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RESEARCH ARTICLE Open Access

Machine learning approaches classify
clinical malaria outcomes based on
haematological parameters
Collins M. Morang’a1, Lucas Amenga–Etego1*, Saikou Y. Bah1,2, Vincent Appiah1, Dominic S. Y. Amuzu1, Nicholas Amoako1,

James Abugri3, Abraham R. Oduro4, Aubrey J. Cunnington5, Gordon A. Awandare1 and Thomas D. Otto6*

Abstract

Background: Malaria is still a major global health burden, with more than 3.2 billion people in 91 countries remaining

at risk of the disease. Accurately distinguishing malaria from other diseases, especially uncomplicated malaria (UM) from

non-malarial infections (nMI), remains a challenge. Furthermore, the success of rapid diagnostic tests (RDTs) is

threatened by Pfhrp2/3 deletions and decreased sensitivity at low parasitaemia. Analysis of haematological indices can

be used to support the identification of possible malaria cases for further diagnosis, especially in travellers returning

from endemic areas. As a new application for precision medicine, we aimed to evaluate machine learning (ML)

approaches that can accurately classify nMI, UM, and severe malaria (SM) using haematological parameters.

Methods: We obtained haematological data from 2,207 participants collected in Ghana: nMI (n = 978), SM (n = 526),

and UM (n = 703). Six different ML approaches were tested, to select the best approach. An artificial neural network

(ANN) with three hidden layers was used for multi-classification of UM, SM, and uMI. Binary classifiers were developed

to further identify the parameters that can distinguish UM or SM from nMI. Local interpretable model-agnostic

explanations (LIME) were used to explain the binary classifiers.

Results: The multi-classification model had greater than 85% training and testing accuracy to distinguish clinical

malaria from nMI. To distinguish UM from nMI, our approach identified platelet counts, red blood cell (RBC) counts,

lymphocyte counts, and percentages as the top classifiers of UM with 0.801 test accuracy (AUC = 0.866 and F1 score =

0.747). To distinguish SM from nMI, the classifier had a test accuracy of 0.96 (AUC = 0.983 and F1 score = 0.944) with

mean platelet volume and mean cell volume being the unique classifiers of SM. Random forest was used to confirm

the classifications, and it showed that platelet and RBC counts were the major classifiers of UM, regardless of possible

confounders such as patient age and sampling location.

Conclusion: The study provides proof of concept methods that classify UM and SM from nMI, showing that the ML

approach is a feasible tool for clinical decision support. In the future, ML approaches could be incorporated into clinical

decision-support algorithms for the diagnosis of acute febrile illness and monitoring response to acute SM treatment

particularly in endemic settings.
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Background
In 2018, there were 228 million cases of malaria

worldwide, 93% of which occurred in the African re-

gion [1]. Furthermore, approximately 450,000 deaths

were reported, of which 61% were children under 5

years old [1]. According to WHO 2018 report, over

2.7 billion US dollars were spent towards various con-

trol and elimination efforts to address the global bur-

den of malaria [1]. This includes over 2.74 billion

doses of artemisinin-based combination therapies,

procured in 2017 [1]. Unfortunately, incorrect diagno-

sis leads to incorrect treatment. It can increase the

chances of antimalarial drug resistance, or for false

negative diagnosis, it may result in misdiagnosis of

malaria, inappropriate treatment, and progress to se-

vere disease or death [2–4]. The gold standard for

malaria diagnosis is microscopy, which requires exten-

sive training, but rapid diagnostic tests (RDTs) have

become the frontline diagnostic tools for malaria be-

cause of their ease of use at point-of-care [5].

One drawback of RDTs is the emergence of gene dele-

tions of the target antigen, histidine-rich protein

(Pfhrp2/3) in the parasite genome, which render para-

sites undetectable by the most common RDTs [6]. Other

challenges include insufficient sensitivity to detect low-

level parasitaemia and the number of tests which need

to be performed per positive result in settings with de-

clining or low transmission [2, 6, 7]. Different problems

are faced in non-endemic countries, where imported

malaria must be suspected as a possible cause of fever

before an RDT or microscopy would be performed in

the first place, and failure to identify cases at first con-

tact with health services often results in worse clinical

outcomes [8, 9]. Therefore, improved and complemen-

tary malaria diagnostic techniques are required, which

can overcome some or all of these limitations.

Complete blood counts (CBCs) are the most com-

monly performed laboratory test in most hospitals in

both developing and developed countries. The CBC is

usually relied upon to provide clues for the diagnosis

of patients where advanced methods for detection of

specific diseases are lacking, with a parameter such as

decreased platelet counts often associated with severe

malaria (SM) [10, 11]. In addition, haemoglobin (Hb)

levels are very important for the classification of SM

cases [12]. Indeed, the changes in haematological pa-

rameters during clinical malaria have been studied ex-

tensively to aid in the understanding of disease

pathogenesis [13–19]. However, the potential and

diagnostic value of haematological parameters mea-

sured by commonly available automated haematology

analysers has not been fully studied using unbiased

approaches such as machine learning (ML) tech-

niques. These haematological parameters have the

potential to be used in differentiating clinical malaria

from other febrile illnesses, especially in areas where

the reliability of RDTs is challenged by the high

prevalence of Pfhrp2/3 deletion mutant parasites.

ML approaches use algorithms based on statistical

assumptions and mathematical rules to learn patterns

and produce meaningful classifications based on the

association of each variable with the disease outcome

[20–24]. These classifications can then be applied to

new disease cases to make classifications on the most

probable cause. This classification capability of ML

has not been extensively implemented in the diagno-

sis of clinical malaria. To date, only a single study

has reported the use of ML to diagnose malaria using

clinical history and symptoms captured verbally and

visually [25]. The sample size (n = 376) was very small

to deduce meaningful classifications, and the author

concluded that more work would be needed [25].

