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Autophagy is a key element of innate immune response against invading pathogens
including Mycobacterium tuberculosis (M. tuberculosis). The emerging roles of
microRNAs in regulating host antimicrobial responses against M. tuberculosis have
gained widespread attention. However, the process by which miRNAs specifically
influence antibacterial autophagy during mycobacterial infection is largely
uncharacterized. In this study, we demonstrate a novel role of miR-106a in regulating
macrophage autophagy againstM. tuberculosis. H37Ra infection leads to downregulation
of miR-106a in a time- and dose-dependent manner and concomitant upregulation of its
three targets (ULK1, ATG7, and ATG16L1) in THP-1 macrophages. MiR-106a could
inhibit autophagy activation and antimicrobial responses to M. tuberculosis by targeting
ULK1, ATG7, and ATG16L1. Overexpression of miR-106a dramatically inhibited H37Ra-
induced activation of autophagy in human THP-1 macrophages, whereas inhibitors of
miR-106a remarkably promoted H37Ra-induced autophagy. The inhibitory effect of miR-
106a on autophagy process during mycobacterial infection was also confirmed by
Transmission Electron Microscope (TEM) observation. More importantly, forced
expression of miR-106a increased mycobacterial survival, while transfection with miR-
106a inhibitors attenuated the survival of intracellular mycobacteria. Taken together, these
data demonstrated that miR-106a functioned as a negative regulator in autophagy and
antimicrobial effects by targeting ULK1, ATG7, and ATG16L1 during M. tuberculosis
infection, which may provide a potential target for developing diagnostic reagents or
antibacterials against tuberculosis.
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INTRODUCTION

Tuberculosis (TB) is a communicable disease that is one of the
top 10 causes of death worldwide and the leading cause of death
from a single infectious agent (1). Mycobacterium tuberculosis
(M. tuberculosis) infects approximately one third of the global
population, makingM. tuberculosis the leading bacterial cause of
death in humans worldwide (2). However, only about 10% of
individuals infected withM. tuberculosis develop active TB, while
the majority of cases, about 90%, exhibit latent infection,
suggesting a crucial role for host innate immunity in
controlling M. tuberculosis infection (3). As the first line of
immune defense against M. tuberculosis, macrophages not only
recognize M. tuberculosis by pattern recognition receptors
(PRRs), but also present bacterial peptide from M. tuberculosis
to T lymphocytes, thus resulting in the activation of adaptive
immune responses against M. tuberculosis (4). Moreover, the
activation of antibacterial autophagy through ubiquitination of
M. tuberculosis promotes the innate immune response againstM.
tuberculosis infection (5). Upon infection by M. tuberculosis,
macrophages can launch a variety of innate immune defenses
against M. tuberculosis (6, 7). In contrast, M. tuberculosis utilizes
many strategies to evade host defense response for surviving and
persisting within human macrophages (8). For instance, M.
tuberculosis can arrest normal phagosome maturation, and
avoid fusion with lysosomes to escape degradation by
lysosomal hydrolases (9, 10).

Autophagy is widely recognized as a cellular process that can
encapsulate macromolecules, organelles, or intracellular
pathogens in double membrane-layered vesicles and deliver
them to lysosomes for degradation (11). A number of
autophagy-related genes (ATGs) orchestrate signaling events
that regulate autophagy flux including formation of
phagophore, autophagosome formation and phagolysosomal
maturation during microbial invasion (12, 13). Among the
ATGs, ULK1, ATG7, and ATG16L1 are essential for autophagy.
ULK1 is a key component in the ULK1 complex which is crucial
for initiation and formation of autophagosome (14). ATG7 has
dual functions in autophagy regulation. First, ATG7 is essential for
formation of a functional autophagosome by conjugating ATG5 to
ATG12 as an E1-like enzyme. Second, ATG7 conjugates LC3-I to
phosphatidylethanolamine, forming a mature autophagosomal
membrane protein, LC3-II (15). Moreover, ATG16L1 is a
component of the ATG12–ATG5–ATG16L1 complex, which
localizes to phagophore membranes and stimulates the transfer
of LC3 from ATG3 to PE (16).

