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Background

It is estimated that one quarter of the world population is infected with (TB). Although 

the disease is preventable and treatable, about one and a half million people die annually 

from it, effectively placing TB as the first infectious cause of death. Due to person to per-

son infection and treatment mismanagement, (MDR) TB continues to emerge, increas-

ing the complexity in treatment and thus potentially worsening the transmission rate. 

There is a growing awareness that TB can be effectively fought only working globally, 

starting from countries like India, where the infection is endemic [1].

Abstract 

Background: The STriTuVaD project, funded by Horizon 2020, aims to test through a 

Phase IIb clinical trial one of the most advanced therapeutic vaccines against tuber-

culosis. As part of this initiative, we have developed a strategy for generating in silico 

patients consistent with target population characteristics, which can then be used in 

combination with in vivo data on an augmented clinical trial.

Results: One of the most challenging tasks for using virtual patients is developing 

a methodology to reproduce biological diversity of the target population, ie, provid-

ing an appropriate strategy for generating libraries of digital patients. This has been 

achieved through the creation of the initial immune system repertoire in a stochastic 

way, and through the identification of a vector of features that combines both biologi-

cal and pathophysiological parameters that personalise the digital patient to reproduce 

the physiology and the pathophysiology of the subject.

Conclusions: We propose a sequential approach to sampling from the joint features 

population distribution in order to create a cohort of virtual patients with some specific 

characteristics, resembling the recruitment process for the target clinical trial, which 

then can be used for augmenting the information from the physical the trial to help 

reduce its size and duration.
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Once a person is diagnosed with TB, one of the most critical issues is the duration 

of the therapy, because of the high costs involved, the increased chances of non-com-

pliance (which increase the probability of developing an MDR strain), and the time the 

patient is still infectious to others. One exciting possibility to shorten the duration of the 

therapy are novel host-reaction therapies (HRT), as an adjuvant for antibiotic therapy. 

Typical endpoints in the clinical trials for HRTs are time to sputum culture conversion, 

and incidence of recurrence. While for the first it is in some cases possible to have a 

statistically powered evidence for efficacy in a phase II clinical trial, recurrence almost 

always requires a phase III clinical trial with thousands of patients involved, and huge 

costs.

The in silico trials for tuberculosis vaccine development (STriTuVaD) project is an EU 

funded, multidisciplinary consortium testing the RUTI vaccine in a Phase IIb clinical 

trial.  RUTI® antitubercular vaccine, provided by Archivel Farma S.L, is a polyantigenic 

liposomal vaccine containing fragments of Mycobacterium tuberculosis cells, currently 

being developed as therapeutic vaccine in patients with pulmonary tuberculosis. The 

vaccine, shown to be one of the most advanced therapeutic vaccines against drug sensi-

tive TB and MDR-TB, has already been studied in healthy volunteers and for the preven-

tion of active TB in patients with latent TB [2].

To help in this development, we extend Universal Immune System Simulator (UISS) [3, 

4] to include the relevant determinants of such clinical trial, we establish its predictive 

accuracy against the individual patients recruited in the trial, use it to generate digital 

patients, predict their response to the host-reaction therapy being tested, and combine 

them to the observations made on physical patients using a new in silico-augmented 

clinical trial approach that uses a Bayesian adaptive design. This approach, where found 

effective could drastically reduce the cost of innovation in this critical sector of public 

healthcare.

To reproduce biological the diversity of the subjects to be simulated, an appropriate 

strategy for the generation of libraries of digital patients is developed by identifying a 

vector of features involving both biological and pathophysiological parameters, facilitat-

ing the personalisation of the digital patient.

In this paper we sketch the strategy we adopt to generate the cohort of digital patients, 

and show some preliminary results about the dynamics of TB on a subset of these 

patients. First, we briefly describe UISS and its extension to TB.

Extending UISS to track TB

We will briefly describe here the UISS computational framework and its extension to 

model tuberculosis, UISS-TB. The interested reader can find more detail in [5].