Despite this, there have been far reaching studies on

the application of ML in other areas of malaria re-

search [26–30]. The diagnosis of malaria using ML

on clinical datasets has been impaired by the lack of

large data, as well as difficulty in data curation. More-

over, classical modelling is prone to over-fitting or

under-fitting of data [31], but recent approaches such

as imputation, encoding, centering and scaling of vari-

ables, and model optimization [24] enable augmented

use of ML in malaria classification.

We hypothesized that we can classify clinical mal-

aria and non-malarial infections (nMI) with an ML

approach. We first collected and curated data from

2,207 patients including nMI (n = 978), uncomplicated

malaria (UM) (n = 703), and SM (n = 526). We

generated ML models to classify clinical malaria (UM

and SM) from nMI using haematological parameters.

Methods
Study population and sample collection

Standards for Reporting Diagnostic Accuracy Studies

(STARD) guidelines [32, 33] were followed in this study.

The current study utilizes unpublished data of 526 pa-

tients from a previous case-control study of SM con-

ducted by the Navrongo Health Research Centre

(NHRC) located in the Kassena-Nankana Districts

(KNDs) in the Upper East Region of Northern Ghana. In

the original study, children with acute febrile symptoms

admitted to the Navrongo War Memorial Hospital

(NWMH), the only referral facility in the KNDs, were

evaluated for inclusion into the study from August to

December 2002 and May 2003 to April 2004. Full details

of the study procedure, inclusion criteria, and demo-

graphic and clinical characteristics of SM cases may be

reviewed in Oduro et al. [34].
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In brief, the inclusion criteria for SM cases were (1) all

children between 6 and 59 months who had fever (or

history of fever in the past 24 h) and were admitted to

the NWMH, (2) residence in the Navrongo Health and

Demographic Surveillance System area [34], and (3) will-

ingness of parents/caregivers to offer informed consent.

Criteria for SM diagnosis and enrollment into the ori-

ginal study were classified as having SM by the WHO

standard guidelines that include haemoglobin < 5 g/dL

or haematocrit < 15% [34, 35]. Ethical approval for the

SM study was obtained from the NHRC Institutional Re-

view Board (IRB), Noguchi Memorial Institute of Med-

ical Research (NMIMR) IRB, Naval Medical Research

Center IRB, and Ghana Health Service (GHS) Ethics Re-

view Committee (ERC). Informed consent was obtained

and documented, followed by administration of a ques-

tionnaire about the presenting symptoms and clinical ex-

aminations. Participants who did not consent and meet

the study inclusion criteria and those who had reported

taking antimalarial treatment in the past 2 weeks were

excluded from the study, while those who turned out to

be malaria negative by standard microscopy were with-

drawn from the study. All study samples were taken

prior to initiation of treatment except for samples taken

for clinical monitoring during admission or for follow-

up after discharge from the hospital.

The nMI and UM participants were recruited in a

hospital-based cross-sectional study involving two hospi-

tals: Kintampo North-Municipal Hospital, Kintampo,

and Ledzokuku Krowor Municipal Assembly Hospital

(LEKMA), Accra. The inclusion criteria were (1) out-

patient children 1–15 years old, (2) presenting with fever

or history of fever in the past 24 h or axillary

temperature ≥ 38 °C, (3) and (4) signed informed consent

by self (adolescents) and parent/guardian. The exclusion

criterion was participants with known chronic disease or

history of antimalarial drug use in the past 2 weeks. Eth-

ical approval was also obtained from NMIMR-IRB,

GHS-ERC, and Kintampo Health Research Centre

(KHRC) ERC. A case was defined as nMI if the individ-

ual presenting to the hospital was malaria negative by ei-

ther RDTs, Taqman array, or microscopy. Clinical data

such as age, sex, and body temperature and symptoms

such as fever were collected on recruitment.

Sample collection procedure

Venous blood was collected in the ante-cubital fossa.

Tourniquet was not applied beyond 1 min during vene-

section to avoid haemo-concentration, which could give

erroneous results for all parameters measured. Samples

were taken mostly between 8 am and 12 pm to avoid

variations due to individuals’ activity (such as rehydra-

tion and food intake). Samples (5 mL) were taken into

K3 EDTA tubes (BD Vacutainer; Becton Dickinson, NJ,

USA). Samples that could not get analysed within 2 h

from the time of collection were stabilized at 2–8 °C to

avoid changes that could occur in some haematological

parameters should the sample be left on the bench for

more than 3 h. Samples were analysed not later than 24

h from the time of sample storage at 2–8 °C. No capil-

lary blood sample was taken during the study as it pre-

sents with subtle variations from venous blood

parameters. CBC analysis was performed using the auto-

mated ABX Micros 60 haematology analyser, which

measures white blood cell parameters, red blood param-

eters, and platelet parameters (Additional file 1: Table

S1). Data were manually cross-referenced twice for ac-

curacy to ensure consistency in sample collection

procedures.

Statistical classifier: median split

Kernel density estimation, which is a non-parametric

technique, was used to estimate the probability density

function of each haematological parameter and kernel

distribution for each parameter between nMI, UM, and

SM and visualized using density plots in R (R version

4.0.2). The median value within each diagnostic group

(nMI, UM, and SM) was computed, and the mean of

any two group medians was used for ‘median split’ to

generate a dichotomous variable for each parameter (low

and high levels representing below and above median,

respectively) [36]. Contingency tables were used to

summarize the relationship between clinical diagnosis

(nMI, UM, and SM), and each dichotomous parameter.

The generalized linear models for predictive analysis

were used to explain the relationship between the clin-

ical diagnosis and the dichotomous parameter. Odds ra-

tios were computed through the exponent of the

regression coefficients (logits) to estimate the strength of

the relationship. Any OR with 95% confidence interval

(CI) that includes a null value (1.0) indicated that the

parameter was not significantly associated with clinical

diagnosis. ANOVA was used to compare the model with

the null model and chi-square test used to compute the

degree of significance. All the analyses were done in R-

software (R version 4.0.2).

