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Abstract 

We have developed periscope, a tool for the detection and quantification of sub-genomic 

RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 

RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed 

“sub-genomic RNAs”. sgRNAs are produced through discontinuous transcription which relies 

on homology between transcription regulatory sequences (TRS-B) upstream of the ORF 

start codons and that of the TRS-L which is located in the 5’ UTR. TRS-L is immediately 

preceded by a leader sequence. This leader sequence is therefore found at the 5’ end of all 

sgRNA. We applied periscope to 1,155 SARS-CoV-2 genomes from Sheffield, UK and 

validated our findings using orthogonal datasets and in vitro cell systems. Using a simple 

local alignment to detect reads which contain the leader sequence we were able to identify 

and quantify reads arising from canonical and non-canonical sgRNA. We were able to detect 

all canonical sgRNAs at expected abundances, with the exception of ORF10. A number of 

recurrent non-canonical sgRNAs are detected. We show that the results are reproducible 

using technical replicates and determine the optimum number of reads for sgRNA analysis. 

In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in 

orthogonal sequencing datasets.  Finally, variants found in genomic RNA are transmitted to 

sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 

samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA. 
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Introduction 

Understanding variation within sub-genomic RNA (sgRNA) synthesis within the human host 

may have important implications for the study of SARS-CoV-2 biology and evolution. Thanks 

to advances in sequencing technology and collaborative science, over 100,000 SARS-CoV-2 

genomes have been sequenced worldwide to date.  

The genome of SARS-CoV-2 comprises a single positive-sense RNA molecule of 

approximately 29kb in length. While the 1a and 1b polyproteins are translated directly from 

this genomic RNA (gRNA), all other proteins are translated from sgRNA intermediates (Stern 

and Kennedy 1980; Sola et al. 2015). sgRNAs are produced through discontinuous 

transcription during negative strand synthesis followed by positive-strand synthesis to form 

mRNA. The resulting sgRNAs contain a leader sequence derived from the 5’ untranslated 

region of the genome and a transcription regulating sequence (TRS) 5’ of the ORF. The 

template switch occurs during sgRNA synthesis due to a conserved core sequence within 

the TRS 5’ of each ORF (TRS-B) and the TRS within the leader sequence (TRS-L)(Zúñiga et 

al. 2004). The conserved core sequence leads to base pairing between the TRS-L and the 

nascent RNA molecule transcribed from the TRS-B resulting in a long-range template switch 

and incorporation of the 5’ leader sequence (Sola et al. 2015). SARS-CoV-2 produces at 

least nine canonical sgRNAs containing ORFs for four structural proteins (S; spike, E; 

envelope, M; membrane, N; nucleocapsid) and several accessory proteins (3a & b, 6, 7a & 

b, 8 and 10)(F. Wu et al. 2020; Zhou et al. 2020; Davidson et al. 2020). In SARS-CoV ORFs 

3b and 7b are considered nested ORFs and not thought to be translated from their own sub-

genomic RNA (Inberg and Linial 2004). Understanding variation within sgRNA synthesis 

within the human host may have important implications for the study of SARS-CoV-2 biology 

and evolution.  
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Beyond the regulation of transcription, sgRNA may also play a role in the evolution of 

coronaviruses and the template switching required for sgRNA synthesis may explain the 

high rate of recombination seen in coronaviruses (Simon-Loriere and Holmes 2011; H.-Y. 

Wu and Brian 2010). While the majority of sgRNA relate to known ORFs, novel, non-

canonical sgRNA are also produced (Nomburg, Meyerson, and DeCaprio 2020; Finkel et al. 

2020; Kim et al. 2020), although the biological function of this is unclear. sgRNAs have also 

been shown to modulate host cell translational processes (Patel et al. 2013).  

The ARTIC Network (“Artic Network” 2020) protocol for the sequencing of the SARS-CoV-2 

(Figure 1A) has been employed worldwide to characterise the genetic diversity of this novel 

coronavirus. The COVID-19 Genomics Consortium (COG-UK)(“An Integrated National Scale 

SARS-CoV-2 Genomic Surveillance Network” 2020) in the UK, alone, has produced 16826 

ARTIC nanopore genome sequences (Correct 29th October 2020), while internationally 

GISAID contains thousands more similar datasets (8775 with “nanopore” in the metadata 

and 3660 list “artic”, 14th June 2020). This protocol involves the amplification of 98 

overlapping regions of the SARS-CoV-2 genome in two pools of 49 amplicons to provide full 

sequence coverage when sequenced with Oxford Nanopore sequencing devices. All known 

SARS-CoV-2 ORF TRS sites are contained within one or more amplicons in this panel 

(Figure 1A). Other methods of enrichment and enrichment-free sequencing of the SARS-

CoV-2 genome like bait based capture and subsequent short read Illumina sequencing or 

metagenomics, respectively, are also popular and hold promise for the detection of sgRNA. 

 

It has previously been shown that sgRNA transcript abundances can be quantified from full 

RNASeq data by calculation of Reads Per Kilobase of transcript, per Million mapped reads 

(RPKM) or by using so-called “chimeric” fragments containing the leader and TRS (Irigoyen 

et al. 2016). From two independent repeats, the R2 between these two measurement 

methods was 0.99. Studies of SARS-CoV-2 sgRNA have used methods which specifically 
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detect expressed RNA, such as direct RNA sequencing of cultured cells infected with SARS-

CoV-2 (Davidson et al. 2020; Taiaroa et al. 2020; Kim et al. 2020) or more traditional total 

PolyA RNASeq (Finkel et al. 2020). We hypothesised that we could detect and quantify the 

levels of sgRNA to both identify novel non-canonical sgRNA and provide an estimate of ORF 

sgRNA expression in SARS-CoV-2 sequence data. Here we present a tool for these 

purposes and its application to 1155 ARTIC Nanopore-generated SARS-CoV-2 sequences 

derived from clinical samples in Sheffield, UK and validate our findings in data from 

independent SARS-CoV-2 sequences from Glasgow, UK, in addition to Illumina data 

generated with bait capture and metagenomic approaches. 
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Results 

Evidence for Sub-Genomic RNA 

We designed a tool, periscope (https://github.com/sheffield-bioinformatics-core/periscope), 

to re-analyse raw data from SARS-CoV-2 isolates to identify sgRNA based on the detection 

of the leader sequence at the 5’ end of reads as described previously (Leary et al. 2020).  