UISS is a multi-agent framework for the simulation of the immune system dynam-

ics that can be extended to track specific diseases and related treatments. Unlike clas-

sical top-down approaches, where mean behaviours are modelled through systems of 

differential equations [6–8], agent based models and multi-agent systems track indi-

vidual entities. It is the interactions between these entities that can give rise to global 

nonlinear behaviours. UISS has been developed as a multi-scale computer simulator 

of the immune system, as it takes into account both cellular and molecular entities and 

processes.
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UISS has a proven track record, for instance it has been used for modelling the effects 

of a vaccine against the onset of mammary carcinoma [9, 10] and consequent lung 

metastases [11]; for the initial stages of atherosclerosis [12], for melanoma [3]; more 

recently, in the study of multiple sclerosis [4, 13] and for testing the efficacy of citrus-

derived adjuvants for influenza vaccines and human papilloma virus [14, 15]. For its use 

within STriTuVaD, we have extended UISS to include TB dynamics along with the artifi-

cial immunity induced by vaccination strategies as presented in [5].

In order to depict individuals, a vector of features comprising biological and patho-

physiological parameters has been identified. The list of parameters, their relative range 

and units are displayed in Table  1.

Methods

In order to create an in silico patient, one needs to provide a single value for each feature. 

These values could be taken from individual physical patients; however, if a cohort of 

digital patients is to be produced, one should have a mechanism for producing as many 

different input vectors as needed, that are biological/physiological plausible. Formally, 

this requires the characterisation of the joint distribution of the inputs in the popula-

tion. We have compiled typical values and standard deviations for each feature, provid-

ing a way to generate plausible values for each component at a time. Proceeding in this 

way would neglect the biological correlations between features and thus would not guar-

antee a physiologically plausible input vector. Hence, we must take into account these 

Table 1 Vector of 22 features for individualising virtual patients

Type (Discrete or Continuous), relative range with units of measure and notation used in the paper

Feature Range Units Type Notation

Bacterial load in sputum [0–10000] CFU D MtbSputum

MTB virulence [0–1] — C strain

CD4 T cell type 1 [0–100] cells/µL D Th1

CD4 T cell type 2 [0–100] cells/µL D Th2

Specific IgG titers [0–512] IgG titer C IGg

CD8 T cell [0–1134] cells/µL D TC

Interleukin 1 [0–235] pg/mL C IL1

Interleukin 2 [0–894] pg/mL C IL2

Interleukin 10 [0–516] pg/mL C IL10

Interleukin 12 [0–495] pg/mL C IL12

Interleukin 17 [0–704] pg/mL C IL17

Interleukin 23 [0–800] pg/mL C IL23

Interferon-α [0–148.4] pg/mL C IFN1A

Interferon-β [0–206] pg/mL C IFN1B

Interferon-γ [0–268.2] pg/mL C IFng

TNF- [0–49.4] pg/mL C TFN

LXA4 [0–3] ng/mL C LXA4

PGE2 [0–2.1] ng/mL C pgE2

Vitamin D [25–80] ng/mL C VD

Regulatory T cells [0–200] cells/µL D Treg

Age [10–80] years D Age

Body Mass Index [18.5–35] kg/m2 C BMI
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correlations. Given that we have 22 input variables, we should specify 22 × 21/2 = 231 

correlations. Using relevant literature [16, and references therein] and expert opinion, 

we have qualified these correlations, determining that all correlations are positive, but 

the correlation of IL-10 with the rest of the features.

Formalising in silico profile generation

In theory, one could elicit the joint distribution of the features vector, i.e. describe math-

ematically how each feature relates to the others in a space of 22 dimensions; but this 

would be not only extremely difficult, but also time consuming and data demanding. 

Our approach is to rely on current mathematical biology consensus and use a Gaussian 

to represent the population distribution. The additional advantage of using this approach 

will be discussed in the next section.

