

This is a repository copy of A cross-species interaction with a symbiotic commensal enables cell-density-dependent growth and in vivo virulence of an oral pathogen.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/169493/

Version: Accepted Version

Article:

Hoare, A, Wang, H, Meethil, A et al. (6 more authors) (2021) A cross-species interaction with a symbiotic commensal enables cell-density-dependent growth and in vivo virulence of an oral pathogen. The ISME Journal, 15. pp. 1490-1504. ISSN 1751-7362

https://doi.org/10.1038/s41396-020-00865-y

© The Author(s), under exclusive licence to International Society for Microbial Ecology 2020. This is an author produced version of a journal article published in The ISME Journal. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

^{4 (}SM) on different strains of *P. gingivalis* (Pg). Growth of Pg ATCC 33277 (a) and Pg

- 6 ATCC 33277 and Pg W83 in mucin-serum. c. Pg 381 soluble factor capable of
- 7 supporting growth of low-cell-density Pg is smaller than 1 kDa. SM was obtained from

⁵ W83 (b) at different cell densities in mucin-serum. c. Effect of SM on the growth of Pg

Pg 381 cultures grown in mucin-serum, then filtered through 3 kDa and 1 kDa membranes, followed by lyophilization and reconstitution (10x) in dIH₂0. Reconstituted filtrates were added to fresh mucin-serum medium (1:3, vol:vol) to evaluate growth of low-cell-density Pg (10⁵ cells mL⁻¹). **e.** Growth of a Pg Δ *luxS*::*ermF* mutant (luxS⁻) at different cell densities in mucin-serum and effect of SM from the *luxS*⁻ strain on growth of Pg ATCC 33277 (wild type).

Supplemental Figure 2. The interaction between *V. parvula* (Vp) and *P. gingivalis*(Pg) is not strain-specific. Graphs show growth of Pg W83 (a), Pg ATCC 33277 (b) or
Pg 381 (c) as monocultures and in the presence of either Vp ATCC 10790, PK 1941 or

- 1 PK 1910. Inoculum size was 10⁵ cells mL⁻¹ and all experiments were conducted in mucin-
- 2 serum medium. Data represent mean and standard deviations from three independent
- 3 experiments.
- 4

Supplemental Figure 3. Characterization of the soluble factor mediating the support
of *V. parvula* (Vp) on the growth of *P. gingivalis* (Pg). a. Physical contact between Pg
and Vp is not necessary to allow growth of a low-cell-density Pg inoculum. Pg and Vp
were grown in chambers separated by a filter membrane with a pore-size of 0.22 µm. As
controls, Pg + Vp were inoculated together or Pg was inoculated in monoculture at both

1	sides of the membrane. Inoculation-density was 10 ⁵ cells mL ⁻¹ for both species. b. Effect	
2	of Vp SM (24 h) on different Pg inoculum sizes. Left graph shows effect of Vp SM on F	
3	inoculated at 10 ⁵ or 10 ⁶ cells mL ⁻¹ , and right graph shows effect of Vp SM on Pg	
4	inoculated at 10^7 or 10^8 cells mL ⁻¹ . c. Vp soluble factor capable of supporting growth of	
5	low-cell-density Pg is smaller than 1 kDa. SM from Vp grown in mucin-serum was	
6	filtered through 3 kDa and then 1 kDa membranes, followed by lyophilization and	
7	reconstitution (10X) in dIH ₂ 0. Reconstituted fractions (Conc= fraction >1kDa and	
8	Filtr=fraction < 1kDa) were added to fresh mucin-serum medium (1:3, vol:vol) to	
9	evaluate growth of low-cell-density Pg (10 ⁵ cells mL ⁻¹). Data in all panels represent	
10	replicates (mean and standard deviation) from at least three independent experiments.	
11		

1 Supplementary Table 1. List of compounds tested for their ability to induce growth of a

- 2 low-cell-density inoculum of *P. gingivalis*. Experiments were performed with
- 3 commercially available compounds in the indicated concentrations (middle column).
- 4

Compound	Tested concentration (mM)	Effect on P. gingivalis
D-pantothenic acid (D-PA)	0.005, 0.05 and 0.50	No growth
D-panthenol	0.005, 0.05 and 0.50	No growth
β-alanine	0.01, 0.10 and 1.0	No growth
tyrosol	0.002, 0.02 and 0.20	No growth
spermidine	0.069, 0.69 and 6.90	No growth
spermine	0.000049, 0.00049 and 0.0049	No growth
cadaverine	0.0979, 0.979 and 9.79	No growth
putrescine	0.1134, 1.134 and 11.34	No growth
4-aminobenzoate/para-amino	0.0729, 0.729 and 7.29	No growth
benzoic acid (pABA)		