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ABSTRACT

ASASSN-15lh is the intrinsically brightest transient observed to date. Despite being the subject of concerted photometric and

spectroscopic observing campaigns, there is still significant debate about the true nature of this transient and the mechanism

responsible for its great luminosity. Here we report five epochs of imaging polarimetry and two epochs of spectropolarimetry

conducted with the ESO Very Large Telescope (VLT) FOcal Reducer and low dispersion Spectrograph (FORS) polarimeter,

spanning +28–91 d (rest frame) with respect to the light-curve maximum. The overall level of polarization across this period is

seen to be low ∼0.5–0.8 per cent, however at +51.6 d, approximately corresponding to a dip in the ultraviolet (UV) photometric

light curve, the polarization is seen to briefly rise to 1.2 per cent in the observed V band. We discuss this behaviour in the context

of previous polarimetric observations of superluminous supernovae (SLSNe) and tidal disruption events (TDEs). Although the

level of polarization could be consistent with polarization observed for SLSNe, the behaviour around the UV light-curve dip

could also be consistent with a TDE observed almost edge on.

Key words: techniques: polarimetric – stars: black holes – supernovae: general.

1 IN T RO D U C T I O N

Polarimetry provides a unique insight into the nature of transients that

is otherwise inaccessible to ordinary photometry and spectroscopy.

The observed polarization properties of explosive transients, such

as supernovae (SNe), provide a measure of their geometries in the

plane of the sky at large distances, far beyond the capability of any

current or planned imaging facility (for a review see Wang & Wheeler

2008). The level of polarization also provides a record of the journey

of photons through the ejecta and towards us, the observers, as

they interact with the exploded ejecta and with circumstellar and

interstellar dust; as such, polarimetry can also potentially reveal the

underlying physical processes at work in the propagation of photons.

ASASSN-15lh is intrinsically the brightest transient observed

to date, reaching a peak absolute magnitude of Mu = −23.5 mag

(Dong et al. 2016). The event was first identified by the All-

Sky Automated Survey for Supernovae (ASAS-SN; Nicholls et al.

2015),1 and subsequently determined to be exceptionally luminous

(Dong et al. 2015). Based on their follow-up campaign of this

object, Dong et al. (2016) concluded that this object was the most

luminous ever detected superluminous supernova (SLSN) by a factor

of 2. Another study by Leloudas et al. (2016), however, suggested

that the luminosity of ASASSN-15lh may have arisen instead, not

from the terminal explosion of a star, but from the tidal disruption

[a tidal disruption event (TDE)] of a star by a rapidly spinning

⋆ E-mail: j.maund@sheffield.ac.uk
1http://www.astronomy.ohio-state.edu/asassn/index.shtml

supermassive black hole. The true nature of ASASSN-15lh remains

hotly debated, as the photometric and spectroscopic observations do

not conclusively point to one specific scenario.

Here we present seven (five imaging and two spectra) epochs

of polarimetric observations of ASASSN-15lh, spanning ∼28–91 d

after the light-curve maximum (at MJD 57178.5; Dong et al.

2016). ASASSN-15lh was associated with the galaxy APMUKS(BJ)

B215839.70–615403.9 (Nicholls et al. 2015), for which we adopt the

redshift z = 0.2326.

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N S

Polarimetric observations of ASASSN-15lh were conducted with

the European Southern Observatory (ESO) Very Large Telescope

(VLT) FOcal Reducer and low dispersion Spectrograph (FORS;

Appenzeller et al. 1998). A log of the imaging and spectropolari-

metric observations is presented in Table 1. The FORS instrument

functions as a dual-beam spectropolarimeter and all observations

used the half-wavelength retarder plate at four position angles (0◦,

45◦, 22.◦5, and 67.◦5) and a Wollaston prism to measure the linear

Stokes parameters Q and U. The value of the degree of polarization,

determined directly from the observations, may be overestimated

and required a correction. We adopted the maximum probability

estimator of the true polarization from Simmons & Stewart (1985), as

implemented following the expression of Wang, Wheeler & Höflich

(1997).

The imaging polarimetric observations (in the IPOL mode) were

all conducted using the v HIGH filter, centred on 5570 Å with an

effective full width at half-maximum of 1235 Å and were reduced

C© 2020 The Author(s)
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Polarimetry of ASASSN-15lh 3731

Table 1. Log of polarimetric observations of ASASSN-15lh

with VLT FORS.

