
This is a repository copy of Extraction of Respiratory Signals and Respiratory Rates from 
the Photoplethysmogram.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/169602/

Version: Accepted Version

Proceedings Paper:
Xiao, S, Yang, P, Liu, L et al. (2 more authors) (2020) Extraction of Respiratory Signals and
Respiratory Rates from the Photoplethysmogram. In: Lecture Notes of the Institute for 
Computer Sciences, Social Informatics and Telecommunications Engineering. EAI 
International Conference on Body Area Networks, 21 Oct 2020, Tallinn, Estonia. Springer 
Verlag , Cham, Switzerland , pp. 184-198. ISBN 9783030649906 

https://doi.org/10.1007/978-3-030-64991-3_13

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications 
Engineering 2020. This is an author produced version of a conference paper published in 
Lecture Notes of the Institute for Computer Sciences, Social Informatics and 
Telecommunications Engineering. Uploaded in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Extraction of respiratory signals and respiratory rates 

from the photoplethysmogram  

Shenglang Xiao1, Pengfei Yang2, Luyao Liu3, Zhiqiang Zhang4, Jiankang Wu5 

1 Xidian University, Xi’an, Shaanxi 710071, China 
slxiao@stu.xidian.edu.cn 

2 Xidian University, Xi’an, Shaanxi 710071, China 
pfyang@xidian.edu.cn 

3 University of Science and Technology Beijing, Beijing 100083, China 
17888841360@163.com 

4 University of Leeds, Leeds LS2 9JT, UK 
Z.Zhang3@leeds.ac.uk 

5 University of Chinese Academy of Sciences, Beijing 100049, China 
jkwu@ucas.ac.cn 

Abstract. Respiration rate (RR) is an important indicator of human health as-

sessment which can be estimated by extracting respiratory signals from the pho-

toplethysmogram (PPG). The goal of this study is to propose an alternative 

method, for obtaining accurate estimation of respiratory rate (RR) from the PPG 

signal. The proposed algorithm is based on the multiple autoregressive models 

and autocorrelation analysis (AC-AR). In AC-AR, the autoregressive model 

(AR) is applied to determining the dominant respiratory rate from the PPG, and 

autocorrelation is applied to reduce the effect of clutter in the three respiratory-

induced variations. Meanwhile, this paper introduced signal quality indices 

(SQI) to improve reliability of results. This algorithm is tested using an open 

source database: The CapnoBase benchmark dataset, which comprising 42 

eight-minute PPG recording and respiratory signal acquired form both children 

and adults in different clinical setting. Compared with that of existing method in 

the literature, the average absolute error percentage (AAEP) of the proposed al-

gorithm is less than 3.72%, which demonstrated that our presented AC-AR 

bring a significant improvement in accuracy. 

Keywords: Respiratory rate (RR), Photoplethysmography (PPG), AR model, 

data fusion. 

1 Introduction 

Respiratory rate (RR) is one of the indicators used by hospitals to monitor patients for 

abnormal conditions, such as cardiac, respiratory arrest, systemic inflammatory re-

sponse syndrome (SIRS), and renal failure [1]. Adults have a normal respiratory rate 

of 8-20 breaths per minute (bpm) [2]. In a study of respiratory abnormalities, 54% of 

cardiac arrest patients had at least one RR>27bpm three days before cardiac arrest [3]. 
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Therefore, it is essential to monitor patients’ respiratory. However, although pulse 

oximetry can be used to continuously measure heart rate (HR) and peripheral oxygen 

saturation (SpO2), continuous estimation of RR requires additional equipment, such 

as measurement of gas flow. Therefore, these is a need to improve the accurate of RR 

estimates from the electrocardiogram (ECG), the photoplethysmogram (PPG) ob-

tained from pulse oximeters [4], [5]. This paper focuses on extracting RR from PPG 

signals. Pulse oximeters estimate blood oxygen saturation (SpO2) based on Beer-

Lambert's law, which indicates that the light intensity decays exponentially as it pass-

es through the medium and the degree of attenuation is related to wavelength [6]. 