MicroRNAs (miRNAs) are a growing family of small non-
coding RNAs that function as post-transcriptional regulators of
gene expression by targeting mRNAs for translational repression
or cleavage (17). Additionally, miRNAs have been proven to be
involved in a variety of biological pathways, including
development, homeostasis and diseases (18, 19). A growing
body of evidence suggests that miRNAs also play important
roles in regulating autophagy, especially in tumors (20, 21).
However, the potential roles of miRNAs in regulating
autophagy process during M. tuberculosis infection need to be
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further explored. In this study, we characterized the potential
role of miR-106a in modulating autophagy process and affecting
bacterial clearance in macrophages. Our study demonstrated that
miR-106a expression was significantly decreased after
mycobacterial infection in human THP-1 macrophages.
Downexpression of miR-106a increased the expression levels of
ULK1, ATG7, and ATG16L1 and promoted formation of
autophagosomes in human THP-1 macrophages, thus
attenuating bacterial survival. However, forced expression of
miR-106a had the opposite effect. These findings provide a
better understanding of miRNAs on regulating innate
immunity and host defense against M. tuberculosis.
MATERIALS AND METHODS

Selection of Microarray Datasets and
Analysis
The miRNA microarray dataset (GSE119494) was selected for
analysis. GSE119494 contains miRNA expression data from
PBMCs of three healthy donors and three active pulmonary
tuberculosis (TB) patients. The miRNA expression profiling file
was obtained, and the expression data of miR-17 family (miR-17,
miR-20a, miR-20b, miR-106a, miR-106b, and miR-93) was
selected for analysis. The data of miR-17 family were mean
centered and represented by a heat map using Multi Experiment
Viewer software (MeV).

Cells and Bacterial Culture
The human monocyte/macrophage cell line THP-1, human
embryonic kidney 293T cells (HEK 293T), Mycobacterium
bovis BCG and M. tuberculosis H37Ra were obtained from the
American Type Culture Collection (ATCC). The THP-1 cells
were cultured in suspension using RPMI1640 (GIBCO)
supplemented with 10% fetal bovine serum and gentamycin.
THP-1 cells were differentiated into adherent, well-spread
macrophages with 100 nM phorbol 12-myristate 13-acetate
(PMA, Sigma) to the well and maintenance for 3 days. BCG or
H37Ra was grown in Middlebrook 7H9 broth medium (Goybio,
China) supplemented with albumin dextrose catalase supplement.

Cell Transfections and Chemical Reagent
Treatment
The miR-106a mimics, miR-106a inhibitor, ATG7 siRNA,
ATG16L1 siRNA, and ULK1 siRNA were purchased from
GenePharma biotechnology company. To assay luciferase
activity, HEK 293T cells were cotransfected with the pmirGLO
luciferase constructs (WT or Mut) and miR-106a mimics or
miR-106a inhibitor using Lipofectamine 2000 according to the
manufacturer’s instruction. For autophagy analysis, THP-1
macrophages were transfected with 50 nM mimic negative
control (mimic nc) or miR-106a mimics; inhibitor negative
control (inhibitor nc) or miR-106a inhibitor; 50 pmol ATG7
siRNA, ATG16L1 siRNA, or ULK1 siRNA according to the
manufacturer’s instructions. Several chemical reagents were
January 2021 | Volume 11 | Article 610021
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also used to treat THP-1 macrophages: a lysosome inhibitor,
bafilomycin A1 (100 nM; Baf A1, Selleck); An autophagy
inducer, rapamycin (50 mg/ml; Rapa, Solarbio Science &
Technology Co.).

RNA Preparation, Real-Time PCR, and
Western Blotting
For quantitative real-time PCR (RT-PCR) analysis, total RNA
from cells was isolated using RNA simple Total RNA Kit
(Tiangen Biotech), and miRNAs were performed using the
miRcute miRNA isolation kit (Tiangen Biotech) according to
the manufacturer’s instructions. RT-PCR was performed using
Hairpin-it™ miRNAs RT-PCR Quantitation Kit (GenePharma,
China) and samples were amplified for 40 cycles as follows: 95°C
for 12 s, 62°C for 40 s, and 72°C for 30 s. The miR-106a
expression was calculated relative to U6 snRNA. For Western
blotting, proteins were loaded onto 12 or 15% SDS-PAGE gels
and transferred to a polyvinylidene difluoride membrane
(PVDF). Membranes were blocked in 5% non-fat milk in
PBST for 1 h, and incubated with anti-ULK1(Abcam,
ab167139), anti-ATG16L1 (Abcam, ab188642), anti-ATG7
(Abcam, ab52472), anti-LC3 (Abcam, ab51520), and anti-
GAPDH (Abcam, ab245355). Immunoreactive band was
performed using ECL reagent (Amersham Pharmacia) and
quantified by using Image J software (NIH).