Date Phasea Modeb Exp. time

(UT) (d) (s)

2015 July 10.26 28.2 IPOL 2 × 4 × 100

2015 July 16.30 33.1 IPOL 2 × 4 × 100

2015 July 21.29 37.1 PMOS 2 × 4 × 900

2015 Aug 08.08 51.6 IPOL 2 × 4 × 100

2015 Aug 20.39 61.6 IPOL 2 × 4 × 100

2015 Sept 2.26 72.0 IPOL 3 × 4 × 225

2015 Sept 25.13 90.6 PMOS 3 × 4 × 870

aPhase in rest-frame days measured with respect to the epoch

of the light-curve maximum estimated by Dong et al. (2016) as

2015 June 5 (MJD 57178.5).
bIPOL – imaging polarimetry observation; PMOS – spectropo-

larimetric observation.

Figure 1. VLT FORS image of ASASSN-15lh using the v HIGH filter

(exposure time 5 s) on 2015 July 10. ASASSN-15lh is located at the centre of

field (indicated by the cross hairs), while other sources used for photometric

and polarimetric comparison are circled. The horizontal stripe across the field

is the gap between the two FORS detectors.

following the prescription of Leloudas et al. (2015, see also Leloudas

et al. 2017b). As FORS utilized a slitmask to prevent overlap of

the ordinary and extraordinary rays, for each epoch of imaging

polarimetry only one-half of the field of view of FORS was actually

observed. For the FORS instrument, the instrumental polarization is

negligible at the centre of the field, but increases towards the edges.

For five surrounding field stars (that were available given the use of

the slitmask) corrections were made for instrumental polarization as

a function of position, following Patat & Romaniello (2006). The

field containing ASASSN-15lh, as imaged by FORS, is shown in

Fig. 1.

Spectropolarimetric observations were conducted at two separate

epochs using VLT FORS (in the PMOS mode). Both sets of observa-

tions utilized the 300V grism with the GG435 order separation filter,

providing a final observed wavelength coverage of ∼4500–9300 Å

corresponding to a rest-frame wavelength range 3650–7545 Å. The

final (rest frame) spectral resolution was 9.4 Å at 5000 Å, as mea-

sured from arc lamp calibration frames. The spectropolarimetric

observations were reduced using IRAF,2 following the prescription

of Maund et al. (2007) and Patat & Romaniello (2006). The Stokes

I spectra were flux calibrated with observations of the flux standard

LTT4816 acquired on 2014 May 29, conducted with an identical

instrumental set-up as the observations of ASASSN-15lh with the

polarimetry optics in place. As the flux standard was not observed

on the same night as the PMOS observations of ASASSN-15lh,

the calibration is considered suitable for illustrative purposes only

(for comparison with the linear polarization Stokes parameters). At

both epochs, synthetic broad-band polarimetry was calculated using

the response function for the v HIGH filter, as used for the imaging

polarimetric observations, by conducting synthetic photometry using

the appropriate filter response function3 on the individual ordinary

and extraordinary ray spectra.

3 R ESULTS AND A NA LY SIS

3.1 Interstellar polarization

The reddening due to Galactic dust in the direction of ASASSN-

15lh is limited to E(B − V ) = 0.03 mag (Schlafly & Finkbeiner

2011). For Galactic dust, assuming a Serkowski, Mathewson &

Ford (1975) relationship between polarization and reddening, the

maximum expected degree of the interstellar polarization (ISP)

is pmax( per cent) = 9 × E(B − V ) = 0.27 per cent for the Galactic

column and could be as much as 0.45 per cent if an additional

host contribution of E(B − V ) = 0.02 mag (Leloudas et al. 2016)

is included. Following Leloudas et al. (2015), we use polarimetry

derived for stars in the surrounding field (see Fig. 1) to estimate

the ISP due to Galactic dust. It is important to note that, as FORS

employs a series of alternating masks to prevent overlap of the

ordinary and extraordinary rays on the detector, some bright stars

present in Fig. 1 were not observed in the polarimetric mode.

From the available sources in the surrounding field, we excluded

ASASSN-15lh itself, any stars that were saturated at any epochs,

and any stars with insufficient levels of signal-to-noise ratio (S/N

< 300) to permit an accurate estimate of the Stokes parameters.