Therefore, we can use PPG to show the change in blood volume in the finger over 

time. The PPG signal includes a pulse component and a constant component, and the 

respiratory signal and the heartbeat signal are included in the pulse component [7]. 

The modulation of PPG signals by respiratory cycle includes a variety of ways, in-

cluding amplitude modulation (AM), frequency modulation (FM), and baseline wan-

der (BW) [8]. To extract the respiratory modulation signal from the PPG, the most 

common method is to detect the peak and trough of the PPG signal and obtain the 

respiratory modulation signal by calculation. In peak-trough detection in the time-

domain, we define the time-series of peaks in the PPG to be a set of pairs 

{𝑡!",$ , 𝑦!",$}$%&…(!", and the time-series of troughs in the PPG to be a set of pairs 

{𝑡)*,$	,𝑦)*,$}$%&…()*, where 𝑁!" and 𝑁)* are the number of peaks and troughs, respec-

tively. 𝑁!" ≠ 𝑁)* will be caused by noise in the signal or misdetection of the detec-

tion algorithm [6], [9], [10]. The time-series of peak and trough will be used to derive 

three different respiration-modulated signals, representing three different kinds of 

information about respiration [6]. (1) Respiration leads to change in cardiac output, 

causing respiratory-induced amplitude variation (RIAV), that is, change in peripheral 

pulse intensity. RIAV is defined as the height difference between two adjacent peaks 

and troughs. Therefore, 𝑦,-./ = {𝑡$ , 𝑦!",$ − 𝑦)*,$}$%&…()*. (2) Respiration causes peri-

odic changes in heart rate, namely respiratory-sinus arrhythmia (RSA). It appears that 

the heart rate increases during inhalation and decreases during exhalation, thereby 

causing respiratory-induced frequency variation (RIFV), which is defined as the time 

interval between successive PPG peaks. Therefore, 𝑦,-0/ = {𝑡$ , 𝑡$1& − 𝑡$}$%&…(!". (3) 

Respiration causes change in the pressure in the chest, causing blood exchange be-

tween the pulmonary and systemic circulation. Leading to a change in the baseline of 

perfusion, called respiratory induced intensity variation (RIIV). RIIV appears as the 

change in the amplitude of the peak of PPG waveform. Therefore, 𝑦,--/ =
{𝑡$ , 𝑦)*,$}$%&…()*. There are also other respiratory modulation signals, such as pulse 

width variability [11], which can be used to estimate the RR (see Fig. 1).  

Respiration modulates the PPG in different ways. Different methods of modulation 

signal extraction have been proposed in a number of literatures, which are discussed 

in Section II. In Section III, the improved IMS algorithm and peak detection algo-

rithm are introduced, and a combined algorithm for spectral analysis is proposed to 

improve the accuracy of RR estimation. Databases and evaluation methods are de-

scribed in Section IV. Section V shows the results of RR estimation using the pro-

posed algorithm. The significance and results of this study are discussed in Section 

VI. 
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Fig. 1. PPG waveform and three respiration modulation signals. RIIV is the change in the base-

line of perfusion; RIAV is the change in peripheral pulse intensity; RIFV is periodic changes in 

heart rate. 

2 Related work 

Different algorithms have been proposed to estimate RR form PPG, such as digital 

filters [12], fast Fourier transforms (FFT) [6], wavelet decomposition [13] and hidden 

semi-Markov model [14]. Autoregressive model (AR) [9, 15], principal component 

analysis (PCA) [16] and artificial neural network (NN) [17], have all been successful-

ly applied to various PPG databases with good estimation results. Some studies use 

neural networks to analyze the three modulation signals to select the best waveform 

for the algorithm design. There are also studies that use data fusion to combine esti-

mates of multiple modulation signals [6, 18]. However, these methods have higher 

requirements for time domain waveforms. This problem can be solved by autocorrela-

tion analysis. Autocorrelation analysis is a mathematical tool for finding repetitive 

patterns, such as periodic signals masked by noise. Since the respiratory signal can be 

viewed as a noisy periodic signal, the autocorrelation analysis can be used to calculate 

the respiratory rate [19]. In the autocorrelation signal, each peak (except the first) 

represents a period of strong autocorrelation, and the period with the greatest correla-

tion can be regarded as the RR. 