Bioinformatics Analysis, Plasmid
Constructs, and Luciferase Assay
To perform miRNA profiling assays, we downloaded a miRNA
expression dataset (GSE119494). The raw data are available on
the Gene Expression Omnibus website (http://www.ncbi.nlm.
nih.gov/geo/). The heatmap was analyzed by using Multiple
Experiment Viewer version 4.9.0. miRNA targets were
performed using miRanda (http://www.microrna.org) and
TargetScan (http://www.targetscan.org). About 500 bp 3′-UTR
fragments from ULK1, ATG16L1, or ATG7, containing the miR-
106a-binding elements, were produced by PCR and were
inserted into the pmirGLO dual-luciferase reporter vector
(Promega). Mutant derivatives of the construct were also
inserted into the pmirGLO dual-luciferase reporter vector
(Promega). The HEK 293T cells were cultured into a 12-well
plate and cotransfected with the luciferase constructs (WT or
Mut) together with the miR-106a mimics or miR-106a
inhibitors, respectively. Luciferase assays were performed at
24 h after transfection using the Dual-Luciferase Reporter
Assay Kit (TransGen Biotech, Beijing).

Immunofluorescence Staining and
Confocal Microscopy Analysis
The THP-1 macrophages were fixed with 4% paraformaldehyde
(Sigma) followed by permeabilization with 0.2% Triton X-100
(Thermo Fisher Scientific). Cells were blocked with 3% BSA and
labelled with Rabbit polyclonal to LC3 antibody (Abcam,
ab51520) and visualized by Alexa Fluor 488-conjugated
Affinipure Goat Anti-Rabbit IgG (Proteintech). Nuclei were
stained with DAPI. The fluorescence images of cells were
Frontiers in Immunology | www.frontiersin.org 3
acquired and examined using a confocal microscope
(Olympus, Japan). To quantify autophagy, the number of LC3
punctate dots was calculated by ImageJ Software (Version 1.49).
At least 10 cells per experimental group were counted and each
condition was assayed in triplicate.

Transmission Electron Microscopy
The THP-1 macrophages were collected and fixed in 2%
glutaraldehyde, and then postfixed with 1% OsO4 for 2 h.
After dehydration in a graded series of ethanol, the samples
were transferred to propylene oxide and embedded in Epon.
Ultrathin sections, about 80 nm thick, were cut and stained with
uranyl acetate and lead citrate. Imaging was performed by a
transmission electron microscopy (TEM, Hitachi H-7650). For
each sample, group, 15 cellular cross-sections were counted.

Colony-Forming Unit Assay
To assess bacterial viability within human THP-1 macrophages,
Colony-Forming Unit (CFU) assay was performed. Briefly, the
THP-1 macrophages were transfected with miR-106a mimic,
miR-106a inhibitor, mimic nc or inhibitor nc for 24 h, or treated
with rapamycin plus miR-106a for 24 h. Moreover, the THP-1
macrophages were also transfected with miR-106a mimic in the
presence of rapamycin (50 mg/ml) for 24 h. The cells were
infected with H37Ra at a MOI of 10 for 3 h, and then washed
with PBS to remove extracellular H37Ra. After that, the infected
cells were cultured for an additional 24 h. Quantitative culturing
was performed using 10-fold serial dilutions on Middlebrook
7H10 agar plates. Plates were incubated for 2 weeks, and colonies
on plates were counted.

Statistical Analysis
The results are represented as mean ± SD of independent
experiments. Statistical analyses were performed using two-
tailed Student’s t-test. Significant differences were assigned to p
values <0.05, <0.01 and <0.001, denoted by *, **, and
***, respectively.
RESULTS