ARTIC Network Nanopore Sequencing Data 

The recommended bioinformatics standard operating procedure to process ARTIC network 

sequencing data to produce a consensus sequence involves selecting reads between 400 

and 700 base pairs, and the trimming of the primer and adapter sequence. In most cases 

this removes reads which might provide evidence for sgRNA. Mapping raw data from this 

protocol reveals the presence of reads at ORF TRS sites which are sometimes shorter 

(Supplementary Figure S1 - sgRNA) than the full ARTIC Network amplicon and contain 

leader sequence at their 5’ end. We believe these reads are the result, in the case of Pool 1, 

priming from primer 1 of the pool, which is homologous to most of the leader sequence. We 

also see, in both pools, uni-directional amplification from the 3’ primer, which results in a 

truncated amplicon when the template is a sgRNA (Figure 1B). Interestingly, we also see 

longer reads which are the result of priming from the 3’ end of the adjacent amplicon (Figure 

1B).   

 

To separate gRNA from sgRNA reads, we employ the following workflow using 

snakemake(Köster and Rahmann 2012); Raw ARTIC Network Nanopore sequencing reads 

that pass QC are collected and aligned to the SARS-CoV-2 reference, reads are filtered out 

if they are unmapped or supplementary alignments. We do not perform any length filtering. 

Each read is assigned an amplicon. We search the read for the presence of the leader 
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sequence (5’-AACCAACTTTCGATCTCTTGTAGATCTGTTCT-3’) using a local alignment. If we 

find the leader with a strong match it is likely that that read is from amplification of sgRNA. 

We assign reads to an ORF. Using all of this information we then classify each read into 

genomic, canonical sgRNA or non-canonical sgRNA (Figure 1D) and produce summaries for 

each amplicon and ORF including normalised pseudo-expression values.  

Illumina Sequencing Data 

Next we wanted to investigate whether we could employ a similar method to Illumina 

sequencing data. Illumina sequencing data for SARS-CoV-2 has been generated using three 

main approaches: amplicon based (ARTIC Network), bait capture based, or using 

metagenomics on in vitro samples. Here we describe sgRNA detection in both Illumina bait 

based capture and Illumina metagenomic data from in vitro exp. The reads from these 

techniques tend to have differing amounts of leader at the 5’ end of the reads 

(Supplementary Figure S2A). This is due to library preparation methods employed in these 

workflows. We therefore implemented a modified method for detecting sgRNA to ensure that 

we could capture as many reads originating from sgRNA as possible. In our Illumina 

implementation (Supplementary Figure S2C&D) we extract the soft-clipped bases from the 5’ 

end of reads and use these in a local alignment to the leader sequence. In addition to 

adjusting the leader detection method we also process mate pairs, ensuring both reads in 

the pair are assigned the same status. 
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Figure 1. Periscope ARTIC Nanopore Algorithm Design Details 

A. ARTIC network amplicon layout with respect to ORF TRS positions of SARS-CoV-2. Blue 

and aqua at the end of each ORF signifies leader and TRS respectively. B.  Read pileup at 

ORF6 TRS showing two types of reads which support the existence of sgRNAs. Type 1 

(Red): Result from 3’->5’ amplification from the closest primer to the 3’ of the TRS site, and 

Type 2 (Green): These result from 3’->5’ amplification from the adjacent amplicons 3’ primer 

(i.e. the second closest 3’ primer). C. Overview of periscope workflow.  D. Decision tree for 

read classification. Green arrow denotes a “Yes” for the step in question, i.e. if the read is at 

a known ORF start site a green arrow is used, if not a red arrow for “No” is used. 

 

Detection of Sub-Genomic RNA 

We were able to detect sgRNAs with a high leader alignment score from all canonical ORFs 

in multiple samples (Figure 2, Supplementary Table S1). As shown in Figure 2A, sgRNA 

from the N & M ORFs were the most abundant sgRNA (dependent on normalisation 

method), with N being found in 97.3% of Sheffield samples, consistent with published reports 

in vitro (Alexandersen, Chamings, and Bhatta 2020; Finkel et al. 2020; Kim et al. 2020). To 

demonstrate that the levels of sgRNA detected in the Sheffield dataset were not site specific, 

we applied periscope to an independent dataset of 55 ARTIC Network Nanopore sequenced 

SARS-CoV-2 samples from Glasgow, UK (Figure 2A).  

 

Like previously published reports (Taiaroa et al. 2020; Alexandersen, Chamings, and Bhatta 

2020; Finkel et al. 2020; Kim et al. 2020), we were unable to find strong evidence of sgRNA 

supporting the presence of ORF10 (Supplementary Table 2, Figure 2A) with only 0.95% of 

samples containing high (HQ) or low quality (LQ) sgRNA calls at this ORF. We aligned the 

12 reads from these samples to a reference composing of ORF10 and leader 

(Supplementary Figure S3). On manual review of these results ten (4 HQ) of these reads are 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.07.01.181867doi: bioRxiv preprint 



 

10 

falsely classified as sgRNA. Two reads remain, one read from each of samples SHEF-

C0840 and SHEF-C58A5. These reads could represent ORF10 sgRNA as they have an 

almost complete match to the leader and the remainder of the reads is a strong match to 

ORF10. 

Normalisation of Sub-Genomic Read Abundance 

Beyond defining the presence of reads which are a result of amplification of sgRNA, we 

hypothesized that we could quantify the level of sgRNA present in a sample using either total 

mapped reads or gRNA reads from the same amplicon as denominators for normalisation. 

Normalisation of this kind would be analogous to traditional RNAseq analysis where reads 

per million (RPM) are calculated to allow comparisons between datasets where the number 

of reads affect the amount of each transcript detected. In the case of ARTIC Network 

Nanopore sequencing data, which involves polymerase chain reaction (PCR) of small 

(~400bp) overlapping regions of the SARS-CoV-2 genome, amplification efficiency of each 

amplicon should also be taken into account. Because we have a median of 258,210 mapped 

reads for samples from the Sheffield dataset (Supplementary Figure S4), we normalised 

both gRNA or sgRNA per 100,000 mapped reads (gRNA reads per hundred thousand, 

gRPHT, or sgRNA reads per hundred thousand, sgRPHT, respectively, Figures 2C and E).  

 

In our second approach, because of differences in amplicon performance in the ARTIC PCR 

protocol that leads to coverage differences in the final sequencing data (Figure 2B&C), we 

determine the amplicon from which the sgRNA has originated, using methods from the 

ARTIC Network Field Bioinformatics package(“Artic Network” 2020). We then normalise the 

sgRNA per 1000 gRNA reads from the same amplicon. If a sgRNA has resulted from more 

than one amplicon (Figure 1B) the resulting normalised counts from each amplicon are 

summed giving us sgRNA reads per 1000 gRNA reads (sgRPTg) for every ORF (Figure 2A). 