Data pre-processing and normalization

A multivariate imputation via chained equations (MICE)

plot was used to visualize the missing observations in

the data. It was difficult to determine whether the miss-

ing values were missing ‘completely at random’ or ‘miss-

ing at random’ or ‘not at random’ to enable selection of

the imputation method. Therefore, the demographic/

clinical data and microscopy results were not imputed

and were not used for modelling. The majority of the

haematological parameters had less than 5% missing

data, and the missing values were imputed using MICE
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package in R. Each variable in the training and test data

was transformed using the Yeo-Johnson function,

centred to have a mean of 0, and scaled to have a stand-

ard deviation of 1. The original dataset (before pre-

processing and normalization) is available in Add-

itional file 2: Table S2.

Machine learning

Six ML algorithms were evaluated to identify the best al-

gorithm that can classify the binary data. These include

partial least squares (PLS) logistic regression, multiple

adaptive regression splines (MARS), random forest, deci-

sion trees, support vector machine, and artificial neural

networks (ANN). PLS logistic regression was imple-

mented by reducing the dimension of haematological pa-

rameters so as to increase accuracy. We used 10-fold

cross-validation while tuning through 16 principal com-

ponents (PC), whereby the optimal model used 2 PC.

The optimal hyperparameters for MARS (with cross-

validation) were determined in a grid search of 30 differ-

ent combinations of 3rd degree and sampling 1000

terms to retain the final model [37]. Decision tree was

implemented with the rpart function, which performs

auto-tuning with an optimal subtree of 10 total tree

splits. Random forest and support vector machines were

implemented by first performing a grid search to identify

the optimal hyperparameters followed by classification

analysis. Three ANN were developed, one multi-

classification ANN (nMI vs UM vs SM) and two binary

classifications denoted as ANN (UM and nMI) and

ANN (SM and nMI). For each ML model, the data were

split into 80% training and 20% testing. The outcome

was the clinical diagnosis of the participant (as con-

cluded by the attending clinicians) having either UM or

nMI or SM. Haemoglobin and haematocrit levels were

not included in the modelling because they are used to

support the diagnosis of malaria [10, 19, 35, 38].

Hyperparameter tuning for artificial neural networks

The ANN was composed of an input layer of 15 haem-

atological parameters. The loss was computed using cat-

egorical cross-entropy for the multi-classifier and binary

cross-entropy for binary classifiers, while accuracy was

used as the main evaluation metric. During training, the

80% training data was further split into 70% training and

30% validation with randomization (Fig. 1). Tensor

board visualizations were used to check the dynamic

graphs of our training and test metrics. Hyperparameters

were tuned to identify the optimal model parameters for

each classification. A hyper-grid was developed that ad-

justs the model capacity, normalization term, kernel

regularization, and learning rate. To maximize the valid-

ation error performance, we tuned 12, 32, 64, 128, 256,

and 512 rectified linear units (ReLU) in three hidden

layers. We used batch normalization on each hidden

layer for gradient propagation and performance im-

provement. We varied the dropout rate from 0.1, 0.2,

0.3, and 0.4 in all the three layers to identify the best

dropout regularization that prevents the model from

latching to happenstance patterns that are not signifi-

cant. We used ‘Adam’ as the optimizer, but we varied

the learning rate (0.1, 0.05, 0.001, and 0.0001) to find a

global minimum. The tfruns R package was used to im-

plement the hyper-grid in R-software, using 500 epochs,

batch size of 64, and validation split of 0.3. These Keras

models were initialized for all the three classifications to

select the optimal model.

Model evaluations

Yardstick package was used to perform classifications on

the test data as well as compute the performance of the

model. The confusion matrix, accuracy, area under the

receiver operating characteristic curve (AUC), precision

and recall, and F1 score were the metrics used to evalu-

ate performance. The F1 score is a measure of test data

accuracy, which is a weighted average between precision

and recall. To explain the model, we used local inter-

pretable model-agnostic explanations (LIME Package in

R) [39]. The classification model was set up, and an ‘ex-

plainer’ of the classifying model was initiated using the

training data and the model output classifications. The

explainer was used to explain the results of the test data-

set as classification explanations (feature weights). The

feature weights were used to build a heatmap for each

ANN indicating how each feature explains the model.

Effect of patient age and sampling location on the model

predictions

To test if patient age and sampling location significantly

affected the models, we used three models: (1) a model

for all the UM and nMI cases (n = 1681), (2) a model for

UM and nMI from Kintampo cases only (n = 726), and

(3) a model for only Kintampo cases and ages under 4

years (n = 416). We tested the possibility of using the

ANN to evaluate the models but there was some level of

over-fitting and under-fitting of the 2nd and 3rd models,

due to sample size limitation. Therefore, random forest

was subsequently used, because of (1) its robustness to

smaller sample size with minimal over-fitting of the data

and (2) its ability to reduce the high variance from deci-

sion trees by combining several trees into one ensemble

tree [40].

Statistical analysis

The clinical categorical data was analysed using Pear-

son’s chi-square while the continuous data such as the

haematological parameters were analysed using the

Kruskal-Wallis test with Dunn’s post hoc tests across
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the three groups (UM, SM, and nMI). All tests were two

sided, and statistical significance was set at P < 0.05 for

all analyses with adjustment for multiple testing. Data

analyses were performed using R-software (R version

4.0.2), R-studio (version 1.1), and Python (version 2.7).

The R codes with the methods, including the curated

data files, can be found on github: https://github.com/

misita-falcon/Machine-Learning-in-Clinical-Malaria.