miR-106a Expression in Human
Macrophages After Mycobacterial
Infection
To evaluate the expression profiles of miR-17 family miRNAs in
peripheral blood mononuclear cells (PBMCs) from patients with
active pulmonary tuberculosis (TB), we analyzed miRNA
microarray datasets (GSE119494) from the Gene Expression
Omnibus (GEO) public database. The heatmap revealed that
miR-106a and miR-17 showed the great magnitude of
downregulation among the miR-17 family miRNAs (Figure
1A). In addition, we compared the expression of miR-106a and
mir-17 in PBMCs from active pulmonary tuberculosis (TB)
patients and healthy controls (HCs). The expression levels of
miR-106a and miR-17 were significantly lower in PBMCs from
active pulmonary TB patients than in HCs (Figure 1B). Previous
January 2021 | Volume 11 | Article 610021
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studies have showed that miR-17 was downregulated in
macrophages and regulated autophagy by targeting Mcl-1 and
STAT3 during mycobacterial infection (22). As miR-106a’s
functional role in regulation of M. tuberculosis infection
remains uncharacterized, we choose miR-106a for our further
study. We used M. tuberculosis H37Ra or Mycobacterium bovis
BCG to infect the differentiated THP-1 macrophages, and found
that both H37Ra (Figures 1C, D) and BCG (Figures 1E, F)
strains could significantly reduce miR-106a expression in a time-
and dose-dependent manner.
Frontiers in Immunology | www.frontiersin.org 4
miR-106a Directly Targets ULK1, ATG7,
and ATG16L1
To establish a direct molecular link, we next examined the ability
of miR-106a to regulate ULK1, ATG7, and ATG16L1. As shown
in Figure 2A, ULK1 holds a single 9mer seed match to miR-106a
within the 3′-UTR while ATG16L1 and ATG7 contain a 7mer
site and an 8mer site respectively. Moreover, more than three
point mutations were introduced into the predicted miR-106a
binding motifs. Overexpression of miR-106a significantly
inhibited luciferase activity driven by the 3′-UTR constructs
A
B

D

E F

C

FIGURE 1 | miR-106a is reduced after mycobacterial infection in vitro. (A) Heatmap analysis shows downregulated (green) and upregulated (red) miRNAs in miR-17
family from tuberculosis (TB) patients and healthy controls (HCs) in the GEO public databases (GSE119494). (B) Expression levels of miR-17 family miRNAs in TB
patients and HCs from the GEO public databases (GSE119494). Fold change was calculated by dividing the average signal intensity of TB patients by that of HCs.
(C) The differentiated THP-1 macrophages were infected with H37Ra at a MOI of 10 for the indicated time points, and miR-106a expression was subsequently
determined using qRT-PCR. The miR-106a expression levels are indicated relative to expression at 0 h. (D) The differentiated THP-1 macrophages were infected
with H37Ra at indicated MOIs for 24 h. The miR-106a expression levels are indicated relative to expression without H37Ra infection. (E) The differentiated THP-1
macrophages were infected with BCG (MOI of 10) for the indicated time points, and miR-106a expression was subsequently determined using qRT-PCR. The miR-
106a expression levels are indicated relative to expression at 0 h. (F) The differentiated THP-1 macrophages were infected with BCG at indicated MOIs for 24 h. The
miR-106a expression levels are indicated relative to expression without BCG infection. All data above represent the means ± SD from at least three independent
experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
January 2021 | Volume 11 | Article 610021
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(WT), while the mutant 3′-UTR constructs (Mut) either
abolished or significantly reduced this effect. Additionally,
miR-106a inhibitor significantly strengthened luciferase activity
in HEK 293T cells expressing the 3′-UTR reporters, whereas
mutation of the miR-106a-binding site abrogated this promotion
of luciferase activity (Figure 2B), confirming that ULK1, ATG7,
and ATG16L1 are putative targets of miR-106a. In order to
directly address whether miR-106a binds to the 3′-UTR of target
mRNAs, we generated three GFP reporter vectors containing the
putative miR-106a binding sites within the 3′-UTRs of ULK1,
ATG16L1 and ATG7. GFP fluorescence decreased significantly
in cells co-transfected with miR-106a mimics and binding site-
containing GFP reporter vectors. However, GFP fluorescence did
not decrease significantly in cells transfected with mimic nc or
with GFP reporters lacking binding sites (Figure 2C). Finally, we
examined the effect of miR-106a on the endogenous ULK1,
ATG7, and ATG16L1 proteins in THP-1 macrophages. High
levels of miR-106a were detected in THP-1 macrophages after
Frontiers in Immunology | www.frontiersin.org 5
transfection with the miR-106a mimics. However, transfection
with miR-106a inhibitor significantly reduced the expression
levels of miR-106a (Figure 2D). As evident from Figure 2E,
overexpression of miR-106a results in a significant decrease in
the expression levels of ULK1, ATG7, and ATG16L1. However,
miR-106a inhibitor results in an obvious upregulation of
these proteins.
miR-106a Inhibits Induction of Autophagy
in Mycobacterium tuberculosis-Infected
Macrophages by Targeting ULK1, ATG7,
and ATG16L1
To identify whether autophagy could be induced during M.
tuberculosis infection, the LC3-II expression was investigated,
which is considered to be an accurate indicator for
autophagosome formation (23, 24). The result showed that
there was a marked increase in LC3-II expression with H37Ra
A

