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Abstract High-throughput testing of drugs across molecular-characterised cell lines can identify

candidate treatments and discover biomarkers. However, the cells’ response to a drug is typically

quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the

uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the

experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates

to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening

data on 265 compounds across 1074 cancer cell lines, our models identified 24 clinically established

drug-response biomarkers, and provided evidence for six novel biomarkers by accounting for

association with low uncertainty. We validated our uncertainty estimates with an additional drug

screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-

response data without replicates, and improves biomarker discovery for precision medicine.

Introduction
The failure rate for new drugs entering clinical trials is in excess of 90%, with more than a quarter of

drugs failing due to lack of efficacy (Arrowsmith and Miller, 2013; Cook et al., 2014). The rapid

development of technologies for deep molecular characterisation of clinical samples holds the prom-

ise to uncover molecular biomarkers that stratify patients towards more efficacious drugs, a corner-

stone of precision medicine. In oncology, we can identify potential biomarkers of drug response in

high-throughput screens (HTS) of patient-derived cell lines; these biomarkers need to be then vali-

dated in patients.
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Assessment of cell line drug response typically involves treatment with multiple concentrations of

the compound, followed by measurement of the amount of viable cells after a fixed period of time

for each dose, and derivation of a dose-response curve. The drug response is commonly then sum-

marised by measurements taken from this curve, most often the concentration required to reduce

cell viability by half that is IC50, or the area under the curve that is AUC. Currently the two largest in

vitro drug screening studies, the Genomics of Drug Sensitivity in Cancer (GDSC) (Garnett et al.,

2012; Iorio et al., 2016) and the Cancer Therapeutics Response Portal (CTRP) Rees et al., 2016

have shown that some clinically-actionable biomarkers of drug response can be concordantly discov-

ered (Iorio et al., 2016; Seashore-Ludlow et al., 2015), and that different properties and mecha-

nisms of drug response are best captured by different metrics dependent on the dose-response

curve (Fallahi-Sichani et al., 2013).

Most HTS efforts focus on increasing throughput (Iorio et al., 2016; Seashore-Ludlow et al.,

2015) and thereby often neglect experimental replicates, which renders it impossible to correct for

experimental noise, resulting in uncertainty for the estimated drug-response metrics (e.g. IC50 value).

Extrapolating IC50 values beyond the tested drug concentration range is particularly challenging and

often unaccounted for in quality control metrics (Haibe-Kains et al., 2013; Haverty et al., 2016).

Most published studies using machine learning algorithms or mechanistic models for predicting drug

response and biomarkers assume that the measured drug responses are precise (Costello et al.,

2014; Keshava et al., 2019; Menden et al., 2019; Silverbush et al., 2017). If this assumption is not

met and there is high uncertainty in the measured drug-response values, the utility of these methods

for enhancing drug development may be severely limited (Costello et al., 2014; Menden et al.,

2019; Silverbush et al., 2017). Experimental noise can be reduced by adding experimental repli-

cates, however, this either reduces the throughput of the screen or increases the cost. Most current

models for curve fitting and describing dose-response data have primarily assumed that cell viability

has a sigmoidal relationship to the logarithm of the dose concentrations of the drug (Dawson et al.,

2012; Wang et al., 2010). Whilst some models are more flexible by allowing many inflection points

in the dose-response curve (Di Veroli et al., 2016; Vis et al., 2016), their main output is a single

drug-response value that does not fully capture the uncertainty in the measurements (Fallahi-

Sichani et al., 2013).

Gaussian Processes (GP) are a flexible, probabilistic modelling technique that has been success-

fully used to measure uncertainty in noisy gene expression datasets (Lopez-Lopera and Alvarez,

2019) and has been incorporated into machine learning prediction of cell fates (Boukouvalas et al.,

2018). This technique has been shown to cope well with regression tasks on dependent data and

high dimensional covariates (Rasmussen and Williams, 2005; Shi and Choi, 2011). Instead of fitting

a single function to the data, GPs allow for a flexible range of beliefs about the function underlying

the data (Tian et al., 2017). In the case of cell line drug responses, this can be conceptualised as fit-

ting a range of curves that have equivalently strong fit to the data. We can sample from the inferred

posterior distribution over functions, that is the variance between these curves, to generate uncer-

tainty estimates of quantities of interest, in our case, properties of the dose-response such as IC50.

GPs have been recently utilised to identify and guide experimental validation of compounds, on

top of being applied to protein engineering and imputing gene expression values (Hie et al., 2020).

GPs have also been used in conjunction with neural networks to model dose-response curves as a

function of molecular markers (Tansey et al., 2018). The main objective in this work was to predict

drug response using the molecular measurements, and the non-linear nature of the prediction model

makes interpretation for the purpose of biomarker detection challenging. By contrast, we aimed to

develop a model that could provide interpretable summary statistics with uncertainty estimates that

can be flexibly used to improve biomarker detection.

In this study, we therefore introduce a new GP regression approach for describing dose-response

relationships in cancer cell lines that quantifies the uncertainty of the model fitted to measured

responses for each single experiment, and we show that estimates of IC50 values within the tested

concentration range correlates with confidence intervals obtained experimentally from replicate

experiments. Subsequently, we use our new dose-response model to identify genetic sensitivity and

resistance biomarkers in standard statistical tests (e.g. ANOVA). We demonstrate how the flexibility

of the GP dose-response modelling can be further exploited in a Bayesian framework to identify

novel biomarkers. We also describe the variation in the level of drug response uncertainty across
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cancer types and drug classes. By accounting for the uncertainty in dose-response experiments,

detection of clinically-actionable biomarkers can be enhanced.