In order to extract effective information from chaotic PPG signal, researchers have 

proposed various methods. Byung S. Kim et al. used independent component analysis 

(ICA) to reduce motion artifact [20]. Despite so many advances, the use of pulse oxi-

meters to measure respiratory rate has only recently been used commercially, because 

there are more reliable methods of RR estimation in clinical settings, such as spirome-

try or capacitance. Therefore, it is important to come up with a reliable method for 

PPG. A common method now is to introduce the signal quality index (SQI) to evalu-

ate the signal quality [21]. If the PPG signal does not carry meaningful physiological 

information, it will not be algorithmically estimated. The lack of quality indicators 

may lead to serious clinical errors, and the introduction of evaluation indicators can 

improve accuracy and reliability. 

To overcome this limitation, we designed an algorithm that uses all available res-

piratory-induced waveform to achieve significant accuracy. In this study, we propose 

an algorithm that combines the results of the three respiratory-induced variations de-

scribed above, and use the AC-AR algorithm to estimate respiratory rate. 
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3 Proposed algorithm 

As for RR estimation, the most essential is the extraction of respiratory modulation 

signals. The main methods for extracting respiratory modulation signals are peak 

detection and signal quality assessment. Before the peak detection, the pre-processing 

procedure should be carried out first. A high-pass filter is applied to remove the dc 

component of the PPG signal. Then the PPG is segmented into pulses using IMS algo-

rithm and artifacts are detected which are used to calculate signal quality (see Fig. 2). 

If the assessed quality is low, the RR estimation is not provided. This paper proposes 

an improved method for peak detection and signal evaluation, and then uses spectrum 

analysis and data fusion to estimate respiratory rate. In the following sections, we will 

describe RR estimation in more detail. 

 

Fig. 2. The AC-AR algorithm flowchart. 

3.1 Peak detection 

The general principle of peak detection is that any singular point of a differentiable 

signal corresponds to a zero-crossing point or two inflection points in its derivative 

signal. This paper proposes a new method for peak detection. This method does not 

need to solve the second derivative, also does not need to solve the inflection point of 

the first derivative. Therefore, the computational efficiency can be improved to facili-

tate real-time processing. The specific method is shown in the Algorithm 1 below. In 

order to avoid the impact of PPG signal amplitude changes on peak detection and 

verification, a 10s sliding window is used for PPG waveform with an overlap time of 

5s. 

In order to improve detection accuracy, peak verification is needed which mainly 

considers two factors, the amplitude threshold and the time interval threshold. The 

method of setting the amplitude threshold is shown below. Let thresh1 be the ninth 

decile and thresh2 be the first decile. Then, 

 thresh3 = thresh2 + 0.7 ∗ (thresh1 − thresh2) (1) 

and then, 

 highdiff = abs(peaks − thresh1) (2) 
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 middlediff = abs(peaks − thresh3) (3) 

 lowdiff = abs(peaks − thresh2) (4) 

where peaks is the time-series of peaks. If condition 

 (highdiff < middlediff)	&	(highdiff < lowdiff) (5) 

is met, the peak point is recorded. 

 

Algorithm 1  Peak detection algorithm 

1: data ← PPG; 

2: diff ← diff(data); 

3: left_diff ← diff [1: end-1]; 

4: logical_left ← logical(left_diff>0); 

5: right_diff ← diff [2: end];  

6: logical_right ← logical(right_diff>0); 

7: peaks ← find (logical_left & logical_right = 1) + 1; 

where diff(X) calculates the difference between X adjacent elements along the first 
array dimension whose size is not equal to 1; logical(A) converts A to an array of 

logical values. Any non-zero element in A will be converted to the logical value 1 

(true), and zero to the logical value 0 (false); find(X) returns a vector containing a 

linear index of each non-zero element in the array X. 