Results
Characteristics of the study participants

Participants were recruited as follows: 38.8% (857/2,207)

from Accra, 32.9% (726/2,207) from Kintampo, and

28.3% (624/2,207) from Navrongo (Fig. 1). These partici-

pants from all the three locations constitute 44.3% (978/

2,207) nMI, 31.8% (703/2,207) for UM, and 23.8% (526/

2,207) for SM cases (Fig. 1). The median age was 3 years

(range 2–6 years) for nMI, 4 years (range 2–7 years) for

UM, and 1 year (range 1–2 years) for SM. The median

ages were significantly different as determined by the

Kruskal-Wallis test (P < 0.001) (Table 1). The SM cases

had a significantly higher median body temperature

(38.3; range = 37.5–39.2), compared to the nMI (37.2;

range = 36.5–38.4) and UM (38.1; range = 37–39) (P <

0.001). There was a significant difference in proportions

of individuals (P < 0.001) among nMI, UM, and SM from

different locations (Kintampo, Navrongo, and Accra) as

determined by the chi-square analysis (Table 1). There

was no association between sex and clinical diagnosis, al-

though the number of females was higher than males in

all three groups (P = 0.247); nMI was 51.2% (501/978),

UM was 54.9% (386/703), and SM was 55.1% (290/526)

(Table 1). Fever was more common in SM (99.2%, 522/

526) compared to UM (85.5%, 601/703) and lowest in

nMI (59.4%, 581/978), and the chi-square analysis shows

that there was an association between fever and clinical

diagnosis (P < 0.001) (Table 1).

Participants with UM had a higher geometric mean

parasite density (27,467.59 parasites/μL, SD = 8.44) com-

pared to SM individuals (16,674.41 parasites/μL, SD =

8.61). But, the median levels did not vary significantly

between the two groups (P = 0.592) (Table 1). Partici-

pants with nMI were negative by microscopy, RDT, and

Taqman array. There were 212 different suspected infec-

tions in the nMI group, and the top 10 include upper re-

spiratory tract infections (17%, 167/978), malaria (9.5%,

93/978), gastroenteritis (7.6%, 75/978), sepsis (6.1%, 60/

978), otitis media (5.9%, 58/978), enteric fever (2.6%, 26/

Fig. 1 Study population and data splitting for building the ANN for clinical malaria. Samples were collected from one low transmission area

(Accra, n = 857) and two high transmission areas: Kintampo (n = 726) and Navrongo (n = 624). The nMI (n = 978) were collected from Kintampo

and Accra and UM (n = 703) were collected from all three areas, while the SM (n = 526) samples were collected from Navrongo. A multi-

classification ANN model was developed for nMI, UM, and SM, which was further evaluated by binary ANN models (1) ANN (UM vs nMI) and (2)

ANN (SM vs nMI). For each model, data splitting was achieved by dividing data in an 80:20% ratio into training (Train) and testing (Test). The 80%

training data was further split into a 70:30% ratio for training (Train) and cross-validation (xVal-set)
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978), fever (2.1%, 23/978), tonsillitis (2.3%, 23/978),

pneumonia (2.1%, 21/978), and anaemia (1.9%, 19/978)

(Additional file 1: Fig. S1). Laboratory results indicated

that majority of the samples were undetermined/not

available/not known (96%, 937/978), with only 4% hav-

ing accurate laboratory results (41/978). Some of the or-

ganisms that were laboratory confirmed include

Streptococcus pneumonia, Staphylococcus aureus, Sal-

monella typhi, Coxiella burnetii, and dengue virus

(Fig. 2). Only 2 UM participants had co-infections (la-

boratory confirmed) with P. falciparum, and these indi-

viduals had Salmonella typhi and group D streptococcus.

Since the sample size of laboratory-confirmed nMI cases

was low, all the samples were grouped as nMI, instead of

individual diseases during ML classifications.

Haematological parameters vary between nMI, UM, and SM

Median values for all the haematological parameters

were significantly different among nMI, UM, and SM

(P < 0.001) (Table 2), but most of the parameters do not

show distinct distributions between the different clinical

diagnosis groups (Fig. 3). More so, Dunn’s post hoc tests

indicated that platelet distribution width, percentage

neutrophils, and percentage lymphocytes were not sig-

nificantly different between the nMI and SM (Table 2).

Similarly, the pairwise comparisons showed that mean

cell volume, neutrophil count, and mean platelet volume

were not significantly different between nMI and UM

(Table 2). Despite the statistical test, we hypothesized

that the median differences for each parameter cannot

be used to confidently classify the disease outcomes.

To further confirm this hypothesis, the median was

used to split the variables into categorical variables (low

and high levels). The relationship or predictive value of

the categorical parameters to accurately classify the clin-

ical diagnosis was determined using contingency tables

(Additional file 2: Table S3). The percentage number of

individuals who had low levels of each parameter and

were classified with nMI ranged from 29 to 70% (UM

group) and 7 to 82% (SM group) (Fig. 4a). Compara-

tively, the percentage of individuals who had low levels

of each parameter and were classified with UM ranged

between 30 and 71%, while the percentage of individuals

who were classified with SM ranged between 17 and

91% (Fig. 4b). There were similar trends for the percent-

age number of individuals who had high levels of each

Table 1 Characteristics of study participants for nMI, UM, and SM (n = 2,207)

Characteristic Non-malaria infections (nMI) Uncomplicated malaria (UM) Severe malaria (SM)

N = 2,207 N = 978 (44.3%) N = 703 (31.8%) N = 526 (23.8%) P value

Patient age

Mean (SD) 4.23 (3.57) 4.95 (3.57) 1.66 (0.93) < 0.001a

Median (range) 3.0 (2–6) 4.0 (2–7) 1.0 (1–2)

Body temperature

Mean (SD) 37.4 (1.18) 38.1 (1.23) 38.4 (1.15) < 0.001a

Median (range) 37.2 (36.5–38.4) 38.1 (37–39) 38.3 (37.5–39.2)

Parasite density

Geometric mean (SD) 0 0 27,467.59 8.44 16,674.41 8.61 0.592c

Median (range) 0 0 29,426 3,144–105,351 25,160 3,560–86,560

Location

Accra (n, %) 657 (67.2%) 200 (28.4%) 0 (0.0%) < 0.001b

Kintampo (n, %) 321 (32.8%) 405 (57.6%) 0 (0.0%)