In total, we selected five sources from the surrounding region and

these are indicated in Fig. 1. We used the data at all epochs as

independent measures of the Stokes parameters for each source,

however we noticed significant scatter was induced if we included

the data from the last epoch of IPOL observations acquired on 2015

September 2. These data were acquired 4 d after a full moon, in

which the distance between the position of the moon and ASASSN-

15lh on the sky was only 20◦. Scattered moonlight not only increases

the level of the background intensity but is polarized itself, and

as such we exclude the measurements of the surrounding stars at

this epoch due to enhanced levels of noise. The locations of the 20

independent measurements for the five surrounding stars are shown

in Fig. 2 and all the stars appear approximately clustered in the

same region in the Stokes q–u plane (where q and u are the Stokes

parameters normalized for intensity I). Assuming these stars are all

intrinsically unpolarized, we derive the weighted average foreground

ISP towards ASASSN-15lh to be qISP = 0.26 ± 0.06 per cent and

2IRAF is distributed by the National Optical Astronomy Observatory, which

is operated by the Association of Universities for Research in Astronomy

(AURA) under a cooperative agreement with the National Science Founda-

tion.
3http://www.eso.org/sci/facilities/paranal/instruments /fors/inst/Filters.html
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3732 J. R. Maund et al.

Figure 2. Measurements of the Stokes q and u parameters for five nearby

stars (see Fig. 1) at four epochs (light grey) and the estimate for the ISP

derived for the Galactic column of dust (�) towards to ASASSN-15lh.

uISP = −0.26 ± 0.02 per cent (where the quoted uncertainties are

the standard error of the weighted mean), corresponding to pISP =

0.36 ± 0.04 per cent and θ ISP = 157.◦5 ± 3.◦5. The range of distances

of these five stars (∼770–3695 pc; Bailer-Jones et al. 2018) and the

position of ASASSN-15lh with respect to the Galactic Centre (l =

337.◦07, b = −45.◦55) suggest that this should account for all the

polarization arising due to the dust along the line of sight in the

Galaxy.

To ascertain if the points in Fig. 2 were consistent with independent

normal distributions, in Stokes q and u, characterized by the mean and

variances derived by the weighted average process, we considered

the χ2 statistic for each Stokes parameter, separately. Apart from the

two measurements with q > 0.7 per cent, we find that the ensemble

of measurements yields χ2
q = 1.4 and χ2

u = 1.6 (for 16 degrees of

freedom), implying that the data are not significantly discrepant from

normal distributions (Bevington & Robinson 2003).

Polarization arising from dust in the host galaxy is harder to deter-

mine. The spectropolarimetric PMOS observations of ASASSN-15lh

could, potentially, provide a complete measure of the Galactic and

host ISP if suitable regions of the spectrum could be assumed to

be intrinsically unpolarized; however, unlike normal SNe (Wang &

Wheeler 2008) and even some SLSNe (Inserra et al. 2016), there

are no obvious regions of the spectrum, such as strong line emission

features, in Fig. 3 that could be expected to be unpolarized. We

cannot, therefore, quantify the degree of ISP arising in the host,

however due to the low limit on the degree of reddening in the host,

and the close proximity of ASASSN-15lh to the centre of the host

(Leloudas et al. 2016), we conclude that any additional ISP is likely

to be small and, while non-negligible, is unlikely to have a significant

effect on our further analysis.

3.2 Spectropolarimetry

The spectropolarimetric observations of ASASSN-15lh, at 37.1 and

90.6 d, are shown in Fig. 3 (corrected for the ISP). The observation

at 37.1 d has an S/N of 380 at 4100 Å, which decreases at redder

wavelengths (S/N ∼ 165 at 7000 Å). The polarization spectrum at

this epoch is approximately flat, with an average level of 0.5 per cent

across the entire wavelength range. There are no obvious significantly

polarized features in the blue portion of the spectrum and at redder

wavelengths, λ > 6000 Å, the level of noise increases significantly

due to strong sky lines, telluric absorption features, and fringing aris-

ing in the detector (in addition to Poisson noise). At the second epoch

the overall level of polarization is approximately the same, although

a possible region of enhanced polarization and depolarization is seen

in the region 4250–4500 Å. The data at these wavelengths, shown in

blue and cyan in Fig. 3, are clearly seen as offset from the central

concentration of points on the Stokes q–u plane.