Formally, we say that the vector f  = 
{

f1, . . . , fd
}

 follows a d-variate Gaussian distribu-

tion with joint probability density function,

with mean µ = {µ1, . . . ,µd} and covariance matrix,

where,

So, if we are able to elicit a measure of correlation between two inputs, we can calculate 

their covariance.

The elements in the diagonal, σ 2

i
 are the marginal variances of each element, fi , and µi 

the corresponding marginal mean. As mentioned above, we already have compiled a list 

with these values, so we have elicited values for µ and the diagonal elements of � , σ 2

i
.

Cohort generation

Once µ and � have been elicited, generating an in silico profile is a relatively trivial task: 

one must sample a point in the 22-dimensional space, consistent with N22(f |µ,�) . How-

ever, we can exploit the properties of the Gaussian distribution to produce a cohort con-

sistent with some specific characteristics. Say, for instance, that our target population 

has a particular range of BL, we would like then to produce digital patients consistent 

with that specific profile. Formally, let f1 represent BL and f
−1 =

{

f2, . . . , f22
}

 , the rest 

of the features; we would like to sample from N21(f −1|f1,µ,�) , ie the conditional dis-

tribution of the rest of the features, given that BL has a specific value. This is a standard 

procedure, which can be readily implemented.

Nd(f |µ,�) =
|�|−1/2

(2π)d/2
exp

[
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1
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We can go further and sort the list of features according to either their importance 

in determining the profile of a patient, or to the precision of their elicited mean, 

variance and covariance, and then proceed to sample from the conditional distribu-

tions. In general, let f s denote the vector of features with pre-specified values, so 

that f =

{

f s, f r
}

 , f s ∈ R
d−q , where f r ∈ R

q is the vector of free features.

The conditional distribution, p(f r |f s = a) = Nq(f r |ν,�) with

where

� the Schur complement of �rr in � . Judicious choice of f s and f r enables sampling 

sequentially, e.g. from least to most important feature.

Results

We created an R script [17] for the generation of digital patents, available from 

the corresponding author upon request. We report results from three groups of 

15 patients with different profiles, each with fixed (Age, BMI and MtbSputum) to 

roughly represent different profiles in the population and initial bacterial load. Pro-

file 1 has (35, 21.4, 15), Profile 2 (45, 28.2, 502), and Profile 3 (55, 31.8, 910), the 

full set of values can be obtained from the Additional file  1. These can be used as 

input to the UISS-TB web interface, available from www.strit uvad.eu (accessed on 

28/07/20), by selecting the Tuberculosis disease model, hence accessible to any user 

with a conventional computer and access to the internet.

The GUI panel displays default values and admissible ranges for the vector of 

features parameters. Once the specific vector of features is completed, the user 

can click on the Submit button and a unique identification simulation number is 

assigned. The user can check the simulation status by clicking on the check status 

button, after selecting the appropriate simulation id. When the simulation is com-

plete, the user can visualise results of immune system dynamics. In our case, the 

progression of each patient was simulated 50 times for 1 year, with levels of the vari-

ous species recorded every 600 seconds. The data from each patient requires roughly 

100 MB of disk storage.

We use the total (Ab) to exemplify some characterisation of the output; e.g. Fig. 1 

shows the total Ab count for one simulation of the 15 patients in Profile 1. In order 

to characterise the mean behaviour, we average the 50 repetitions per patient. Fig-

ure 2 depicts the median and quartiles for a selection of patients (columns) for each 

profile (rows). It is clear there is an increased variability around the main and sec-

ondary peaks; while levels consistently fall back to nought after roughly 16 days 

(3500 h). The distribution of time at the peak level is illustrated in Fig. 3, it occurs 

consistently within 112–116  days for all profiles, while Profile  3 shows a slightly 

increased variability.

ν = µr + �rs�
−1
ss (a − µs) and � = �rr − �rs�

−1
ss �sr ,

� =

(

�ss �sr

�rs �rr

)

with sizes

(

(d − q) × (d − q) (d − q) × q
q × (d − q) q × q

)

.

http://www.strituvad.eu
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Conclusions

UISS-TB is a state-of-the-art agent based model capable of tracking the dynamics of 

TB infection in humans. Individual digital patients are defined by a vector features, 

known to be fundamental in TB infection dynamics and normally measured clinically, 

hence often readily available.