Navrongo (n, %) 0.0 (0.0%) 98 (13.9%) 526 (100.0%)

Sex

Female (n, %) 477 (48.8%) 317 (45.1%) 236 (44.9%) 0.209 b

Male (n, %) 501 (51.2%) 386 (54.9%) 290 (55.1%)

Fever symptom

No (n, %) 395 (40.4%) 97 (13.8%) 4 (0.8%) < 0.001 b

Yes (n, %) 581 (59.4%) 601 (85.5%) 522 (99.2%)

Missing (n, %) 2 (0.2%) 5 (0.7%) 0 (0%)

Patient age, body temperature, and parasite density were analysed using the Kruskal-Wallis test while recruitment location, sex, and fever were analysed using the chi-square

test at 95% CI. All the participant characteristics were significantly different between the nMI, UM, and SM except median parasite density and patient sex
aKruskal-Wallis test
bChi-square test
cDunn (1964) Kruskal-Wallis multiple comparison—UM vs SM only
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Fig. 2 (See legend on next page.)
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parameter and were classified with either nMI, UM, or

SM (Fig. 4c, d).

Additionally, we determined whether the levels could

predict whether an individual has UM or SM using odds

ratios. First, we predicted UM, and majority of the param-

eters were associated with clinical diagnosis of UM and

nMI (P < 0.001), except mean cell volume, lymphocyte

percentage, mixed cell counts, and neutrophil counts

(Additional file 1: Table S4). The parameters that were

not associated for nMI–SM category were lymphocyte

counts, mean corpuscular Hb, lymphocyte percentage,

mixed cell counts, and neutrophil counts (Additional file 1:

Table S4). Furthermore, some of the haematological pa-

rameters had a 95% confidence interval that included the

null value (1) when evaluating the odds ratios, which sig-

nifies that they are not significantly associated with clinical

diagnosis (Additional file 1: Table S4).

Machine learning attained over 77.7% accuracy in

classifying clinical malaria from nMI

Since there is no clear distinction between the distribu-

tions and the inability of the median-based categories to

clearly classify the participant’s clinical diagnosis, we

sought to evaluate six ML approaches to classify clinical

(See figure on previous page.)

Fig. 2 Clinical manifestations using laboratory diagnosis compared to various suspected infections by clinicians. Blood, urine, and stool samples

were collected from majority of the individuals who were categorized as nMI. Cultures of either blood, urine, or stool were performed, depending

on the clinician’s request and the suspected illness. The suspected organisms were categorized as either bacteria, viral, fungi, and protozoan or a

combination of bacteria/protozoan, fungi/protozoan, viral/protozoan, and viral/bacteria. Laboratory results confirmed only 4% of the cases with

the majority being undetermined/not available/not known (96%, 937/978). The major organisms determined to be present include dengue virus,

Staphylococcus aureus, Salmonella typhi, Streptococcus pneumonia, and Coxiella burnetii. a shows the absolute counts of each diagnosed organism

coloured by the suspected organisms while b shows the proportion of each diagnosed organism coloured by the suspected organism. HIV

stands for Human immunodeficiency virus, URTI for upper respiratory tract infection, Pf for Plasmodium falciparum and SPP for species

Table 2 Comparison of median and interquartile ranges in haematology values measured in nMI, UM, and SM cases

Non-malaria
infections (a), N =
978

Uncomplicated
malaria (b), N = 703

a vs b Severe malaria (c),
N = 526

b vs c a vs c a vs b vs c

Parameters Median IQR Median IQR P value Median IQR P value P value P value

WBC indices

WBC count (103/μL) 9.3 7.0–12.8 8.3 6.3–10.8 < 0.001 11.6 8.3–16.6 < 0.001 < 0.001 < 0.001

Lymphocyte count (103/μL) 3.0 2.0–4.5 1.9 1.3–3.0 < 0.001 3.8 2.4–6.0 < 0.001 < 0.001 < 0.001

Mixed cell count (103/μL) 0.8 0.5–1.1 0.5 0.3–0.8 < 0.001 0.9 0.5–1.4 < 0.001 0.004 < 0.001

Neutrophil count (103/μL) 4.8 3.3–7.6 5.4 3.7–7.6 0.115 6.5 4.4–9.4 < 0.001 < 0.001 < 0.001

Lymphocyte percent (%) 35.8 22.6–47.8 24.7 16.8–36.8 < 0.001 33.9 26.5–44.4 < 0.001 0.964 < 0.001

Mixed cell percent (%) 8.6 6.7–11.0 6.9 5.0–9.2 < 0.001 8.2 5.5–11.3 < 0.001 0.012 < 0.001

Neutrophil percent (%) 54.4 41.7–69.0 67.8 53.7–77.1 < 0.001 55.8 46.6–66.2 < 0.001 0.568 < 0.001

RBC indices

RBC count (106/μL) 4.5 4.2–5.0 4.1 3.6–4.5 < 0.001 2.4 1.7–3.2 < 0.001 < 0.001 < 0.001

Hb level (g/dL) 11.0 10.1–11.8 10.1 8.8–11.2 < 0.001 5.6 4.1–7.4 < 0.001 < 0.001 < 0.001

Haematocrit (%) 34.5 32–37.1 31.1 27.2–34.8 < 0.001 16.7 12.0–21.1 < 0.001 < 0.001 < 0.001

RBC distribution width (%) 15.1 14.0–16.6 15.7 14.7–17.1 < 0.001 18.1 16.2–20.1 < 0.001 < 0.001 < 0.001

Mean cell volume (fL) 76.0 71.2–80.3 76.0 72.0–81.0 0.510 70.0 64.7–75.4 < 0.001 < 0.001 < 0.001