3.3 Imaging polarimetry

Imaging polarimetry of ASASSN-15lh, including synthetic po-

larimetry derived from the spectropolarimetric observations (see

Section 3.2), is presented in Table 2. The evolution of the broad-

band polarization is shown in Fig. 4. Brown et al. (2016) reported a

single epoch of polarimetry of ASASSN-15lh at 48.0 d (rest frame),

acquired with the Hubble Space Telescope (HST) Advanced Camera

for Surveys (ACS) Wide Field Channel (WFC). Using their quoted

value for the approximately equivalent filter (F606W; see Fig. 3), and

our values for the ISP, this polarimetry (p = 0.45 ± 0.06 per cent

and θ = 178.◦2 ± 1.◦5) is also plotted in Fig. 4. Brown et al. (2016) also

conducted polarimetric observations using the F435W and F775W

filters, reporting similar levels of polarization.

From Fig. 4, it is evident that there is a baseline level of

polarization spanning the period of the polarimetric observations.

Although the filter transmission functions for FORS v HIGH and

ACS/WFC F606W are not exactly identical (see Fig. 3), they cover

similar wavelength ranges and the HST datum is consistent with the

polarization measured at the immediately preceding epochs. A key

exception occurs at 51.6 d, when the degree of polarization reaches

1.23 per cent. Given the uncertainties on the data, we applied at

χ2-test to derive a p-value of 0.0000162 of this being a statistical

fluctuation. We have confirmed, using the polarimetric behaviour of

other stars in the field and considering the instrumental signature

corrections ǫQ and ǫU (Maund 2008), that there are no systematic

deviations that would otherwise suggest there is a fault unique to

observations at this one epoch. Interestingly, this significant increase

in polarization appears correlated with the onset of significant

rebrightening of ASASSN-15lh at ultraviolet (UV) wavelengths

(Brown et al. 2016; Dong et al. 2016; Leloudas et al. 2016; Margutti

et al. 2017).

Following this enhancement in the degree of polarization, the

following epoch of 61.6 d could be interpreted as a period of

‘depolarization’; however, the deviation of this measurement from

the baseline is not significant, given the uncertainty on that data.

4 D I SCUSSI ON AND C ONCLUSI ONS

The extreme luminosity of ASASSN-15lh has been interpreted in

the contexts of both SLSNe and TDEs. Dong et al. (2016) suggested

that the behaviour of ASASSN-15lh was consistent with a SLSN,

although acknowledging that it was not clear which mechanism

(magnetar or interaction with a dense circumstellar medium) might

be responsible. The recent study by Huang & Li (2018) proposed

that ASASSN-15lh could have been the explosion of a 60 M⊙ star,

with a large expansion velocity (∼0.02c), colliding with a dense

circumstellar medium. Studies by Brown et al. (2016), Leloudas

et al. (2016), and Margutti et al. (2017) have highlighted a number of

key deficiencies in the interpretation of ASASSN-15lh as a SLSN,

including it having occurred at the centre of a high-mass galaxy

with low star formation rate unlike those associated with SLSNe

MNRAS 498, 3730–3735 (2020)
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Polarimetry of ASASSN-15lh 3733

Figure 3. Spectropolarimetry of ASASSN-15lh at +37.1 d (top) and +90.6 d (bottom). Left: a comparison between the polarization (blue) and flux (grey)

spectra. The transmission functions of the VLT FORS V band and HST ACS/WFC F606W filters are shown by the red and blue dashed lines, respectively.

Right: the data on the Stokes q–u plane. The data have been binned to 30 Å (in the observed frame), but corrected for the redshift of the host galaxy. The data

are corrected for the ISP (see Section 3.1).

Table 2. FORS polarimetry of ASASSN-15lh corrected for the interstellar polarization.

Date Phasea q u p θ

(UT) (d) (%) (%) (%) (◦)

2015 July 10.26 28.2 − 0.48(0.33) − 0.34(0.32) 0.40(0.33) 107.7(15.9)

2015 July 16.30 33.1 − 0.45(0.27) 0.18(0.27) 0.33(0.27) 79.4(15.9)

2015 July 21.29 37.1 0.00(0.07) − 0.45(0.04) 0.45(0.04) 134.8(4.3)

2015 Aug 08.08 51.6 − 0.30(0.17) − 1.21(0.14) 1.23(0.15) 127.9(4.0)

2015 Aug 20.39 61.6 0.00(0.25) − 0.25(0.24) 0.01(0.24) 135.5(29.2)

2015 Sept 2.26 72.0 0.04(0.09) − 0.36(0.07) 0.34(0.07) 138.3(7.5)

2015 Sept 25.13 90.6 − 0.43(0.08) − 0.03(0.05) 0.42(0.08) 92.0(3.2)

aPhase in rest-frame days measured with respect to the epoch of the light-curve maximum.

but similar to the hosts of TDEs (Krühler et al. 2018), the lack of

a key absorption feature at 4500 Å (usually seen in combination

with the 4200 Å absorption, giving rise to the characteristic O II ‘W’

feature; Quimby et al. 2011), and the dip observed in the UV light

curve. Observations of a later event, AT 2018fyk, which has been

confirmed to be a TDE, also showed a similar dip in the UV, not

replicated at other wavelengths, as seen for ASASSN-15lh (Wevers

et al. 2019).