 

In terms of time interval, because the pulse wave is mainly regulated by the heart-

beat, and the normal person's resting heart rate is 60-100 bpm, the peak of the time 

interval corresponding to this range will be detected. For trough detection, the PPG 

waveform shows that the minimum value between two peaks is the trough. The time-

series of peak and trough will be used to derive three different respiration-modulated 

signals, representing three different kinds of information about respiration. 

3.2 Signal Quality Index 

Since there are motion artifacts and noise that cannot be filtered out in the PPG, the 

quality of the PPG needs to be evaluated. The signal quality evaluation method used 

in this paper is analyzed for consistency. First, the PPG pulse is divided into line seg-

ments using Incremental-Merge Segmentation (IMS) algorithm. According to the 

shape of the line segment, it is distinguished into effective signals and noise. This 

paper calculates the ratio of artifact and clip in the signal as the SQI for the signal 

quality. 

The IMS algorithm can be used for real-time processing with a sliding window 

structure [22]. The algorithm only needs to set a parameter 𝑚 (the number of points 

moved each time, mainly related to the sampling rate). The principle is to divide the 

PPG signal into n m-length segments, calculate the slopes of these segments, and 

merge them with the same slope, and the different slopes are divided into new Line 
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segments. After the IMS algorithm, each PPG pulse is represented as a straight line 

from the beginning of the pulse to the end of the primary peak of the pulse (see Fig.3). 

 

Fig. 3. The result of IMS algorithm and Artifact detection 

Since the upslope and downslope line segments have a one-to-one correspondence, 

the upslope line segments are analyzed separately. If the amplitude and slope of the 

upslope line segment both exceed the threshold, it is regarded as artifact; if the slope 

is zero, it is regarded as clip; the line segment immediately after the clip is also arti-

fact. SQI is calculated according to the ratio of artifact and clip in the PPG for signal 

quality. If the SQI is less than the threshold, then the data window is labeled as low 

RR estimation quality (see Fig. 4). 

 

Fig. 4. SQI algorithm flowchart 

3.3 Estimation of respiratory rate 

After the time-series of peak and trough are obtained from the peak detection, the 

above method is used to calculate three kinds of respiratory modulation signals: RIIV, 

RIFV, and RIAV. Because these modulation signals are unevenly-sampled time-

series, they are resampled at fs=4Hz, using linear interpolation. Each resampled time-

PPG

Peak detectPeak detect IMS

Interval 

Threshold

Interval 

Threshold
ArtifactArtifact Clip

Threshold

Total time

Threshold

Bad Good

No Yes
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series is normalized using a zero-mean unit-variance transformation, so that the am-

plitudes of the three modulation signals are unified to the same range for subsequent 

spectral analysis. Then use a high-pass filter to remove the low-frequency signal, and 

a moving average filter to smooth the signal. The next step is to extract the respiratory 

rate. 

Autocorrelation analysis. Autocorrelation analysis is a mathematical tool for find-

ing repetitive patterns, such as periodic signals masked by noise. Since the respiratory 

signal can be viewed as a noisy periodic signal, the autocorrelation analysis can be 

used to calculate the respiratory rate. The autocorrelation formula is as follows, 

 𝜌2(𝜏) =
3[(2!67)(2!"#67)]

:$
	 (6) 

where 𝑥$ is the time-series of signal, 𝑥$1; is the time-series translated by τ units, µ is 

the mean, and 𝜎< is the variance. An autocorrelation sequence C[τ] can be combined 

by the value of formula from τ = 0 to τ = n − 1. In the autocorrelation signal, each 

peak (except the first) represents a period of strong autocorrelation, and the period 

with the greatest correlation can be regarded as the RR. Therefore, we can use auto-

correlation analysis to obtain the periodicity of the respiratory signal.  

We apply the autocorrelation to analyze the signal as Fig.5 shows. As the result, the 

autocorrelation coefficient waveform contains the breath rate signal, and it overcomes 

the effect of noise and clutter. At last, we can analyze these coefficients by AR model 

to acquire the more accurate RR. 