Mean corpuscular Hb (pg) 23.7 21.8–25.6 24.9 23.0–26.4 < 0.001 23.8 21.5–26.7 0.001 0.006 < 0.001

Mean cell Hb concentration (g/dL) 31.6 29.6–32.5 32.3 31.5–33.3 < 0.001 35.1 31.2–37.4 < 0.001 < 0.001 < 0.001

Platelet indices

Platelet count (103/μL) 292.0 226.0–360.0 140.0 92.0–216.0 < 0.001 98.0 61.0–156.0 < 0.001 < 0.001 < 0.001

Mean platelet volume (fL) 8.2 7.6–8.9 8.1 7.5–8.9 0.186 6.9 6.4–7.8 < 0.001 < 0.001 < 0.001

Platelet distribution width (fL) 15.0 13.9–15.4 14.5 12.4–15.6 0.005 15 12.0–17.3 < 0.001 0.121 < 0.001

P value—Kruskal-Wallis test with Dunn’s post hoc tests

P values were analysed using the Kruskal-Wallis test with post hoc tests. The parameters include WBC indices, RBC indices, and platelet indices. All the

haematological parameters were significantly different between the nMI, UM, and SM (P < 0.001)
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malaria from nMI. The UM vs nMI model was trained

on 942 samples, validated on 403 samples, and tested on

336 samples for each ML approach. The SM vs nMI

model was trained on 843 samples, validated on 361

samples, and tested on 300 samples for each ML

approach (Fig. 1). Among the six ML approaches, the

training accuracies ranged between 0.794 and 0.856 to

classify UM while the training accuracies ranged be-

tween 0.937 and 0.985 in classifying SM. The test accur-

acies ranged from 0.777 to 0.857 for the UM model and
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Fig. 3 Density estimates of the haematological parameters between nMI, UM, and SM cases. The plots indicate the distribution of each

haematological parameter for each clinical diagnosis category. The plot uses the kernel density estimate that allows for smoother distributions by

smoothing out the noise. The peaks of each density plot are displaying the point where values are concentrated over the interval. Below each

plot is the label of the haematological parameter it is estimating
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0.930 to 0.973 for the SM model (Additional file 1: Table

S5). The SVM approach and the ANN generated the

overall best classification outcome.

Hyperparameter tuning for the ANN (n = 55,290 com-

binations) showed that the optimal model for multi-

classification had 0.862 training accuracy with a model

capacity of 3 layers (128, 64, and 16), with dropouts of

0.4 for layer 1, 0.3 for layer 2, and 0.4 for layer 3, and

learning rate of 0.001 (as represented in Additional file 1:

Fig. S2). The optimal model (n = 55,290 combinations)

for ANN (nMI vs SM) with 0.985 accuracy had a model

capacity of 3 layers (16, 128, and 256 RELU units, re-

spectively), the dropout rate was 0.2 and 0.4 for the first

two layers and the last layer had 0.1, and a learning rate

of 0.0001. The optimal model (n = 55,290 combinations)

for ANN (nMI vs UM) with 0.856 training accuracy had

a model capacity of 3 hidden layers of 256, 64, and 16

RELU units, respectively; the dropout rate was 0.1 for

the first and last layer and 0.3 for the second layer, and a

learning rate of 0.0001. Training and validation history

plots for the ANN showed good levelling off for accur-

acy and loss, as well as acceptable divergence between

training loss/accuracy and validation loss/accuracy for

all the three models (Additional file 1: Fig. S3).

Also, the history plots suggest that there was near zero

over-fitting or under-fitting of the data as indicated by

closeness of the training and validation curves (Add-

itional file 1: Fig. S3). The ANN (UM vs. nMI) achieved

0.856 training accuracy and 0.842 validation accuracy,

while the testing accuracy of the model was 0.801 (kappa

0.583) (Table 3). The training and testing accuracies

demonstrate the confidence of the networks in classify-

ing UM. The ANN (SM vs nMI) achieved a higher ac-

curacy (≥ 0.96) for training, validation, and testing

accuracy (Table 3). Both ANN had an F1 score of above

0.747, which means the model can be used for the

Fig. 4 Non-symmetrical predictive values of clinical diagnosis using median split (high vs low levels) of each haematological parameter. A

‘median split’ was used to divide each quantitative parameter into categorical variables by the median value (calculated as a mean of nMI and

UM or SM median value shown in Table 2). The predictive values are calculated from contingency tables (Additional file 2: Table S3). a The

percentage predictive value in predicting nMI from low levels. b Percentage predictive value in predicting SM or UM using the low levels. c

Percentage predictive value in predicting nMI using high levels. d Predictive values of UM or SM using high levels
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classification of clinical malaria (Table 3). Since the bin-

ary classifiers had the best performance, we also per-

formed a multi-classification analysis to assess the ability

of the ANN to differentiate among UM, SM, and nMI.

The data available for the multi-classification model was

2,207 samples, which were split to 80% training (n =

1,766) and 20% testing (n = 441). The training data was

further split to 70% (n = 1,236) training and 30% (n =

530) cross-validation with accuracies of 0.862 and 0.828,

respectively. The test accuracy was 0.853; kappa, preci-

sion, recall, and F1 score of the model was > 0.768

(Table 3). The accuracy of multi-classification model

provides confidence in the binary classifications.

Diagnostic value of the models using ROC curves

Having shown the accuracy of the models, we deter-

mined the ROC curves of ANN (UM vs nMI) and ANN

(SM vs nMI) to show the diagnostic ability of these bin-

ary classifiers. Both classifiers had very good perform-

ance with an AUC of 0.866 for ANN (UM vs nMI) and

AUC of 0.983 for ANN (SM vs nMI) (Fig. 5 and Table 3).

This showed that the models could be used to distin-

guish individuals with SM or UM from those with nMI.

The cut-offs for UM show that there is a trade-off in

sensitivity and specificity as the cut-off increases or de-

creases, which is not the case for SM. These results

could frame the clinical utility of the models and provide

a benchmark for future studies.