Periscope outputs the results from both methods of normalisation so that the user can 
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decide which is more appropriate in their case and determine whether the conclusions of 

their analysis are consistent across both approaches. 

 

For Illumina data we applied one further normalisation technique to allow the normalisation 

of bait based capture and metagenomic data. Efficiency of capture varies between probes 

and designs. For metagenomic data, natural fluctuations in coverage due to sequence 

content can exist, therefore, to try and account for this we took the median coverage for the 

region around each canonical ORF start site (+/- 20bp) as the denominator in the 

normalisation of this data. 
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Figure 2.  In Vivo and In Vitro Detection and Quantification of Canonical sub-genomic 

RNA in SARS-CoV-2  
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A. The abundance of sgRNA detected for each ORF normalised per 1000 gRNAs from 

Oxford Nanopore (ONT) ARTIC data from both Sheffield (n=1155) and Glasgow (n=55);  

sgRPTg = sgRNA reads per 1000 gRNA reads. Ordered by median. *See Supplementary 

Figure S3 for ORF10 investigation.   B. Number of reads supporting gRNA at each ORF. If 

multiple amplicons cover the ORF then this represents the sum of reads for those amplicons. 

C. gRNA reads normalised per hundred thousand mapped reads (gRPHT) at each ORF. D. 

Raw counts of sgRNAs. E. sgRNA normalised to total mapped reads. (sgRPHT = sgRNA 

reads per 100,000 mapped reads) F&G. In Vitro infection time course with 3 SARS-CoV-2 

viral isolates (GLA1, GLA2 and PHE2) in either VeroE6 cells, VeroE6 expressing ACE2 or 

VeroE6 expressing ACE2 and TMPRSS2, with total RNA collected and sequenced at 24, 48 

and 72 hours after infection, sequenced using either ONT ARTIC or Illumina Metagenomic 

approaches. F. The sum of all normalised (to total mapped reads to allow direct comparison 

across ONT ARTIC and illumina metagenomic methods) sgRNA in each technology scaled 

to 1. G. Normalised quantity (to total mapped reads) of each canonical sgRNA in each 

technology (ONT ARTIC; Top panel, Illumina Metagenomic; Bottom panel). 

Sub-genomic RNA Detection in vitro  

The kinetics of sgRNA expression during the course of a SARS-CoV-2 infection is still not 

well understood. We applied periscope to data generated from an infection time course 

(Figure 2F&G). We used both Illumina metagenomic and Nanopore ARTIC sequencing data 

from an in vitro model of SARS-CoV-2 infection. Wildtype (WT) VeroE6, VeroE6 expressing 

ACE2 and VeroE6 expressing both ACE2 and TMPRSS2 were infected with three different 

SARS-CoV-2 viral isolates; PHE2 (wild type; WT), GLA1 (D614G) and GLA2 (N439K & 

D614G) (Supplementary Table S9) and RNA collected for sequencing at 24, 48 and 72 

hours. We normalised both datasets to the total mapped reads (per 100,000) to allow direct 

comparison. Importantly the scaled normalised total sgRNA level detected using periscope 

on both sequencing technologies is strikingly similar (Figure 2F), indicating the pattern of 
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expression is maintained between technologies. ORF N remains one of the highest 

expressed ORFs in both datasets (Figure 2G). The addition of ACE2 and a combination of 

ACE2 and TMPRSS2 results in a clear difference in the kinetics of all sgRNA over WT. This 

data suggests that the peak of sgRNA expression is expedited by the addition of ACE2 and 

TMRPSS2. 

Technical Replicates & Batch Effects 

To assess the reproducibility of sgRNA analysis using ARTIC Network Nanopore 

sequencing data and periscope, we analysed two samples that were subject to four technical 

replicates each; cDNA was independently prepared from the same swab extracted RNA, and 

subject to independent amplification using the recommended ARTIC Network PCR and 

sequenced (Figures 3A & 3B). The pearson correlation coefficient (R) is >=0.88 for all 

normalised sgRNA abundances between replicates from the same sample.  

 

Next, we treated our sgRNA abundance values like an RNASeq dataset and asked whether 

other factors could be influencing expression. To do this we used an unsupervised principal 

component analysis (PCA; Figure 3C-F) and coloured samples by the different categorical 

variables that could affect expression (batch effects), like sequencing run, the ARTIC primer 

version, the number of mapped reads and ORF E gene cycle threshold (e.g. CT, Diagnostic 

test, normalised to RNAse P CT value, see materials and methods) as this is an indicator of 

the amount of virus present in an isolate and a proxy for quality (Figure 3F). There are no 

significant clusters between any of the above variables and the expression values in the 

PCA analysis. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.07.01.181867doi: bioRxiv preprint 



 

15 

 

Figure 3. Technical Replicates, Detection Limit, and Batch Effects 
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A & B. Four technical replicates of two samples additional to the Sheffield cohort. Pearson 

correlation coefficients between sgRNA normalised per 1000 gRNA reads (sgRPTg) p 

values adjusted with Bonferroni. (ORFS coloured according to legend in (G)) C, D, E, F. 

Unsupervised principal component analysis coloured by, ARTIC primer version V1 or V3 (C), 

sequencing run (D) where the colour denotes a different run, total mapped read count (scale 

= 100k reads) (E), or normalised E gene cycle threshold (CT) value (F). G. Downsampling of 

reads from 23 high coverage (>1million mapped reads) samples. The number of reads 

provided as input to periscope was downsampled with seqtk(Li 2012) to 5,10,50,100,200, 

and 500 thousand reads. 