B

D

E

C

FIGURE 2 | miR-106a directly targets ULK1, ATG7, and ATG16L1. (A) Predicted binding between miR-106a and the seed matches in ULK1, ATG7 and ATG16L1
3′-UTRs. The sequence of the ULK1, ATG7, and ATG16L1 3′-UTR seed mutants used for the reporter assays. (B) miR-106a regulates ULK1, ATG7, and ATG16L1
3′-UTR reporters. Luciferase reporter assays 24 h after transfection with indicated pmirGLO dual-luciferase reporter vector, co-transfected with miR-106a mimics,
miR-106a inhibitor or relevant negative controls (nc). (C) Representative fluorescent microscopic image confirm that GFP expression of the pEGFP-ULK1, pEGFP-
ATG16L1 and pEGFP-ATG7 reporters was inhibited by miR-106a. HEK-293 cells were co-transfected with the GFP reporter vectors and compared with cells
transfected with a mimic or control of miR-106a. Scale bars: 10 mm. (D) The THP-1 macrophages were transfected with miR-106a mimics, mimic nc, miR-106a
inhibitor or inhibitor nc. The expression levels of miR-106a were measured by qRT-PCR. (E) miR-106a decreases ULK1, ATG7 and ATG16L1 protein levels. Western
blot analysis 24 h after transfection with miR-106a mimics, mimic nc, miR-106a inhibitor or inhibitor nc. The ULK1, ATG7 and ATG16L1 bands were quantified
relative to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Data represent the means ± SD from at least three independent experiments. *p < 0.05, **p <
0.01, ***p < 0.001.
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infection compared with an uninfected control (Figure 3A). In
addition, bafilomycin A1 (Baf-A1) challenge led to further
accumulation of LC3-II in THP-1 macrophages after H37Ra
infection (Figure 3A), indicating that H37Ra infection promote
autophagic processes. To further confirm that M. tuberculosis
induce autophagy in THP-1 macrophages, the LC3-II puncta
formation was detected by confocal microscopy. H37Ra-infected
THP-1 macrophages displayed a significant increase in the
number of LC3 puncta compared with uninfected THP-1
macrophages (Figure 1B). These results suggest that a
complete autophagic response is induced after THP-1
macrophages were infected with H37Ra. To further explore
whether miR-106a decreases endogenous ULK1, ATG7, and
ATG16L1 during mycobacterial infection, H37Ra-infected
THP-1 macrophages were transfected with miR-106a mimic or
inhibitor, and protein levels of ULK1, ATG7, and ATG16L1 were
measured by Western blot. As shown in Figure 3C, miR-106a
overexpression decreased the protein levels of ULK1, ATG7, and
ATG16L1 in uninfected and H37Ra-infected THP-1
Frontiers in Immunology | www.frontiersin.org 6
macrophages. In contrast, these protein levels were
significantly increased in uninfected and H37Ra-infected THP-
1 macrophages, after endogenous miR-106a was blocked by the
transfection of a miR-106a inhibitor. To test the hypothesis that
miR-106a regulated autophagy in macrophages during M.
tuberculosis infection, we tested the expression of LC3 by
Western blot and counted LC3 puncta by fluorescence
microscopy. Western blot results showed that transfection with
miR-106a mimics decreased, whereas transfection with miR-
106a inhibitor increased, the LC3-II expression in THP-1
macrophages before and after H37Ra infection (Figures 3D, E).