 

Fig. 5. Autocorrelation analysis diagram 

AR model. AR model is an alternative to the discrete Fourier transform (DFT) and 

one of the methods for high-resolution spectral estimation of short-term sequences. In 

biomedical engineering, AR models are widely used for spectrum analysis of heart 

rate variability and electroencephalography analysis. In AR model, each point in the 

time-series is a regression of its past points. The number M of past points used is 

called the order of AR model. AR model can be regarded as a filter, which divides the 

time-series into predictable time series and prediction error series. Compared with the 

DFT, it provides a smoother and more intuitive power spectrum, and yet is more 

complicated. The AR model is defined as, 
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 x[n] = ∑ 𝑎$𝑥[𝑛 − 𝑖] + 𝜀[𝑛]=
$%&  (7) 

where M is the model order, 𝑎$ is the weight, and 𝜀[𝑛] is the prediction error and fol-

lows ε~N(0, σ). The least squares method is used to minimize the prediction error 

𝜀[𝑛] to obtain the optimal parameter 𝑎>!). Matrix the above formula, 

 x = X𝑎 + 𝜀	 (8) 

when the prediction error 𝜀[𝑛] reaches the minimum, the parameter 𝑎>!) is optimal, 

that is, 

 ε = x − X𝑎>!) = 𝟎 (9) 

 𝑋?𝜀 = 𝑋?(x − X𝑎>!)) = 𝟎	 (10) 

 𝑋?x = 𝑋?𝑋𝑎>!)	 (11) 

 (𝑋?𝑋)6&(𝑋?𝑋)𝑎>!) = 𝑎>!) = (𝑋?𝑋)6&𝑋?x (12) 

Another point of AR model is the choice of model order M. Different orders have 

different effects in AR model. In practice, by fitting the sequence to multiple orders, 

the order with the best effect is selected. The most common selection criterion is 

Akaike’s Information Criterion (AIC), 

 AIC(M) = N ∙ lnd𝜎!<e + 2M (13) 

where 𝜎!< is the variance of the prediction error 𝜀[𝑛]. The best model order is M that 

minimizes AIC. 

Then, the time-series spectrum R(𝑒@A) can be obtained by multiplying the square 

of the transfer function and the variance of the prediction error, 

 R(𝑒@A) = h𝐻(𝑒@A)h
<
𝜎!<	 (14) 

where 𝐻(𝑒@A) is the transfer function of AR model, 

 𝐻(𝑒@A) = &

&6B%C&'(6⋅⋅⋅6B)C&')(
	 (15) 

The autocorrelation method can remove the noise in the periodic signal with the 

characteristics described above. Each peak of the autocorrelation sequence represents 

a period of strong autocorrelation, so the period of the autocorrelation corresponds to 

the period of the original signal. Therefore, the autocorrelation signal of the respirato-

ry modulation signal can be used as the input signal of AR spectrum analysis to esti-

mate the RR. 

3.4 Data fusion 

In order to improve the accuracy and reliability of RR estimation, data fusion can be 

performed on three kinds of respiratory modulation signals. A common fusion method 
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is to average the spectrum of the three kinds of modulation signals, and the maximum 

value is selected as RR. This paper proposes an improvement method. 

Due to the autocorrelation signal of the modulation signal can be analyzed as a 

breathing signal, and the waveform of the autocorrelation signal is more regular. First 

use the IMS algorithm to segment the autocorrelation signal. Since the autocorrelation 

signal of a normal breathing signal is approximately a sine wave, its variance value is 

small, and its mean value is close to 1, that is, the waveform is relatively stable (see 

Fig. 6). An analysis of variance is performed on the autocorrelation signal, and auto-

correlation signal quality (ASQ) is used as an indicator,  

 ASQ = var/mean (16) 

where var is the variance of these line segments, and mean is the mean of these line 

segment. The spectrums of the modulation signal with ASQ less than a certain range 

are processed by average. 