Lower Limit of Detection 

The number of reads generated from any sequencing experiment is likely to vary between 

samples and between runs. The median mapped read count in the Sheffield dataset is 

258,210, but varies between 9,105 and 3,260,686 (Supplementary Figure S4). In our 

experience we generally see much lower total amounts of sgRNA compared to their genomic 

counterparts, therefore, its detection is likely to suffer when a sample has lower amounts of 

reads (Supplementary Figure S5). To determine the effect of lower coverage on the 

detection of sgRNA, we downsampled 23 samples which had > 1million mapped reads to 

lower read counts with seqtk(Li 2012). We chose high (500k reads), medium (200k and 

100k), and low read counts (50k,10k and 5k) and ran periscope on this downsampled data 

(Supplementary File S3). In the absence of a ground truth, we performed pairwise 

correlation on the abundance of sgRNA between downsampled datasets (Figure 3G). If 

coverage did not affect the abundance estimates, then all coverage levels would show a 

high correlation coefficient (pearson) when compared to each other (R>0.7, adjusted  

p<0.01). As expected, lower counts of 5,000 and 10,000 reads do not correlate with those 

generated from 100,000, 200,000 and 500,000 reads (R2 < 0.7). Samples with 50,000 reads 
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seem to perform well when compared to 100,000, 200,000 and 500,000 reads with an R2 of 

0.94, 0.89, and 0.89  respectively.  

Non-Canonical Sub-Genomic RNA 

In addition to estimating sgRNA for known ORFs, we can use periscope to detect novel, 

non-canonical sgRNA (Figure 4). We previously applied periscope to detect one such novel 

sgRNA (N*) which is a result of the creation of a new TRS site by a triplet variation at 

position 28881 to 28883 which results in production of a truncated N ORF (Leary et al. 

2020). To classify sgRNA as non-canonical, supporting reads must fulfil two criteria; First, 

the start position does not fall in a known TRS-B region (+/- 20bp from the leader junction), 

and second, in ONT data the start position must not fall within +/-5bp from a primer 

sequence. We chose to implement the second criteria because we noticed a pattern of novel 

sgRNAs being detected at amplicon edges due to erroneous leader matches to the primer 

sites. 

 

We found evidence of non-canonical sgRNAs supported by two or more reads in 913 

samples (Supplementary Figure S6). Unsurprisingly a large number of these recurrent non-

canonical sgRNAs cluster around known TRS-B sites (Figure 4A). Interestingly though, we 

see enrichment of non-canonical sgRNAs at other sites throughout the genome (Figure 4A 

and Supplementary Figure S6).  

 

In particular, SHEF-C0118 contains 177 reads (HQ & LQ) which support a non-canonical 

sgRNA at position 25,744 between ORFs 3a and E (Figure 4B&C). The number of reads for 

this non-canonical sgRNA at 25,744 is high compared to canonical sgRNA from the same 

sample(Figure 4C, Supplementary Tables S3 & S4). 26 samples contain 1 read supporting 

this non-canonical sgRNA with 4 samples with > 1 read. In another example, there are 377 

samples that have evidence of >=1 read for a non-canonical sgRNA at position 10,639 (HQ 
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or LQ, Supplementary Figure S7A&B; of these 155 have evidence for >= 2 reads +/- 5bp 

from 10,639). In this case, there is a TRS-like sequence close to the leader in this non-

canonical sgRNA;  ACGAAC -> ACGGAC. Two samples have significant support with 103 HQ 

reads each (SHEF-CE04A, SHEF-CA0D5). It is possible that this represents an independent 

ORF1b sgRNA. Furthermore, there are 226 samples that have evidence for a non-canonical 

sgRNA at position 5,785 (>= 1 read; Supplementary Figure S7C&D; 62 with >=2 reads, +/-5 

from 5,785), where there is no core TRS sequence present and there does not appear to be 

a productive start codon.  
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Figure 4. Non-Canonical Sub-Genomic RNA 
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We classified reads as supporting non-canonical sgRNA as described in Figure 1D. A. Plot 

showing the number of samples with each non-canonical sgRNA detected in ARTIC 

Nanopore data. Size of the point represents the number of reads and the color indicates the 

number of samples that non-canonical sgRNA was found in. Lines connecting points 

represent the sgRNA product of discontinuous transcription. Those detected in Sheffield 

samples are above the genome schematic, and Glasgow below. Inset shows zoomed in 

region between nucleotides 22,000 and 30,000. B. Non-canonical sgRNA with strong 

support in SHEF-C0118 at position 25,744. C. Raw sgRNA levels (HQ&LQ) in SHEF-C0118 

show high relative amounts of this non-canonical sgRNA at position 25,744. D. Zoom of 

region 22-30kb of the SARS-CoV-2 genome showing non-canonical sgRNA in the Sheffield 

ONT dataset (top) compared to the non-canonical sgRNA detected in the Illumina bait 

capture data from Glasgow. E. Non-canonical sgRNA levels (solid lines) compared to 

canonical (dashed lines) in an in vitro model of SARS-CoV-2 infection measured with both 

Illumina metagenomic sequencing (orange) and ONT Artic (Blue). TotalsgRNA levels are 

normalised per 100,000 mapped reads and scaled within each dataset for comparison.  

Non-Canonical Sub-Genomic RNAs Across Centres & Technologies 

To demonstrate the detection of non-canonical sgRNA was not a phenomenon of the 

Sheffield dataset and ARTIC Nanopore method alone, we repeated the above analysis on 

both Nanopore and Illumina data from Glasgow, UK (Figure 4A&D, Supplementary Figure 

S8E). 

 

The non-canonical sgRNA at 5,785 is found in 15/55 samples from this dataset and 7 of 

those have multiple read support (Supplementary Table S6). This sgNA is also found with 3 

reads in the Illumina sample CVR201. The non-canonical sgRNA found at 10,639 is found in 

13/55 samples and 5 of those have multiple read support (Supplementary Table S7). 10,639 

is also found in Illumina sample CV196 with 1 read 1 supporting. 25,744 is supported by 1 

HQ sgRNA read in 1 sample (CVR2185) from the Glasgow ONT dataset. 
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To determine if there were any differences in non-canonical sgRNA over time, we applied 

the same analysis to the in vitro system described earlier (Figure 4E & Supplementary 

Figure S9). Normalised and scaled non-canonical (solid lines) shows that non-canonical 

sgRNA has comparable kinetics to canonical sgRNA (dashed lines) which appear to be 

dependent on the virus, cell line and time since infection. This dataset demonstrates that 

although proportions of non-canonical sgRNA are similar (Supplementary Figure S5), 

Illumina metagenomic data appears to be more sensitive (Supplementary Figure S5, S9, 

S10) with a greater number of non-canonical sgRNAs detected. 

Variants in Sub-Genomic RNA 

An advantage of having reads from both gRNA and sgRNA is the ability to examine how 

genomic variants are represented in sgRNAs. For variants found in our isolates by the 

ARTIC Network nanopolish (Simpson 2018) pipeline we interrogated the bases called 

(pysam (Gilman et al. 2019) pileup) at the variant position in gRNA and sgRNA to determine 

if there were detectable differences (this tool is integrated into periscope). As we can only 

discern gRNA and sgRNA from a small subset of amplicons, the chance that a variant falls 

within these amplicons is low, but where the two do coincide, variants called in gRNA were 

supported in reads from sgRNA. 