Platelet and RBC counts classify clinical malaria from non-

malaria infections

The models were investigated to identify which haem-

atological parameters were classified to be important for

either SM, UM, or nMI using local interpretable model-

agnostic explanations (LIME). Case by case analysis of

the individuals showed that some haematological param-

eters are important classifiers of UM (Additional file 1:

Fig. S4). Case by case analysis was merged into heatmap

to generate a consolidated picture of useful parameters

for classification (Fig. 6). The top three parameters that

had low feature weights for UM are platelet counts, RBC

counts, and lymphocyte percentages (Fig. 6a). Based on

the order of importance, the top three parameters that

were important for SM classification include RBC

counts, platelet counts, and mean platelet volume

(Fig. 6b). This shows that both platelet and RBC counts

are important parameters for clinical malaria while the

lymphocyte percentages were unique for UM. These pa-

rameters might be used to classify clinical malaria cases

from nMI, with a very good diagnostic ability as shown

by the ROC analysis (Fig. 5).

Patient age and sampling location do not affect the

model classifications

We further tested if the models are agnostic to age and

location variance. There was a significant difference in

patient age between nMI and UM (P < 0.001), but there

Table 3 Performance of classification models for identifying parameters that can be classified with clinical malaria

ANN UM vs SM vs nMI UM vs nMI SM vs nMI

Model type Multi-classification model Binary model Binary model

Data splitting

Total data (100%) n = 2,207 n = 1,681 n = 1,504

Training and validation data (80%) n = 1,766 n = 1,345 n = 1,204

Testing data (20%) n = 441 n = 336 n = 300

Training performance

Training accuracy 0.862 0.856 0.985

Training loss 0.396 0.425 0.062

Validation accuracy 0.828 0.842 0.978

Validation loss 0.432 0.434 0.102

Testing performance

Testing accuracy 0.853 0.801 0.96

Kappa 0.768 0.583 0.913

ROC_AUC NAa 0.866 0.983

Precision 0.855 0.780 0.971

Recall 0.856 0.717 0.918

F1 score 0.856 0.747 0.944

Training and cross-validation accuracy as well as testing accuracy, area under the ROC curve (AUC), precision, recall, and F1 score. Multiclass analysis among all

three-disease conditions, training accuracy was 0.862 with 0.828 validation accuracy. The model classified the three classes with 0.853 test accuracy. The ANN (UM

vs nMI) had an accuracy of ≥ 0.801 for training, validation, and testing accuracy. The ANN (SM vs nMI) had the highest classification accuracy of ≥ 0.96
aWe did not generate ROC-AUC for multi-classification models
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Fig. 5 ROC curve for classification of SM was near perfect. The ROC curve plots sensitivity versus specificity for all possible cut-offs. Each point on

the curve represents a different cut-off value, which is connected to form a curve. The diagonal line is a reference line for the ROC curve. a ROC

for the ANN (UM vs nMI) with an area under the curve (AUC) of 0.866 which is basically an average of true positive rate across all possible false

positive rates. b ROC for the ANN (SM vs nMI) is right angled which means its near perfect with an AUC of 0.983. The levels of AUC indicate a

good performance of the models in classifying UM and SM

Fig. 6 Platelet and RBC counts identified as classifiers of both UM and SM. The Keras model was explained using local interpretable model-

agnostic explanations (LIME Package in R-software). The explainer results of the test data, which are represented as feature weights, were

extracted from the explainer and used to plot the heatmaps to show a consolidated picture of the importance of each haematological

parameter. The weights that are < − 0.1 indicate that they are low during UM or SM. a The heatmap shows that platelet, RBC, and lymphocyte

percentages/counts can classify UM and b shows the haematological parameters that can classify SM, and they include RBC counts, platelet

counts, mean platelet volume, and mean cell volume
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was no significant difference in samples within Kin-

tampo as well as children under the age of 4 years

(Fig. 7a, c, e; Additional file 1: Fig. S5 & S6). The per-

formance accuracy of the random forest models was

0.806, 0.767, and 0.768 for models 1, 2, and 3, respect-

ively (Fig. 7b, d, f). The most important parameters that

were featured across the three models were platelet and

RBC counts, which are similar to the top two parameters

identified by the ANN. Therefore, the data illustrates

that age and location do not affect model classifications,

and the platelet or RBC counts determined by ANN can

be used to reliably classify clinical malaria from nMI in

these datasets.

Discussion
Automated CBC is one of the blood tests routinely per-

formed for children presenting to health facilities with

fever. However, CBC analysis generates a significant

amount of data on a range of haematological parameters,

and the data is underutilized with only Hb and Hct

levels being routinely used as an indicator of clinical

malaria. Thus, an automated algorithm to detect malaria

based on the haematological parameters as outlined in

this study could have great value as a complementary

malaria diagnostic strategy, particularly at frontline

health centres where CBC is routinely performed. Such

an algorithm also has the added value of enabling the

monitoring of treatment outcomes for in-patients.

In malaria-endemic settings, malaria rapid diagnostic

tests (mRDTs) have revolutionized diagnosis and signifi-

cantly reduced presumptive treatment, particularly in

rural settings where trained microscopists are lacking

[3]. However, reports of emerging Pfhrp2/3 gene dele-

tions threaten the future reliability of the RDTs. False

negative RDT results are also known to occur in low-

density infections [2, 6, 7]. Thus, an approach that is au-

tomated and agnostic to parasite genetic variation is crit-

ical both as a fail-safe and a surveillance strategy for

false negative mRDTs (which might occur due to supply

chain mismanagement or gene variation) [6]. In very

low transmission settings, ML models have the poten-

tial to replace the primary use of mRDTs when the

diagnostic yield of mRDTs becomes very low (i.e.