Fig. 1 Profile 1 antibodies count. Time traces of the antibodies count for the 15 virtual patients in Profile 1, 

using only one out of the 50 simulations

Fig. 2 Average antibodies count. Time traces of the average antibodies count for a sample of 3 virtual 

patients from each profile. The count has a main peak roughly at 4.5 hrs regardless of the profile
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Discussion

In order to produce virtual cohorts of patients, we propose a sequential approach based 

on a characterisation of the distribution of these features in the population of inter-

est; the approach allows to fix any combination of features, enabling mimicking patient 

selection criteria, thus yielding a method for setting up augmented in silico clinical trials.

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9-020-03776 -z.

Additional file 1: Profile traces.

Abbreviations

Ab: Antibody count; MDR: Multi-drug resistant; STriTuVaD: In silico trials for tuberculosis vaccine development; TB: Tuber-

culosis; UISS: Universal Immune System Simulator.

Acknowledgements

This is an extended version of [18].

About this supplement

This article has been published as part of BMC Bioinformatics Volume 21 Supplement 17 2020: Selected papers from 

the 3rd International Workshop on Computational Methods for the Immune System Function (CMISF 2019). The full 

contents of the supplement are available at https ://bmcbi oinfo rmati cs.biome dcent ral.com/artic les/suppl ement s/volum 

e-21-suppl ement -17.

Authors’ contributions

MAJ, MP and DK prepared the manuscript. FP, MP and GR designed and developed UISS-TB. MAJ, DK, MV and CC contrib-

uted to the design of the analysis. All authors read and approved the final manuscript.

Funding

Publication costs are funded by European Commission Commission under the Contract H2020-SC1-2017- CNECT-2, No. 

777123. Authors of this paper acknowledge support from the STriTuVaD project, funded by the European Commission 

Commission and the Indian Department of Biotechnology under the Contract H2020-SC1-2017- CNECT-2, No. 777123. The 

information and views set out in this article are those of the authors and do not necessarily reflect the official opinion of the 

European Commission. Neither the European Commission institutions and bodies nor any person acting on their behalf may 

be held responsible for the use which may be made of the information contained therein.

Fig. 3 Time at peak. Distribution of time at peak antibodies count by patient and profile and the distribution 

of the average by profile

https://doi.org/10.1186/s12859-020-03776-z
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-17
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-17


Page 8 of 8Juárez et al. BMC Bioinformatics 2020, 21(Suppl 17):449

Availability of materials

The datasets generated and analysed during the current study are not publicly available due to size restrictions but are avail-

able from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable. 

Consent for publication

Not applicable. 

Competing interests

The authors declare that they have no competing interests.

Author details
1 School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK. 2 Computer Science Institute, DiSIT, Uni-

versity of Eastern Piedmont, Alessandria, Italy. 3 Department of Drug Sciences, University of Catania, Catania, Italy. 4 Depart-

ment of Industrial Engineering, University of Bologna, Bologna, Italy. 

Received: 16 September 2020   Accepted: 22 September 2020

Published: 14 December 2020

References

 1. WHO: Global tuberculosis report (2019).

 2. Prabowo SA, Painter H, Zelmer A, Smith SG, Seifert K, Amat M, Cardona P-J, Fletcher HA. RUTI vaccination enhances 

inhibition of mycobacterial growth ex vivo and induces a shift of monocyte phenotype in mice. Front Immunol. 

2019;10:894.

 3. Pappalardo F, Forero IM, Pennisi M, Palazon A, Melero I, Motta S. SimB16: modeling induced immune system response 

against B16-melanoma. PLoS ONE. 2011;6(10):26523.

 4. Pennisi M, Russo G, Motta S, Pappalardo F. Agent based modeling of the effects of potential treatments over the blood 

brain barrier in multiple sclerosis. J Immunol Methods. 2015;427:6–12.