 

In a small subset of samples we have identified variants in the TRS sequence of some 

ORFs. Notably 6 samples have a variant at 27,046C>T (ACGAAC to ACGAAT)in the TRS of 

ORF6, this variant is present in both the gRNA and sgRNA reads. 4 of these samples have 

low expression of ORF6 compared to the rest of the cohort (Figure 5E), although numbers 

are too low to compute statistical significance. 

 

In addition, we have one sample with a variant in the N ORF TRS (SHEF-C0F96, 

28256C>T.  CTAAACGAAC to TTAAACGAAC) which is found only in gRNA but not sgRNA 
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reads. Interestingly, this sample has low expression of most ORFs (ORF N shown in Figure 

5C) and has 233,127 reads which is around the median of the cohort. However, this 

mutation falls outside the core TRS and read counts for sgRNA are low so this result should 

be treated with caution. It is possible that this represents a sequencing error in the gRNA 

which is not found in the sgRNA due to the context around that position changing as a result 

of the inclusion of the leader sequence. 
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Figure 5. Variants in Sub-Genomic RNA 
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A. Base frequencies at each of the variant positions called by ARTIC in each sample, 

(multiple samples can be represented at one position), split by read class. White rectangles 

represent variants detailed in (B) and (C). B. SHEF-C0F96 has a 28,256C>T variant, of high 

quality which sits in the ORF N TRS sequence. This variant is not present in sgreads C. 

Normalised sgRNA expression (sgRNA reads per thousand genomic; sgRPTg) for the N 

ORF in samples with the variant and without. N expression is one of the lowest in the cohort. 

D. SHEF-C0C35 has 27,046C>T variant of high quality which sits in the TRS sequence. This 

variant is present in both gRNA and sgRNA. E. ORF6 expression levels in samples with 

27046C>T. 
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Discussion 

We have developed periscope, a tool that can be used on nearly all publically available 

SARS-CoV-2 sequence datasets worldwide to detect and quantify sgRNA. Here we applied 

periscope to 1,155 SARS-CoV-2 sequences from Sheffield, UK and 3 datasets from 

Glasgow; 55 ARTIC network Nanopore sequences, 5 bait captured Illumina sequenced 

samples and Illumina metagenomic data from an in vitro SARS-CoV-2 infection model. The 

development of periscope was initially motivated to aid in the the detection of a novel, non-

canonical, sgRNA generated (N*) from a de-novo TRS site as a result of the triplet mutation 

28,881G>A, 28,882G>A, and 28,883G>C found in a large number of worldwide SARS-CoV-

2 isolates (Leary et al. 2020). By searching for reads containing the SARS-CoV-2 leader 

sequence, incorporated into all sgRNA at their 3’ ends by the SARS-CoV-2 RNA dependent 

RNA polymerase, we were able to detect sgRNA representing all annotated canonical open 

reading frames of SARS-CoV-2. ORF10 sgRNA, however, was supported by only two reads 

in all 1,155 samples in the Sheffield dataset (Supplementary Table S1). Using the in vitro 

SARS-CoV-2 infection system Illumina dataset we identified a further eight reads in total 

supporting an ORF10 sgRNA. Seven of these reads were present at 72 hours after infection, 

the remaining read was found at 48 hours. The inability to find significant support for ORF10 

mirrors previous findings (Alexandersen, Chamings, and Bhatta 2020; Finkel et al. 2020; 

Davidson et al. 2020; Kim et al. 2020) and is perhaps unsurprising if ORF10 is indeed non-

essential (Pancer et al. 2020). The abundance of other sgRNAs is in line with previously 

published reports of protein levels in SARS-CoV-2, with M and N showing the highest 

expression levels after normalisation (Bouhaddou et al. 2020; Finkel et al. 2020). In the 

Sheffield dataset, the median proportion of total sgRNA is 1.2% (Supplementary Figure S4), 

which is in broad agreement with published reports, based on ORF E, that sgRNA 

represented 0.4% of total viral RNA (Wölfel et al. 2020). These findings were mirrored in an 

equivalent dataset of 55 ONT ARTIC samples from Glasgow. We were able to show that 
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sgRNA analysis using periscope is reproducible, with strong correlations between sgRNA 

abundance levels between technical replicates. 

 

It has been suggested that sgRNA abundance estimates from amplicon based sequencing 

data are largely a function of the quality of the RNA in the initial sample, defined in one study 

by average read length (Alexandersen, Chamings, and Bhatta 2020). The advantage of the 

ARTIC Network protocol over the AmpliSeq IonTorrent protocol used by the aforementioned 

study is that the ARTIC Network protocol has a short, consistent amplicon length (mean is 

389 and standard deviation is 11.2, Supplementary Figure S1 - gRNA). The assay is 

designed inherently, to deal with samples with degraded RNA. Since sgRNA reads are a 

product of these amplicons we do not believe degradation plays a significant role in the 

determination of abundance levels in our dataset. Furthermore, using E gene CT value as a 

surrogate for viral load, we find only a weak correlation with the total amount of sgRNA 

detected (Spearman Rank Correlation, rho=0.268, Supplementary Figure S13A) and this 

was mainly driven by outliers. Furthermore, sequence coverage across the genome (which 

is affected by low viral load and poor quality RNA) is also not correlated with sgRNA amount 

(Spearman Rank Correlation, rho=-0.01188594, Supplementary Figure S13B). Finally on 

comparison with amplification free approaches like metagenomics we see a strikingly similar 

pattern of sgRNA expression. 

 

To demonstrate the utility of periscope for the investigation of important biological questions, 

we applied it to sequencing data from an in vitro infection time course using VeroE6 cells 

which were either wildtype, over-expressing ACE2 or over-expressing ACE2 and TMPRSS2 

(Hoffmann et al. 2020). These cells were challenged with three different viral isolates (GLA1, 

GLA2, and PHE2) and total RNA extracted for sequencing by Illumina metagenomics and 

ONT ARTIC at 24, 48 and 72hrs post infection. The total sgRNA abundance measured using 

periscope on these orthogonal methods is strikingly similar and reveals an interesting pattern 

of sgRNA expression. ACE2 & TMPRSS2 co-expressing cells have the most obviously 
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altered sgRNA kinetics, with the peak level of sgRNA occuring at 48hrs followed by a 

reduction at 72hrs, which is in contrast with wildtype cells where sgRNA is still accumulating 

after 48hrs. This may indicate an expedited course of active replication allowed by greater 

cellular permissibility with ACE2 & TMPRSS2, followed by attenuated replication in a closed 

in vitro model. Of note, a greater quantity of reads from the Illumina metagenomic data are 

classified as sgRNA when compared to ONT ARTIC data (Supplementary Figure S4), and 

there are some differences between the quantities of each ORF when considered 

individually.  