The results of confocal microscopy indicated that miR-106a
mimics significantly decreased the number of LC3 puncta in
THP-1 macrophages (Figures 4A–C). Conversely, the number of
LC3 puncta was significantly increased in uninfected and
H37Ra-infected THP-1 macrophages after transfection with
miR-106a inhibitor, compared with the control condition
(Figures 4A–C). Transfection with miR-106a mimics, ATG7
siRNA, ATG16L1 siRNA or ULK1 siRNA significantly reduced
A

B

D

E

C

FIGURE 3 | miR-106a inhibits autophagy induction in macrophages by targeting ULK1, ATG7 and ATG16L1. (A) THP-1 macrophages were treated with Baf A1
(100 nM) for 2 h, and then were uninfected or infected with H37Ra. LC3-II expression was determined by Western blot, normalized to GAPDH expression. (B) THP-
1 macrophages were uninfected or infected with H37Ra for 24 h. The cells were fixed and incubated with rabbit anti-LC3 antibody, and stained with goat anti-rabbit
IgG (Alexa Fluor 488; green) to detect LC3 puncta by confocal microscopy. Scale bars: 5 mm. The number of LC3 puncta in each cell was also counted. (Uninfected,
n = 20; Infected, n = 20). Experiments performed in triplicate. **p < 0.01. (C) THP-1 macrophages were transfected with an miR-106a mimic or mimic nc; miR-106a
inhibitor or inhibitor nc, and then infected with H37Ra for 24 h. ULK1, ATG7 and ATG16L1 protein levels were determined by Western blot, normalized to GAPDH
expression. (D, E) The ratio of LC3-II to LC3-I were also determined by Western blot, normalized to GAPDH expression. Data represent the means ± SD from at
least three independent experiments. *p < 0.05, **p < 0.01.
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the protein expression levels of ATG7, ATG16L1, and ULK1
(Figures 5A–C), the LC3-II expression (Figures 5D, E) and the
number of LC3 puncta (Figures 6A, B), in THP-1 macrophages
with rapamycin, indicating that the siRNAs of ATG7, ATG16L1,
and ULK1, and miR-106a mimics can inhibit autophagy.
Collectively, these results indicate that miR-106a inhibit
autophagy in macrophages.

TEM Confirms Repression of Autophagy
by miR-106a
In order to gain insight into the regulation effect of miR-106a
on autophagy during mycobacterial infection, we perform
Transmission Electron Microscopy (TEM) to detected and
quantified autophagosomes and autolysosomes. Notably,
TEM images revealed an accumulation of numerous
autophagosomes and autolysosomes in the cytoplasm of
H37Ra-infected THP-1 macrophages transfected with miR-
106a inhibitor. However, miR-106a mimics decreased the
number of autophagosomes and autolysosomes, confirming
our TEM analysis (Figures 7A, C). Moreover, transfection
with miR-106a mimics could decrease the number of
Frontiers in Immunology | www.frontiersin.org 7
autophagosomes and autolysosomes per cellular cross-section
in rapamycin-treated cells (Figures 7B, D).

miR-106a Promotes H37Ra Survival in
Macrophages by Inhibiting Autophagy
The effects of miR-106a on intracellular survival of M.
tuberculosis in human THP-1 macrophages were analyzed by
colony-forming unit (CFU) assay. Importantly, miR-106a
mimics promoted (Figure 8A), whereas miR-106a inhibitor
decreased (Figure 8B), intracellular H37Ra growth, compared
with the corresponding control conditions. These results support
the hypothesis that miR-106a facilitates intracellular survival of
H37Ra in macrophages. Moreover, transfection with miR-106a
mimics plus rapamycin could promote H37Ra survival
compared to treatment with rapamycin in H37Ra-infected
THP-1 macrophages (Figure 8A), indicating that miR-106a
can inhibit rapamycin-induced autophagy. In addition,
transfection with mixed siRNA plus miR-106a inhibitor could
not inhibit H37Ra survival compared to treatment with mixed
siRNA (Figure 8B), indicating that miR-106a inhibitor can
decrease M. tuberculosis CFU via autophagy.
A
B

C

FIGURE 4 | miR-106a mimics significantly decreased the number of LC3 puncta in macrophages. (A) THP-1 macrophages were transfected with miR-106a mimic
or inhibitor, and then treated with H37Ra for 24 h. The THP-1 macrophages were fixed and incubated with rabbit anti-LC3 antibody, and stained with goat anti-
rabbit IgG (Alexa Fluor 488; green) to detect LC3 puncta by confocal microscopy (left, uninfected; right, infected). Scale bars: 1 mm. (B, C) Quantitative data of LC3
puncta analysis. (Mimic nc, n = 20; Inhibitor nc, n = 20; Mimic, n = 20; Inhibitor, n = 20). Data represent the means ± SD from three independent experiments. **p <
0.01, ***p < 0.001.
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DISCUSSION