 

Fig. 6. Autocorrelation signal quality 

4 Materials and methods 

An open-source dataset, the CapnoBase benchmark dataset (available at 

www.capnobase.org) was used for the analysis described in this paper. The database 

which contained PPG signals, ECG signals, and respiratory signals was collected by 

Karlen et al. The sampling frequency was 300 Hz. These data were collected from 59 

children (mean age 8.7) and 35 adults (mean age 52.4). The author of the database 

randomly selects a part of it, and then combines it into a new data set, which contains 

42 data segments with a duration of 8 minutes. Each recorded CO2 tracing waveform 

was used as a reference "gold standard" record for RR. Each breath on the carbon 

dioxide map in the database has been manually marked by the research assistant, and 

the reference RR value is derived based on the average time between two consecutive 

breaths using annotations [6]. 

Before data analysis, preprocessing is performed. We remove the linear trend of 

the signal to avoid errors caused by data offset and then use low-pass filtering to re-
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move high-frequency noise. The three methods mentioned above are then used to 

extract the respiratory modulation signal. The signals are resampled since they are 

unevenly-sampled time-series. Each resampled time-series is normalized using a zero-

mean unit-variance transformation. In order to increase the reliability of the signal, a 

signal evaluation index (SQI) is introduced to evaluate the quality of the modulated 

signal. In this study, RR was estimated to be within a reasonable range of breathing 

frequencies set at 4 to 65 breaths per minute. 

To extract the RR from the PPG, a common method is to use a sliding window to 

segment the PPG time-series, and each window obtains an RR. This experiment uses 

two windows size of 30s and 60s, and estimates the RR every 3s and 6s, respectively. 

Based on the estimated value and the reference value, performance was assessed by 

calculating the mean absolute error (MAE) and average absolute error percentage 

(AAEP) in breaths per minute for each record, defined as, 

 MAE = &

E
∑ h𝑦$ − 𝑦*CF,$h
E
$%& 	 (17) 

 AAEP = &

E
∑

GH!6H*+,,!G

H*+,,!

E
$%& 	 (18) 

where w is the number of reference value, 𝑦$ is estimate value, and 𝑦*CF,$ is reference 

value. The observation value of each algorithm is compared with the reference obser-

vation value, and the measurement error of the observation value of each algorithm is 

calculated. The first 64 seconds are not used for performance measurements because 

they are used to initialize high-pass filters and sliding window. All RR estimation 

methods, including the single modulation methods, ignore the measurement errors of 

the windows containing artifacts automatically detected by the algorithm. 

5 Results 

According to the experiment, for the signal with a sampling frequency of 300hz, the 

IMS algorithm can obtain a better result when m = 10. It provides a good tradeoff 

between calculating load and time resolution for pulse peak detection. Different time 

windows have no significant effect on RR measurement errors, but larger windows 

can slow down the real-time response of the algorithm. But when the time window is 

too small, the lower respiratory rate cannot be detected. Therefore, we eclectically 

selected the time window of 60s for analysis. Firstly, the PPG signal is analyzed from 

the time-frequency domain. Figure 7(a) is the PPG signal, and the spectrum analysis 

is shown in Fig. 7(b). From the frequency spectrum, we can find that the energy of the 

breath rate signal is weaker compared with the heart signal and its harmonics. There-

fore, it is necessary to extract the respiratory modulation signal from PPG signal to 

avoid the interference of heartbeat signal. As can be seen from Fig. 8, after using the 

AC-AR algorithm proposed in this paper, the spectrum is concentrated near RR. 
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(a) (b) 

Fig. 7. PPG signal (a) and frequency spectrum (b) 

 

Fig. 8. The frequency spectrum of 180s respiratory signal before AC-AR (yellow) and after 

AC-AR (black). The red dotted line is the respiratory rate. 

After signal preprocessing, we get the respiratory modulation signal from the PPG 

signal. Fig.9 shows the comparison between the reference respiratory signal and the 

respiratory modulation signal extracted using the peak detection algorithm proposed 

in this paper. The extracted respiratory signal is basically similar to the reference 

respiratory signal, which is of great help to the subsequent analysis. Following the 

signal processing method previously mentioned, respiratory rates are acquired 

through the AC-AR algorithm. By the above formula and reference respiratory rate, 

we can calculate the MAE and AAEP. From Table 1, we can see that the result is 

much improved after using SQI. In the CapnoBase database, some signals are chaotic, 

and the results with large errors will be obtained by using these signals to analyze. 