 

Non-canonical sgRNAs are readily detected by periscope and we present examples where 

periscope was able to detect high abundances of specific non-canonical sgRNAs in a 

number of isolates which could indicate some functional significance. It has previously been 

observed that non-canonical sgRNAs are not formed due to a TRS-like homology (Nomburg, 

Meyerson, and DeCaprio 2020). The non-canonical sgRNA at position 25,744 in SHEF-

C0118 is particularly interesting due to its high relative abundance compared to the 

canonical sgRNAs in the same sample. There does not appear to be a canonical TRS 

sequence in close proximity to the leader junction, but there exists a motif which has two 

mismatches to the canonical TRS; AAGAAT. An ATG downstream of the leader in these 

reads would result in an N-terminal truncated 3a protein. Interestingly, two forms of 3a 

protein in SARS-CoV have been noted in the literature (Huang et al. 2006). Alternatively, 

SARS-CoV contains a nested ORF within the 3a sgRNA, 3b (Supplementary Figure S11), 

but the homolog of this protein is truncated early in SARS-CoV-2, however, others note that 

a protein from this truncated 3b, of only 22 amino acids in length, could have an immune 

regulatory function (Konno et al. 2020). This non-canonical sgRNA could indicate production 

of this novel 3b protein in SARS-CoV-2 independent from the 3a sgRNA, a phenomenon that 

has been shown to occur in SARS-CoV (Hussain et al. 2005). We cannot explain why, in this 

sample, this non-canonical sgRNA is present in such high abundance. There are no 

genomic variants that contribute to a TRS sequence, for example. We also find evidence of 
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highly recurrent non-canonical sgRNAs which have weaker evidence like those at 10,639, 

which could represent an independent sgRNA for ORF 1b. Others, like those at 5,785 have 

no apparent related ORF.  

 

Some studies have detected the presence of an sgRNA for ORF7b (Finkel et al. 2020; Kim 

et al. 2020), we also explored this possibility (Supplementary Figure S11 C,D&E). We are 

able to detect non-canonical sub-genomic RNAs just 3’ of the predicted start codon of 

ORF7b (27,760 and 27,761) and at least ten bases downstream of a predicted TRS-B site 

(Yang et al. 2020). These sgRNAs have string support in both the Sheffield (Supplementary 

Figure S11D), 668/1155 samples (>=1 high quality sgRNA, median of 2 reads per sample, 

and a maximum of 133), and Glasgow datasets, 44/55 samples (>=1 high quality sgRNA, 

median of 1.5 reads per sample, and a maximum of 12). Raw reads from SHEF-BFF12 

show that the leader body junction in these sgRNAs does indeed exclude the start codon 

and in fact includes four additional bases not present in the genome (Supplementary Figure 

S11E). It is possible that this sgRNA encodes a protein from another ATG site downstream 

of the leader-body junction. 

 

We were able to detect a number of these recurrent non-canonical sgRNAs in the data from 

Glasgow, demonstrating that these non-canonical sgRNAs are unlikely to be sequencing 

artefacts and may represent favoured sites for non-canonical sgRNA generation during 

SARS-CoV-2 replication for as yet unexplained reasons. We speculate that the diversity of 

non-canonical sgRNA seen in our dataset, which is most comparable to total RNASeq 

(Wyler et al. 2020), than direct RNAseq is a function of a) the number of samples analysed, 

and b) the varied and unknown length of the infection at the time of sampling. These findings 

illustrate that, although much is not known about the expression of non-canonical sgRNA, 

periscope could help define and quantify these non-canonical transcripts in order to explore 

their relevance in SARS-CoV-2 pathogenesis.  
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We were able to integrate the sgRNAs for variants which were called in gRNA. As expected 

in most cases, sgRNAs contain the same variants present in the gRNA. We found one case 

where a variant found in gRNA for ORF N was not present in the ORF N sgRNA. It is 

possible that this is due to sequencing errors, because the surrounding bases for the variant 

in gRNA vs sgRNA differ, therefore, base calling could be affected by this change in context.  

 

The COVID-19 Genomics Consortium (COG-UK)(“An Integrated National Scale SARS-CoV-

2 Genomic Surveillance Network” 2020) in the UK, alone, has 16,826 ARTIC Nanopore and 

69,969 Illumina sequences (Correct 29th October 2020) while internationally GISAID 

contains thousands more similar datasets (8,775 with “nanopore” in the metadata and 3,660 

list “ARTIC” as of 14th June 2020). The application of periscope could therefore provide 

significant insights into the sgRNA architecture of SARS-CoV-2 at an unprecedented scale. 

Furthermore, periscope can be provided new primer/amplicon locations for PCR based 

genomic analysis protocols and we have shown that it can be applied to metagenomic 

sequencing methods without prior species-specific genome amplification. Periscope could 

also be applied to sequencing data from other viruses where discontinuous transcription is 

the method of gene expression. 

 

Periscope offers an opportunity to further understand the regulation of the SARS-CoV-2 

genome by identifying and quantifying sgRNA. Applying it to the vast amount of SARS-CoV-

2 sequencing datasets that have been generated world wide during this unprecedented 

public health crisis could uncover critical insights into the role of sgRNA in SARS-CoV-2 

pathogenesis. 
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Methods 

Sheffield SARS-CoV-2 Sample Collection and Processing 

1155 samples from 1155 SARS-CoV-2 positive individuals were obtained from either throat 

or combined nose/throat swabs. Nucleic acids were extracted from 200µl of each sample 

using MagnaPure96 extraction platform (Roche Diagnostics Ltd, Burgess Hill, UK). SARS-

CoV-2 RNA was detected using primers and probes targeting the E gene and the RdRp 

genes of SARS-CoV-2 and the human gene RNAseP, to allow normalisation, for routine 

clinical diagnostic purposes, with thermocycling and fluorescence detection on ABI Thermal 

Cycler (Applied Biosystems, Foster City, United States) using previously described primer 

and probe sets (Corman et al. 2020).  