Increasing evidence has demonstrated that autophagy plays an
essential role in the host innate immune responses against
mycobacterial infection (25, 26). However, the molecular
mechanism of autophagy-mediated mycobacterial clearance
remains unclear. There is growing evidence that miRNAs are
regulators of genes involved in many aspects of immune system
function, including differentiation of immune cells (27) and
regulation of the host immune defense mechanisms against
microbial infection (28). However, the immune regulatory
functions of miRNAs in autophagy-mediated mycobacterial
clearance, especially miR-17 family miRNAs, need to be
further explored. In this study, we describe a novel role of
miR-106a in modulating autophagy process and mycobacterial
Frontiers in Immunology | www.frontiersin.org 8
elimination in human macrophages by targeting ULK1, ATG7,
and ATG16L1, which may provide a better understanding of the
host innate immune responses against M. tuberculosis.

miR-106a is a member of miR-17 family miRNAs, which are
broadly conserved and involved in a variety of biological
pathways (29, 30). Evidence is mounting that miR-106a plays
key regulatory roles in autophagy, especially in cancer. For
instance, miR-106a inhibits tumor cell death in colorectal
cancer by targeting ATG7 (31). miR-106a suppresses ULK1
expression and thereby sensitizes lung cancer cells to Src-TKI
treatment (32). Moreover, miR-106a targets the important
autophagy gene ULK1 in acute myeloid leukemia cells (33).
Most importantly, a research has shown that miR-106a regulates
macrophage inflammatory responses by targeting SIRPa,
indicating a potential role of miR-106a in the host immune
A B

D E

C

FIGURE 5 | miR-106a and the siRNAs of ATG7, ATG16L1 and ULK1 can inhibit the expression of LC3-II. (A–C) The THP-1 macrophages were treated with 50 mg/
ml rapamycin for 2 h, and then transfected with miR-106a mimics, ATG7 siRNA, ATG16L1 siRNA or ULK1 siRNA for 24 h. After that, the protein levels of ATG16L1,
ATG7 and ULK1 was determined by Western blot. (D) The THP-1 macrophages were treated with 50 mg/ml rapamycin for 2 h, and then transfected with miR-106a
mimics, or mixture of ATG7 siRNA, ATG16L1 siRNA and ULK1 siRNA for 24 h. After that, LC3-II expression was determined by Western blot. (E) The THP-1
macrophages were transfected with miR-106a mimics, or mixture of ATG7 siRNA, ATG16L1 siRNA and ULK1 siRNA for 24 h. After that, LC3-II expression was
determined by Western blot. Data represent the means ± SD from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
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response (34). However, the exact role of miR-106a in human
macrophages during M. tuberculosis infection remains largely
unclear. Indeed, our study showed that miR-106a functioned as a
negative regulator in autophagy responses duringM. tuberculosis
infection, and inhibition of miR-106a expression promoted
autophagy process to facilitate mycobacterial clearance.

Furthermore, we investigated the molecular mechanism by
which miR-106a regulates autophagy responses in
mycobacterial infected macrophages. We identified that
ULK1, ATG16L1 and ATG7 are targets for miR-106a. ULK1,
ATG7, and ATG16L1 are essential for autophagy. ULK1 can
function in a complex with at least three protein partners:
FIP200, ATG13 and ATG101. The formation of the
autophagosome is mediated by the ULK1 complex (14).
ULK1-deficient cells increased M. tuberculosis replication,
and decreased selective autophagy (35). ATG7 is a master
regulators of autophagy process, which is involved in
autophagosome formation and vesicle progression (15).
ATG7 knockout mice displayed increased susceptibility to
Frontiers in Immunology | www.frontiersin.org 9
Klebsiella pneumoniae infection, with decreased survival
rates, increased bacterial burdens, and intensified lung injury
(36). Moreover, ATG7-deficient macrophages exhibited
enhanced mycobacterial uptake and growth by modulating
the expression of scavenger receptors, and ATG7 knockout
mice exhibited increased susceptibility to mycobacterial
infection (37). ATG16L1 takes part in the elongation of the
autophagosomal membrane (16). It has been reported that
ATG16L1 conditional knockout mice exhibit defective
autophagy and are more susceptible to Salmonella infection
(38). Our study indicates that miR-106a downregulates ULK1,
ATG7, and ATG16L1 proteins, thus inhibiting autophagy
process in human macrophages.