From a polarimetric perspective, the low levels of measured

polarization for ASASSN-15lh are consistent with an approximately

spherical structure. Following Höflich (1991), the broad-band polar-

ization values would correspond to axial ratio >0.9, assuming an

underlying spheroidal configuration. This is similar to the levels of

polarization observed for SLSNe. For LSQ14mo, a Type I SLSN

at a similar redshift of z = 0.256, Leloudas et al. (2015) reported

no significant detection of polarization at five epochs (using the

same instrument configuration as used here for ASASSN-15lh).

Similar low degrees of polarization were also measured for the

Type I SLSN 2017egm by Maund et al. (2019) in three bands covering

the optical wavelength range. Alternatively, for the SLSN 2015bn,

Leloudas et al. (2017a) and Inserra et al. (2016) reported increasing

polarization from ∼0.54 per cent to > 1.10 per cent, with a dramatic

change in the polarization properties occurring at +20 d (with

respect to maximum). Inserra et al. (2016) presented two epochs

MNRAS 498, 3730–3735 (2020)
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3734 J. R. Maund et al.

Figure 4. The broad-band ∼V-band polarization of ASASSN-15lh (cor-

rected for the ISP) as a function of (rest frame) time as observed with VLT

FORS in IPOL (•) and PMOS (�) modes and HST ACS (�; Brown et al.

2016). Overlaid, in grey, are the Swift UVW1 (◦) and V-band light curves (•)

from the Swift Optical/Ultraviolet Supernova Archive (SOUSA; Brown et al.

2014).

of spectropolarimetry of SN 2015bn, at −24 and +24 d with respect

to maximum light, showing significant evolution in the polarization

between the two epochs and, importantly, clear dominant axes

(Wang & Wheeler 2008) on the Stokes q–u plane (that could be

explained by a mixture of continuum and line polarization). For

ASASSN-15lh it is difficult to discern any polarization (in the

PMOS data) associated with particular spectral features or any

clear dominant axes (see Fig. 3), although there is some evolution

in the polarization observed at the blue end of the spectrum.

The baseline level of polarization observed for ASASSN-15lh

could be consistent with the polarization previously observed for

SLSNe.

The published literature for polarimetry of TDEs is limited.

Wiersema et al. (2012, 2020) report high levels of polariza-

tion for Swift J164449.3+573451 (pK = 7.4 ± 3.4 per cent) and

Swift J2058+0516 (pV = 8.1 ± 2.5 per cent). This high level of

polarization was interpreted as arising in a relativistic jet-like outflow.

Higgins et al. (2019) reported a single epoch of V-band polarimetry

of OGLE16aaa, measuring 1.81 ± 0.42 per cent, which is of similar

magnitude to the polarization measured for ASASSN-15lh by us. Lee

et al. (2020) observed an evolution in the polarization of AT 2019dsg,

with the degree of polarization decreasing from 9.6 ± 2.6 per cent

(at 4 d after light-curve maximum) to 2.0 ± 1.0 per cent (34 d later).

Rather than indicating a change in geometry, Lee et al. (2020)

suggested this was due to non-thermal, relativistic emission from

a jet at early times. The only spectropolarimetric observation of a

TDE, reported to date, is of AT 2018dyb at a single epoch (Holoien

et al. 2020). Despite the presence of broad emission lines, the

polarization spectrum was flat across the optical wavelength range (at

∼1.5 ± 0.5 per cent), which suggests this polarization arose from the

ISP rather than being intrinsic to the transient itself. In this regard, the

lack of significant intrinsic polarization for AT 2018dyb is similar

to what we have observed for ASASSN-15lh. The limited nature

of these observations of other TDEs, at single epochs or limited

wavelength bands, means that it is still not clear what the average

level of polarization of TDEs is and what might constitute ‘normal’

evolution.