 

Sheffield SARS-CoV-2 Isolate Amplification and Sequencing 

Nucleic acids from positive cases underwent long-read whole genome sequencing (Oxford 

Nanopore Technologies (ONT), Oxford, UK) using the ARTIC Network protocol (accessed 

the 19th of April, https://artic.network/ncov-2019, https://www.protocols.io/view/ncov-2019-

sequencing-protocol-bbmuik6w). In most cases 23 isolates and one negative control were 

barcoded per 9.4.1D nanopore flow cell.  Following basecalling, data were demultiplexed 

using ONT Guppy (--require-both-ends). Reads were filtered based on quality and length 

(400 to 700bp), then mapped to the Wuhan reference genome (MN908947.3) and primer 

sites trimmed. Reads were then downsampled to 200x coverage in each direction. Variants 

were called using nanopolish (Simpson 2018). 
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In Vitro SARS-CoV-2 Infection Model 

Two derivatives and an unaltered lineage of the VeroE6 African green monkey kidney cell 

line were used in this study. One VeroE6 cell line was manipulated to overexpress the 

angiotensin-converting enzyme 2 (Ace2) receptor. In addition to Ace2 overexpression, a 

third line was also induced to overexpress the serine protease Transmembrane protease, 

serine 2 (TMPRSS2). These cell lines are referred to as VeroE6, VeroE6-ACE2 and VeroE6-

ACE2-TMPRSS2, respectively.  Methods for the production and the validation of these cell 

lines are fully described in Rhind et al 2020 (accepted PLOS Biology). SARS-CoV-2 infection 

of these three cell lines were set up with three viral isolates (PHE2, GLA1 and GLA2 - 

Supplementary Table S9) and supernatant harvested at 24, 48 and 72 hours for viral RNA 

extraction and sequencing. 

Illumina Metagenomic Sequencing 

This protocol was applied to virus isolates propagated in vitro. Extracted nucleic acid was 

incubated with DNAseI (Thermo Fisher, Part Number AM2222) for 5 minutes at 37oC. After 

DNAse treatment, the samples were purified using Agencourt RNA Clean AMPure XP Beads 

(Beckman Coulter, A63987), following the manufacturer’s guidelines, and quantified using 

the Qubit dsDNA HS Kit (Thermo Scientific, Part Number Q32854). cDNA was synthesised 

using SuperScript III (Thermo Scientific, Part Number 18080044) and NEBNext Ultra II Non-

Directional RNA Second Strand Synthesis Module (New England Biolabs, Part Number 

E6111L ), as per the manufacturer’s guidelines. 

Samples were further processed utilising the Kapa LTP Library Preparation Kit for Illumina 

Platforms (Kapa Biosystems, Part Number KK8232). Briefly, the cDNA was end repaired and 

the protocol followed through to adapter ligation. At this stage the samples were uniquely 

indexed using the NEBNext Multiplex Oligos for Illumina 96 Unique Dual Index Primer Pairs 

(New England Biolabs, Part Number E6442S), with 15 cycles of PCR performed. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2020. ; https://doi.org/10.1101/2020.07.01.181867doi: bioRxiv preprint 



 

32 

All amplified libraries were quantified by Qubit dsDNA HS Kit and run on the Agilent 4200 

Tapestation System (Agilent, Part Number G2991AA) using the High Sensitivity D5000 

Screentape (Agilent, Part Number 5067-5592) and High Sensitivity D5000 Reagents 

(Agilent, Part Number 5067-5593). Libraries were sequenced on an Illumina NextSeq 550 

(Illumina, Part Number SY-415-1002). 

Sub-Genomic RNA Detection 

Periscope consists of a Python based snakemake(Köster and Rahmann 2012) workflow 

which runs a python package that processes and classifies reads based on their 

configuration (Figure 1C).  

Pre-Processing 

Nanopore 

Pass reads for single isolates are concatenated and aligned to MN908947.3 with minimap2 

(v2.17) (Li 2018) (-ax map-ont -k 15). It should be noted that adapters or primers are not 

trimmed. Bam files are sorted and indexed with samtools(Li et al. 2009).  

Illumina 

Paired end reads, ideally prior to trimming, are aligned to MN908974.3 with bwa mem 

(v0.7.17) (Li and Durbin 2009) with the “Y” flag set to use soft clipping for supplementary 

alignments. Bam files are sorted and indexed with samtools. 

Periscope - Leader Identification & Read Classification  

Nanopore 

 

Reads from the minimap2 aligned bam file are then processed with pysam(Gilman et al. 

2019). If a read is unmapped or represents a supplementary alignment then it is discarded. 

Each read is then assigned an amplicon using the “find_primer” method of the ARTIC field 
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bioinformatics package. We search for the leader sequence (5’-

AACCAACTTTCGATCTCTTGTAGATCTGTTCT-3’) with biopython (Cock et al. 2009) local 

pairwise alignment (localms) with the following settings, match +2, mismatch -2, gap -10 and 

extension -0.1 with score_only set to true to speed up computation. The read is then 

assigned an ORF using a pybedtools(Dale, Pedersen, and Quinlan 2011) and a bed file 

consisting of all known ORFs +/-10 of the predicted leader/genome transition.  

 

We classify reads as a “High Quality” (HQ) sgRNA (Figure 1D) if the alignment score is > 50 

and the read is at a known ORF. If the read starts at a primer site then it is classified as 

gRNA, if not, then it is classified as a “High Quality” non-canonical sgRNA supporting read. If 

the alignment score is > 30 but <= 50 and the read is at a known ORF then it is classified as 

a “Low Quality” (LQ) sgRNA. If the read is within a primer site, it is labelled as a gRNA, if not, 

then it is a “Low Quality” sgRNA. Finally, any reads with a score of <= 30 and are at a known 

ORF are then classified as a “Low Low Quality” sgRNA, otherwise, they are labelled as 

gRNA. The following tags are added to the reads for manual review of the periscope calls; 

XS: Alignment score, XA: Amplicon, AC: Read class, and XO: The read ORF. Reads are 

binned into qualitative categories (HQ, LQ, LLQ etc) because we noticed that some sgRNAs 

were not classified as such due to a lower match to the leader. After manual review, they are 

deemed bona fide sgRNA. This quality rating negates the need to alter alignment score cut-

offs continually to find the best balance between sensitivity and specificity. Restricting to HQ 

data means that sensitivity is reduced but specificity is increased, including LQ calls will 

decrease specificity but increase sensitivity. 

