear regression of 129Xe ADC (slope) 

mm2/s per cm + (intercept) mm2/s

FRC 19F-C3F8 TLC 19F-C3F8 FRC 129Xe TLC 129Xe

Posterior to anterior (inferior half 

of lungs)

0.0390 + 1.66  

r
2 = 0.980

N/A - r2 < 0.7 0.0988 + 2.62  

r
2 = 0.859

0.0310 + 3.50  

r
2 = 0.842

Posterior to anterior (superior half 

of lungs)

0.0308 + 1.50  

r
2 = 0.971

0.0168 + 1.82  

r
2 = 0.868

0.0871 + 2.31  

r
2 = 0.893

0.0326 + 3.30  

r
2 = 0.785

Notes: The mean and standard deviation of the image SNR across all volunteers is listed with the lung inflation state of the measurements. The linear gradients measured for ADC values in the anterior to posterior direction are 

provided with the exclusion criterion that the linear regression r2 > 0.7.

Abbreviations: ASC, apparent diffusion coefficient; FRC, functional residual capacity; TLC, total lung capacity; SNR, signal-to-noise ratio.
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The results from linear regression of the anteroposte-

rior anatomical gradients in ADC are presented in Table 2. 

Plots of the linear variation can be viewed in Supporting 

Information Figure S1.

4 |  DISCUSSION

4.1 | T
∗

2

The mean T∗
2
 of C3F8 in lungs of volunteers was found to 

be higher than previously reported (1.5-2.2 ms23,58). These 

previous measurements were performed as global whole 

lung spectroscopy and the returned T∗
2
 values are expected 

to be lower because of the wider B0 inhomogeneity across 

the entire lung when compared with an imaging voxel. The 

variation of T∗
2
 between volunteers is predicted to be primar-

ily dependent on the normal variations in alveolar dimen-

sions within the population59 and the susceptibility effects 

from the inhomogeneity of the tissue interfaces (differences 

in the bulk magnetic susceptibility60 at the air–tissue inter-

faces of alveoli61). Therefore, it is expected that microscopic 

susceptibility differences associated with different disease 

pathologies may also show changes in T∗
2
. Our work indicates 

that 19F T∗
2
 mapping at 1.5T is less technically challenging 

than at 3T because a longer T∗
2
 is observed at 1.5T, which is 

consistent with previous results obtained with HP gases.5,6,31

4.2 | Apparent diffusion coefficient

For C3F8, longer diffusion times are required to match the 

same length scale as those sensitized in 3He and 129Xe DWI; 

achieving these is hindered by the low T∗
2
 and SNR. Although 

a spin-echo sequence could potentially be used to mitigate 

this, 19F- C3F8 DWI with a spin-echo–based sequence would 

result in unfeasible breath-hold times because of specific 

 absorption rate constraints and RF power restrictions on  

RF-pulse duration and B1 amplitude. In addition, any further 

gains in SNR are predicted to be limited because of the trans-

mit homogeneity of the vest RF coil and the longer sequence 

TR of a spin-echo mandating reduced averaging. In future 

studies, spin-echo–based sequences could potentially be ap-

plied for the benefit of increased diffusion times.

F I G U R E  3  Apparent diffusion coefficient (ADC) maps for 19F/C3F8 in central slices for a representative volunteer measured at 1.5T. (A) 

Functional residual capacity (FRC) and (B) total lung capacity (TLC) with (C) mean ADC histogram line plots in healthy volunteers. Also, similar 

ADC maps for 129Xe at (D) FRC and (E) TLC are shown, as well as (F) histogram line plots. In histogram plots, error bars show the standard 

deviation across all volunteers and bin widths are 0.15 mm2/s and 0.3 mm2/s, respectively
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The measured in vivo ADC values are lower than the 

measured (D0 = ~2.54 mm2/s) and previously published  

(D0 = ~2.7 mm2/s26) free diffusion coefficients of C3F8 

mixed with 21% O2, showing some sensitivity to acinar diffu-

sion restriction. The in vivo healthy volunteer C3F8 ADC val-

ues are similar to those acquired from excised healthy lungs 

with C2F6 (1.8 mm2/s46). In addition, clear changes in ADC 

between FRC and TLC were observed, as well as regional 

differences caused by the gravitational gradient at FRC, but 

not at TLC. In previous work with 3He, a similar gradient in 

ADC was observed in the anteroposterior direction,37,42 that 

was reduced or not observable at TLC.39 Furthermore, pre-

viously with 129Xe in healthy volunteers, a 22% decrease in 

the mean ADC was found from the anterior to the posterior 

of the lungs in healthy volunteers, which was not observed 

in patients with chronic obstructive pulmonary disease.38 A 

decreasing gradient in the superoinferior direction has also 

been reported,37,38,42 but was not observed in this study. Two 

factors may have masked the measurement of this gradient: 

(1) the gradient depends on the posture of the imaging sub-

ject,42 and (2) regions of the lung next to the heart experience 

compression, which results in regional changes in ADC that 

have been observed in HP gas-diffusion imaging.62

Based on the observed changes with lung inflation, there 

is a strong indication from this work that the DWI parameters 

used here for in vivo 19F-C3F8 ADC mapping will be able to 

detect changes in lung microstructure in different pathologies 

where changes are larger, such as in emphysema where the 

measured 3He ADC can increase by a factor of two to three 

when compared with healthy lungs,63 or in idiopathic pulmo-

nary fibrosis where the 3He ADC can increase by a factor of 

three to five in regions of fibrotic tissue.36 Previous attempts 

at in vivo ADC measurements of C3F8 in experiments with 

a single volunteer resulted in a maximum image SNR of ap-

proximately 15,58,64 which is below the threshold set here for 

inclusion of voxels in the ADC calculation. In addition, these 

previous studies used shorter diffusion times (Δ = 1 ms) and 

smaller b-values (0.0959 s/mm2 58 and 0.0133 s/cm2,64 which 

places those measurements in the free diffusion regime. The 

reported ADC values in some regions were ≥6 mm2/s, which 

far exceeds the free diffusion coefficient and may have been a 

result of the low SNR and the weak b-values used in that work. 

In future work, ensuring that the gas mixture concentration 

in the lungs reaches full saturation of 79% perfluoropropane 

per 21% O2 is necessary because the partial pressure strongly 

influences the free diffusion coefficient (approximately D0 = 

~2.3-7.7 mm2/s for 100%-0% partial pressure with O2).

5 |  CONCLUSIONS

By utilizing improvements in receiver design, optimized imag-

ing parameters, and breathing maneuvers, three-dimensional in 

vivo ADC mapping with C3F8 in the human lungs was found to 

be feasible with a greater resolution than previously attempted. 

Thus, for the first time, systematic in vivo mapping of ADC at 

1.5T and T∗
2
 at the two clinically relevant MRI field strengths 

(3T and 1.5T) is presented for C3F8 in the lungs of healthy 

volunteers, indicating sensitivity to change in acinar airways 

dimensions. These results show promise for future studies in 

lung diseases that exhibit microstructural airway changes.
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FIGURE S1 The mean ADC in slices moving in the antero-

posterior (left) or superior-inferior (right) directions, sepa-

rated for either the superior or inferior halves or the anterior 

or posterior halves of the lungs, respectively. The variation in 

ADC is plotted for 19F/C3F8 at A, FRC and B, TLC, as well 

as for 129Xe at C, FRC and D, TLC
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