Using SQI can avoid these errors, which is beneficial to the reliability of clinical re-

sults. From Table 2, the accuracy is improved to some extent after data fusion with 

ASQ, which proves that the feasibility of data fusion using this method. Compared 

with averaging the spectrum directly, using ASQ can dynamically select a better spec-

trum as the result according to the quality of autocorrelation signal. 
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Table 1. Comparison of results 

 AAEP 

AC AC-AR 

Before using SQI 8.37% 7.56% 

After using SQI 4.27% 3.72% 

Table 2. The result of ASQ 

 RIIV RIFV RIAV ASQ 

AAEP 6.61% 5.61% 8.55% 3.72% 

 

Fig. 9. Comparison of respiratory modulation signals with reference breathing signals. After 

processing, the respiratory signals can be extracted normally. 

 

Fig. 10. Results for the CapnoBase benchmark dataset using 60s windows. The boxplots give 

the RMS Error for the different RR estimation methods. 

As can be seen from the boxplot (see Fig. 10), the MAEs are quite different when 

using one of the modulation signals alone. The results of RIIV are obviously better 

than the other two, indicating that RIIV has the strongest modulation of PPG signal. 

After using data fusion and SQI, the experimental results are obviously better. Among 

them, the results of data fusion using ASQ were better than SQI analysis of single 
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respiratory modulated signal, indicating that it is necessary to conduct quality analysis 

of modulated signal. Moreover, the result of data fusion using autocorrelation signal 

quality is better than that of spectrum averaging. Without considering the outliers, the 

error of the AC-AR algorithm is 0.12±0.36 bpm.  

 

Fig. 11. Scatter plot comparing the reference RR obtained from capnometry with the PPG RR 

obtained from the ACF and AC-AR algorithm. The AC-AR eliminates the estimations with 

large error (distance from Best fit). Box A: The signal has been badly distorted. 

To further evaluate the algorithm, a scatter plot is drawn for analysis (see Fig. 11). 

Best Fit stands for PPG respiratory rate equal to the reference respiratory rate, and the 

closer the vertical distance to the line, the better the result. As can be seen from the 

figure, results are concentrated near the Best Fit, indicating that the AC-AR algorithm 

identified and eliminated a majority of high error estimations. This also shows that the 

algorithm proposed in this paper is feasible and accurate. 

6 Conclusion 

In this paper, we improved the method of obtaining respiratory modulation signals 

and proposed a new analysis method that can be used in combination with other res-

piratory frequency analysis methods to improve the accuracy and robustness of res-

piratory frequency estimation. The autocorrelation method can remove noise in a 

periodic signal having the above characteristics. Each peak of the autocorrelation 

sequence represents a period of strong autocorrelation, so the period of the autocorre-

lation corresponds to the period of the original signal. Autoregression (AR) model 

uses the time history of the signal to extract the important information hidden in the 

signal. Therefore, the autocorrelation signal of the respiratory modulation signal can 

be used as the input signal of AR spectrum analysis to estimate the RR. Several ex-
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periments have been performed on different datasets with different methods. The 

experimental results show that the average absolute error percentage (AAEP) is less 

than 3.72%. It is proved that the method of autocorrelation combined with autoregres-

sive model used to extract respiratory rate from PPG is feasible and reliable. Finally, 

it can be seen from the boxplot that the result of each algorithm has a lot of outliers. 

The problem is that when the waveform of the PPG signal is relatively chaotic, the 

respiratory modulation signal extracted from it is not reliable. If the baseline drift of 

the PPG signal is severe, there will be errors in the peak detection results, which will 

cause some peaks to be missed. To solve this problem, our next goal is to better re-

move motion noise so that the respiratory rate can be extracted from people in motion. 
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