Illumina 

 

Reads from the bwa mem aligned bam file are processed with pysam. If a read is unmapped 

or represents a supplementary alignment then it is discarded.  
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The presence of soft clipping at the 5’ end of the reads is an indicator that that read could 

contain the leader sequence so we extract all of the soft clipped bases from the 5’ end, 

additionally including three further bases to account for homology between leader and 

genome at the N ORF (these bases would therefore not be soft clipped at this ORF). If there 

are less than six extracted bases in total we do not process that read further as this is not 

enough to determine a robust match to the leader sequence. With a match score of 2 and a 

mismatch score of -2 (Gap opening penalty; -20, Extension, -0.1) soft clipped bases are 

aligned to the leader sequence with localms. Soft clipped bases that include the full >=33 bp 

of the leader would give an alignment score of 66. Allowing for two mismatches this gives a 

“perfect” score of 60. If the number of soft clipped bases is less then we adjust the “perfect” 

score in the following way:  

 

������� ����� �  ������� �� ����� ���� ������� �  2� � 2 

 

This allows for one mismatch. The position of the alignment is then checked, for these bases 

to be classed as the leader, the alignment of the soft clipped bases must be at the 3’ end. If 

this is true and: �������� ����� �  ��������� ������  �� 0then the read is 

classified as sgRNA.  

 

 

Periscope - Sub-genomic RNA Normalisation 

Amplicon Data 

Once reads have been classified, the counts are summarised and normalised. Two 

normalisation schemes are employed: 

1. Normalisation to Total Mapped Reads 
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Total mapped reads per sample are calculated using pysam idxstats and used to 

normalise both genomic, sgRNA and non-canonical sgRNA reads. Reads per 

hundred thousand total mapped reads are calculated per quality group. 

������ �  
  ����� ���� ����� �  100000

������ ������ ����� 100000
 

2. Normalisation to Genomic Reads from the Corresponding Amplicon 

Counts of sgRNA, non-canonical sgRNA, and gRNA are recorded on a per amplicon 

basis and normalisation occurs within the same amplicon per 1000 gRNA reads. If 

multiple amplicons contribute to the count of sgRNA or non-canonical sgRNA then 

the normalised values are summed. 

������ �  
����� ���� ���� �  1000

����� ������� ���
 

 

Periscope outputs several useful files which are described in more detail in the 

Supplementary Material, briefly these are; periscope’s processed bam file with associated 

tags, a per amplicons counts file, and a summarised counts file for both canonical and non-

canonical ORFs. 

 

Bait Based Capture & Metagenomic Data 

Again two schemes are employed, as above, to the total amount of mapped reads and 

additionally: 

3. Normalisation to Local Coverage 

For both canonical and non-canonical sgRNA normalisation we calculate the median 

coverage around either; a) for canonical ORFs the TRS site +/- 20bp or b) the 

leader/genome junction +/- 20bp and normalise the total sgRNA per 1000 reads of 

coverage. 

������ �  

����� ���� ����� � 1000

����� ��������
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Sub-Genomic Variant Analysis 

A python script is provided “variant_expression.py” that takes the periscope bam file and a 

VCF file of variants (usually from the ARTIC analysis pipeline). For each position in the VCF 

(pyvcf(Casbon 2012)) file, it extracts the counts of each base in each class of read (i.e. 

genomic, sgRNA and non-canonical sgRNA) and outputs these counts as a table. This tool 

also provides a useful plot (Supplementary Figure S5) of the base counts at each position for 

each class. 

Analysis and Figure Generation 

Further analysis was completed in R 3.5.2(Schulte et al. 2012) using Rstudio 1.1.442(Racine 

2012), in general data was processed using dplyr (v0.8.3), figures were generated using 

ggplot2 (v3.3.1), both part of the tidyverse(Wickham et al. 2019) family of packages (v1.2.1). 

Plots themed with the ftplottools package (v0.1.5). GGally (v2.0.0) ggpairs was used for the 

matrix plots for downsampling and repeats. Where multiple hypothesis tests were carried 

out, multiple testing correction was carried out using Bonferroni. Reads were visualised in 

IGV(Robinson et al. 2011) and annotated with Adobe Illustrator. Code for figure generation 

can be found attached as a supplementary file and in the github repository: 

https://github.com/sheffield-bioinformatics-core/periscope-publication. 

Principal Component Analysis (PCA) 

PCA was carried out to determine if any of the experimental variables were responsible for 

the differences in expression values between samples. Reads from ORF1a and ORF10 

amplicons were removed from the analysis and expression values were normalised within 

each ORF:  

��������

������ �������
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and then row means subtracted. The “PCA” function of the R package FactoMineR(Pagès 

2014), (v1.41) was then used to carry out the PCA without further scaling and all other 

settings as default. The resulting PCA was plotted using the “fviz_pca_ind” function. Plots 

were coloured according to the variable in question. 

 

Data Cleaning 

Data was uploaded to ENA after removing human reads with dehumaizer 

(https://github.com/SamStudio8/dehumanizer) 

 

Periscope Requirements 

Periscope is a wrapper for a snakemake(Köster and Rahmann 2012) workflow with a 

package written in python to implement read filtering and classification, and is provided with 

a conda environment definition. It has been tested on a Dell XPS, core i9, 32gb ram, 1Tb 

SSD running ubuntu 18.04 and was able to process ~100,000 reads per minute. Periscope 

installation requires conda (For example Miniconda, 

https://docs.conda.io/en/latest/miniconda.html, version 3.7 or 3.8). To run periscope, you will 

need the path to your raw fastq files from your ARTIC Network Nanopore sequencing run or 

Illumina paired end reads (unfiltered), and other variables defined in the Supplementary 

Material and on the github README. 

 

Data Access 

All raw sequencing data generated in this study have been submitted to the European 

Nucleotide Archive under study ID: PRJEB40972. 
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Periscope is freely available under GNU General Public License v3.0 from the Sheffield 

Bioinformatics Core github account (https://github.com/sheffield-bioinformatics-

core/periscope) and the source code is contained within Supplementary File 18 

(supplementary_file_18_periscope-0.0.8a.tar.gz) 

 

The data and code required to recreate the analysis contained within this manuscript can be  

be found on github (https://github.com/sheffield-bioinformatics-core/periscope-publication) as 

well as supplementary files published along with this manuscript; Supplementary files 1-16 

and Supplementary FIle 17 (supplementary_file_17_figure_generation.Rmd). 
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