 5. Pennisi M, Russo G, Sgroi G, Bonaccorso A, Parasiliti Palumbo GA, Mitra DK, Walker KB, Cardona P-J, Amat M, Viceconti M, 

Pappalardo F. Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune 

system simulator (UISS). BMC Bioinform. 2019;20:1–10.

 6. Ragusa MA, Russo G. ODEs approaches in modeling fibrosis: comment on “Towards a unified approach in the modeling 

of fibrosis: a review with research perspectives” by Martine Ben Amar and Carlo Bianca. Phys Life Rev. 2016;17:112–3.

 7. Castiglione F, Pappalardo F, Bianca C, Russo G, Motta S. Modeling biology spanning different scales: an open challenge. 

BioMed Res Int. 2014;2014:1–9.

 8. Pappalardo F, Pennisi M, Ricupito A, Topputo F, Bellone M. Induction of T-cell memory by a dendritic cell vaccine: a 

computational model. Bioinformatics. 2014;30(13):1884–91.

 9. Pappalardo F, Motta S, Lollini P-L, Mastriani E. Analysis of vaccine’s schedules using models. Cell Immunol. 

2006;244(2):137–40.

 10. Palladini A, Nicoletti G, Pappalardo F, Murgo A, Grosso V, Stivani V, Ianzano ML, Antognoli A, Croci S, Landuzzi L, De 

Giovanni C, Nanni P, Motta S, Lollini P-L. In silico modeling and in vivo efficacy of cancer-preventive vaccinations. Cancer 

Res. 2010;70(20):7755–63.

 11. Pennisi M, Pappalardo F, Palladini A, Nicoletti G, Nanni P, Lollini P-L, Motta S. Modeling the competition between lung 

metastases and the immune system using agents. BMC Bioinform. 2010;11(Suppl 7):13.

 12. Pappalardo F, Musumeci S, Motta S. Modeling immune system control of atherogenesis. Bioinformatics. 

2008;24(15):1715–21.

 13. Pappalardo F, Russo G, Maimone D, Pennisi M, Sgroi G, Alessandro G, Pappalardo F, Russo G, Pennisi M, Sgroi G, Ales-

sandro G, Palumbo P, Motta S, Maimone D. Agent based modeling of relapsing multiple sclerosis: a possible approach to 

predict treatment outcome. In IEEE international conference on bioinformatics and biomedicine (BIBM). 2018;1380–5.

 14. Pappalardo F, Fichera E, Paparone N, Lombardo A, Pennisi M, Russo G, Leotta M, Pappalardo F, Pedretti A, De Fiore F, 

Motta S. A computational model to predict the immune system activation by citrus-derived vaccine adjuvants. Bioinfor-

matics. 2016;32(17):2672–80.

 15. Pennisi M, Russo G, Ravalli S, Pappalardo F. Combining agent based-models and virtual screening techniques to predict 

the best citrus-derived vaccine adjuvants against human papilloma virus. BMC Bioinform. 2017;18(S16):544.

 16. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, Derrick SC, Shi R, Kumar NP, Wei W, Yuan X, 

Zhang G, Cai Y, Babu S, Catalfamo M, Salazar AM, Via LE, Barry CE III, Sher A. Host-directed therapy of tuberculosis based 

on interleukin-1 and type I interferon crosstalk. Nature. 2014;511(7507):99–103.

 17. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria (2020). Version 4.0.2.

 18. Pennisi M, Juarez MA, Russo G, Viceconti M, Pappalardo F. Generation of digital patients for the simulation of tuberculosis 

with UISS-TB. In: 2019 IEEE international conference on bioinformatics and biomedicine (BIBM), 2019;2163–2167.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Generation of digital patients for the simulation of tuberculosis with UISS-TB
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Extending UISS to track TB

	Methods
	Formalising in silico profile generation
	Cohort generation

	Results
	Conclusions
	Discussion
	Acknowledgements
	References