many mRDTs needed to detect a single case of mal-

aria). In non-endemic settings where malaria may

occur in immigrants and non-immune travellers, the
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Fig. 7 Classification of haematological parameters using random forest shows that patient age and sampling location do not affect the ML

models. Three models were generated: a a model for all the UM and nMI cases (n = 1681), which show a significant difference in patient age,

while b shows the impurity-based measurement of the feature importance of the model; c a model for UM and nMI from Kintampo cases only

(n = 756), which do not show any significant difference between the patient age, and d shows the feature importance of the model; and e a

model for only Kintampo cases and ages under 4 years, whereby there was no significant difference between the nMI and UM (n = 416) and f

shows the feature importance of the model. The samples for each model were split 80% for training and 20% for testing. The accuracy of the

models was 0.806, 0.767, and 0.768, respectively. The most important feature across the three models was platelet and RBC counts
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models may allow another fail-safe mechanism in case

the diagnosis of malaria was not suspected by clini-

cians and malaria RDT or microscopy was not per-

formed. Despite these advantages, there would be a

little extra cost associated with incorporating the al-

gorithm and an automated message into haematology

analyser output, a message that can prompt clinicians

to consider malaria in the presence of suggestive

haematological features.

Previous ML studies have looked into haemato-

logical parameters more generally and to classify

sickle cell anaemia using deep convolutional networks

[41, 42], but did not classify clinical diagnosis. For

the first time, ML approaches that can classify infec-

tions in children based on haematological parameters

have been generated. Six different ML methods were

evaluated, and they were all shown to classify clinical

malaria from nMI with high accuracy especially the

SVM and the ANN. We used the ANN to deconvo-

lute the results: it identified platelet and RBC counts

as the top features in classifying both UM or SM

from nMI. Low RBC counts can be attributed to ex-

tensively parasitized RBCs, which are sequestered dur-

ing SM [43]. This highlights the significance of RBC

counts during Plasmodium falciparum malaria infec-

tions. In most occasions except cerebral malaria, SM

is associated with anaemia due to RBC lysis during

parasite invasion as well as many other RBC abnor-

malities [44]. This makes the diagnosis of SM much

easier than UM, whereby one parameter, such as Hb

level of < 5 g/dL, can diagnose or classify the disease.

Cohen et al. analysed data from 680,964 individuals

with fever and confirmed that majority of antimalarial

drugs are given to malaria-negative individuals [45].

Overtreatment indicates that most nMI can go with-

out being treated, for their true cause, which is also

possible for UM and this can lead to drug resistance.

Therefore, the difference between febrile outpatient

infections is far more challenging, especially between

nMI and UM due to similarity in clinical presenta-

tions. In large population studies, values of studied

metrics can be significant but they do not necessarily

distinguish the populations as either nMI or UM as

observed in this study. But, using the ML approach

shown here, distinguishing the nMI and UM can be

improved by combining all haematological parameters

and learning the data-patterns before making classifi-

cations. The predictions made by ML are more accur-

ate and reliable and can be improved by analysing

more datasets. Lymphocyte counts/percentage were

identified to be affected during UM and can be used

to distinguish UM from nMI, mainly because individ-

uals with malaria generally have a distinct immune

response compared to nMI individuals [27, 46, 47].

Previous work in our laboratory showed differences in

haematological presentation among areas of varying

transmission intensity in Ghana [48]. To show that dif-

ferences in age and transmission zones (sampling loca-

tion) are not driving our diagnostic classifications, we

down-sampled the data and used random forest to per-

form the classifications. The results showed that platelet

and RBC counts were the key features in classifying UM

and nMI regardless of age and sampling location of the

participants. There were differences in the top three im-

portant features between the random forest and ANN,

but this could be due to the differences in the approach

of each algorithm [23, 49]. This illustrates that patient

age and location do not substantially influence the diag-

nostic classifications in this study. The ROC curves fur-

ther showed that the models could be used for diagnosis

with very reliable AUC values.

There are limitations to be considered in the use of

this ML approach in routine diagnosis and the

generalization of our approach. First, the models can

distinguish between nMI and clinical malaria, but

whether they can be used to distinguish the clinical

disease state will depend on the pre-test probability

or prevalence of malaria in different endemic settings.

Second, all study subjects being Ghanaian children

may limit the generalizability of the models to other

countries; this is also the case for the limited range

of SM manifestations in our dataset and the spectrum

of laboratory-confirmed nMI. The few nMI cases that

were clearly diagnosed and still grouped/retained as

nMI may also present minimal bias to the models.

Lastly, the study did not have adults > 15 years to

comparatively understand the role of age in differenti-

ating clinical malaria based on haematological param-

eters. Therefore, we recommend that more studies

are needed to inform the broader utility of this work.

Despite that only 4.6% (75/1645) of the cases were

discordant between microscopy and RDT, probably

due to hrp2/hrp3 deletions, although there is an in-

significant chance that misclassification of malaria

could have had an impact on our study. These limita-

tions will be taken into account for further studies to

inform the broader clinical utility of this work.

Conclusions
Fever is the most common symptom reported in sSA,

and correct diagnosis of the implicated pathogen is of

high importance for precision medicine. Personalized

treatment reduces overtreatment, decreases malaria

mortality and antimalarial resistance. This report

demonstrates proof-of-principle that ML can be used

to distinguish clinical malaria from nMI using routine

haematological data. Case by case analysis showed

that the models can make classifications based on
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combination of three parameters: platelet and RBC

counts, lymphocyte counts/percentage, and mean

platelet volume. These could be used for precision

diagnosis of an individual’s risk of having malaria, to

inform the need for confirmatory diagnosis by mi-

croscopy or to prompt investigation for other diagno-

ses when malaria is unlikely. Further work is to

calibrate and improve the classification capability of

the model using more data from other geographical

and transmission settings, demographic groups, co-

infections, and different disease severities. Our find-

ings hold promise for the design of clinical software

to support the diagnosis of malaria in the WHO Afri-

can region and might also prove useful for the diag-

nosis of malaria in returning travellers from non-

endemic countries.
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