Autophagy is a crucial defense immune response after the
encounter of intracellular bacterial infection, including M.
tuberculosis (39). Major steps in the process of autophagy
contain initiation, nucleation, elongation, and autophagosome
maturation as well as fusion of autophagosomes with lysosomes
(40). Recent studies provide evidence that several miRNAs
A

B

FIGURE 6 | The siRNAs of ATG7, ATG16L1 and ULK1 inhibited autophagosome formation. (A) The THP-1 macrophages were treated with 50 mg/ml rapamycin for
2 h, and then transfected with ATG7 siRNA, ATG16L1 siRNA, ULK1 siRNA or miR-106a mimics for 24 h. After that, the THP-1 macrophages were fixed and
incubated with Rabbit Anti-LC3 antibody, followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG. LC3 puncta formation was then detected by confocal
microscopy. (B) Quantitative data of LC3 puncta analysis. (Rapa, n = 10; Rapa plus miR-106a mimics, n = 10; Rapa plus ATG7 siRNA, n = 10; Rapa plus ATG16L1
siRNA, n = 10; Rapa plus ULK1 siRNA, n = 10). Data represent the means ± SD from three independent experiments. ***p < 0.001.
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modulate autophagy process during mycobacterial infection
(41). For example, miR-125a inhibits autophagy process and
antimicrobial responses through targeting UVRAG during
mycobacterial infection (42). miR-155 accelerated the
autophagic response to eliminate intracellular Mycobacteria by
targeting Rheb in macrophages (43). However, miR-155 subverts
autophagy by targeting ATG3 in human dendritic cells (44). It is
reported that miR-17-5p regulates autophagy inM. tuberculosis-
infected macrophages by targeting Mcl-1 and STAT3 (22). miR-
27a promotes the intracellular survival of M. tuberculosis by
regulating Ca2+-associated autophagy (45). miR-144-5p inhibits
antibacterial autophagy and the innate host immune response
against M. tuberculosis in human monocytes and macrophages
by targeting DRAM2 (46). M. tuberculosis can inhibit integrated
pathways involved in autophagy to support bacterial intracellular
Frontiers in Immunology | www.frontiersin.org 10
survival and persistence by inducing miR-33 and miR-33* (47).
Another study showed that miR-20a inhibits autophagic
response and favors BCG survival in murine macrophages by
targeting ATG7 and ATG16L1 (48). In the present study, miR-
106a decreased in differentiated THP-1 macrophages after
H37Ra infection. Functional assays demonstrated that
inhibition of miR-106a promoted the processing of LC3 and
the accumulation of LC3 puncta in uninfected and H37Ra-
infected THP-1 macrophages, which indicates that functioned
as a negative regulator of autophagy during mycobacterial
infection. The inhibitory effect of miR-106a on autophagy
during mycobacterial infection was also confirmed by TEM
observation. In addition, we found that inhibited expression of
miR-106a decreased the intracellular survival of H37Ra, whereas
mimics of miR-106a increased mycobacterial survival, indicating
A B

DC

FIGURE 7 | The inhibitory effect on autophagy by miR-106a was confirmed by TEM detection. (A) The THP-1 macrophages were transfected with miR-106a mimic
or miR-106a inhibitor, and then infected with H37Ra for 24 h. Representative images of TEM. Scale bars represent 2 mm. Autophagosomes or suspected
autolysosomes denoted by red arrow heads. H37Ra indicated by yellow triangle. (B) The THP-1 macrophages were treated with 50 mg/ml rapamycin for 2 h, and
then transfected with miR-106a mimics for 24 h. Representative images of TEM. Scale bars represent 2 mm. Autophagosomes or suspected autolysosomes denoted
by red arrow heads. (C, D) The number of autophagosomes per cross-sectioned cell was counted (n = 15). Data represent the means ± SD from three independent
experiments. **p < 0.01, ***p < 0.001.
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that downregulation of miR-106a promoted autophagy process
as a novel mechanism for host defense against M.
tuberculosis infection.

Overall, our study reveals a novel pathway through which
host can promote autophagic response to facilitate mycobacterial
clearance by reducing miR-106a. Furthermore, miR-106a
performs the regulation of autophagy by targeting ULK1,
ATG16L1 and ATG7 after mycobacterial infection (Figure 9).
This study reveals a previously unrecognized role of miR-106a in
Frontiers in Immunology | www.frontiersin.org 11
autophagy regulation during mycobacterial infection, which may
provide a potential target for diagnosis and treatments
of tuberculosis.
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