A key feature of the polarization of ASASSN-15lh is the sudden

spike in polarization observed at 51.6 d. The lack of corroborative

high polarization in measurements taken before and after this epoch

could indicate this may be due to a systematic effect that we have

not been able to identify. As discussed in Section 3.3, there are no

peculiarities to this observation that might suggest an instrumental

origin for the signal. The measured polarization uncertainties are

consistent with the expected levels of S/N expected for observations

with these exposure times (Patat & Romaniello 2006),4 given the

evolving brightness of ASASSN-15lh. This includes the synthetic

broad-band polarization calculated from the PMOS observations.

Comparison with the multiwavelength light curves of Brown et al.

(2016), Leloudas et al. (2016), and Margutti et al. (2017) shows that,

while the light-curve declined and rebrightened in the UV, at the

wavelengths in which imaging polarimetry was conducted the light-

curve evolution was relatively flat, such that the measurement was not

affected by a decrease in the level of S/N at that epoch. Mummery &

Balbus (2020) quantitatively model the multiwavelength light curves

of ASASSN-15lh, and find it to be consistent with a 109 M⊙ rotating

black hole. The two phases of the UV light curve are found to

naturally arise from this TDE model, with the rise to the second

UV peak associated with the commencement of a phase dominated

by emission from the accretion disc (whereas the first UV peak

may come from an initial outflow). The brief spike in the level of

polarization may be associated with the transition between these two

different physical regimes within the TDE. If this is the case, we

speculate that other TDEs, less extreme than ASASSN-15lh, might

show an elevated polarization early on, supposing they are powered

by accretion.

Around the time of the dip in the UV light curve, Margutti et al.

(2017) also reported additional variability in the UV on time-scales

of ∼5 d. If the brief increase in polarization is intrinsic to the

transient, its coincidence with the dip in the UV light curve could

indicate a significant change in the apparent geometric distribution

of the ejecta over a time-scale of <20 d. Such variability in the

polarization, over such short time-scales, has not been reported

before for SLSNe; however, just as for ASASSN-15lh, polarimetric

observations of SLSNe also suffer from poor cadence. Because of

the ‘photon hungry’ nature of polarimetry (Wang & Wheeler 2008),

future observing strategies may have to consider higher cadence

observations to resolve possible short-term polarization fluctuations,

to be better correlated with the behaviour observed in photometric

light curves and spectroscopy.

The approximately spherical geometry inferred for ASASSN-15lh

is consistent with the general geometric configuration of TDEs

proposed by Dai et al. (2018), seen from an equatorial latitude

with respect to a jet originating from the black hole. Guillochon &

Ramirez-Ruiz (2015) predict that colliding streams of material

may, ultimately, produce an approximately spherical geometry of

material from the disrupted star. For ASASSN-15lh, therefore, the

polarimetry could be interpreted as viewing this debris material

and the underlying accretion disc edge on (Auchettl, Guillochon &

Ramirez-Ruiz 2017; Dai et al. 2018) and obscuring a jet. This may

be compared with the high polarization measured for a TDE by

Wiersema et al. (2012), who concluded that they had instead seen

the action of a jet, which would have required viewing the TDE from

4https://www.eso.org/observing/etc/bin/gen/form?INS.NAME=FORS + INS

.MODE = imaging
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a pole-on viewing angle. In the model proposed by Dai et al. (2018),

the debris surrounding the black hole is highly ionized, and in this

case the dip in the UV (also seen in another TDE, AT 2018fyk) can

be explained by a change in the ionization state of this material with

time, due to a change in the opacity to UV radiation (which would

explain why the light-curve dip was only observed in the UV bands)

as proposed by Margutti et al. (2017). The correlation of the sudden

spike in polarization with the dip in the UV light curve could then

correspond to, briefly, being able to see the underlying asymmetric jet

and accretion disc configuration (as opposed to the opaque spherical

debris material seen at other times). As noted by Leloudas et al.

(2016), the dip in the light curve at UV wavelengths is also associated

with a transition in the nature of the optical spectrum from being

dominated by broad absorption lines to becoming almost featureless.

Such dramatic changes in polarization have been observed in the

case of SNe, in particular Type IIP (Leonard et al. 2006; Maund

et al. 2009), coinciding with a change in the ionization properties

(and optical depth) of the ejecta. The generally low polarization

(except for the spike in the polarization), observed from at the lat-

est +28 d, suggests that the overall configuration for ASASSN-15lh

was approximately spherical. This implies that the debris material

had already sphericalized by the time these polarimetric observations

had commenced and that the emission did not, necessarily, arise from

ongoing collisions between streams of material (Piran et al. 2015).
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