Results

A probabilistic framework for measuring dose-response and predicting
biomarkers
We analysed in vitro screening data on 265 compounds across 1,074 cell lines (Iorio et al., 2016). In

those experiments, we quantified the amount of cytotoxicity after four days of compound treatments

at each dose compared to controls (Figure 1A). The relationship between the dose and response

(decrease in cell viability) was first described using a dose-response curve derived with a sigmoidal

Figure 1. Workflow for fitting of Gaussian Process models to dose-response curves and estimating their uncertainty. (A) Large-scale drug screens test

cell lines with different drugs and at different doses are used to obtain dose-response data. (B) Typically, for each drug tested in a cell line, the sigmoid

model is fit to the drug-response data and (C) the overall measures of response (IC50, AUC, etc.) are extracted. (D) For each drug tested in a cell line,

we fit a GP model to the dose-response data. The GP allows us to sample from a distribution of possible dose-response curves, obtaining a measure of

uncertainty. (E) From these curves, we can extract overall measures of response, such as IC50, and importantly, their 95% confidence intervals. (F)

Mutation markers for each cell line can be determined based on presence/absence of single nucleotide polymorphisms (SNPs) in key genes. Both the

drug-response estimates and the mutation markers are used to compute (G) the F-statistic for ANOVA, and (H) Bayesian test for biomarker association.

The drug-response summary measure gi for cell line i is modelled via a cell line- specific mean mi and standard error si. The mean is defined as a linear

effect b of the biomarker status zi and a further effect g from any remaining covariates xi, such as tissue type. The parameter s* is the standard

deviation of mi. (I) Boxplots illustrate the differences in the estimated mean IC50 of ERBB2 amplified and non-amplified breast cancer cell lines treated

with afatinib. An ANOVA test was used to test this difference in means but did not consider uncertainty in each IC50 estimate. (J) We estimated

posterior distributions of gene association using the Bayesian model, that is the effect of a genetic mutation on the IC50 measurement of drug

response. Distributions centred on zero indicate no effect whilst distributions on either side of zero indicate positive or negative effects of mutations on

drug response.
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function (Figure 1B and C). This assumes that the number of viable cells decreases at an exponential

rate, then slows down and eventually plateaus at a lower limit. Since it was costly to test all possible

doses, the sigmoid function was used to extrapolate the response at concentrations that had not

been tested and to estimate overall measures of response, such as IC50 or AUC values, for down-

stream analysis. However, considering that each experiment tested only between five and nine dos-

age concentrations per experiment in GDSC, and a maximum of 16 in CTRP, the tightness of fit of

the dose-response curve to the data points and therefore the level of uncertainty about the inferred

response may vary. We utilised the probabilistic nature of GP models to quantify the uncertainty in

the dose-response experiments as an alternate approach (Figure 1D). We sampled from the fitted

GP and used the posterior distribution to quantify the uncertainty in curve fits for each experiment.

We again generated summary statistics, IC50 and AUC values, by taking the average of the GP sam-

ples and also quantified the level of uncertainty for these statistics (Figure 1E). The GP model has

the advantage that it models outliers at higher doses as one component of a two-component Beta

mixture in the model (see Materials and methods). Such outliers are typically the result of an experi-

mental failure, and cannot be modelled using simple Gaussian noise without over-estimating the

noise parameter.

After fitting the dose-response data using the sigmoid and GP models, we tested various bio-

marker hypotheses by examining the association between the overall response statistics from the

models with genetic variants detected in the cell lines using a frequentist and a Bayesian approach

(Figure 1F–H). For one biomarker hypothesis, as an example, we examined copy number alterations

and point mutations in breast cancer cell lines in relation to the measured drug response of afatinib

in those cells. The GP and sigmoid estimated IC50 from cell lines treated with afatinib were signifi-

cantly different in cases with and without ERBB2 amplification (ANOVA q-value = 4.12e-9;

Figure 1I). The GP models provided an added benefit of providing uncertainty estimates that were

incorporated into a Bayesian hierarchical model to further verify the association between ERBB2

amplification and afatinib sensitivity (posterior probability = 0.001; Figure 1J).

Gaussian Processes provide estimates of dose-response uncertainty for
single experiments
Both GP and sigmoid curve fitting produced comparable IC50 and AUC estimates. Precursor sigmoid

curve fitting methods based on Markov Chain Monte Carlo simulations enabled error estimates in

IC50 values (Garnett et al., 2012), however, this was neglected in the state-of-the-art sigmoid curve

fitting (Vis et al., 2016) due to missing propagation to biomarker identification. Here, we introduce

the added benefit of sampling from the GP posterior, which provides the models in-build uncertainty

obtained for these IC50 estimates. This is important for high-throughput drug screening experiments

where there is often a high number of drugs and samples tested but very few replicate experiments.

By applying the GP model to each experiment, we estimated the standard deviation for each IC50 or

AUC value based only on data points from that single experiment. These single sample standard

deviations were compared to the standard deviations measured from here provided replicate experi-

ments, that is the same drug tested multiple times on the same cell line and at the same concentra-

tion. We applied our GP estimation method to data from replicate experiments of 26 drugs on 10

cell lines, which contained 260 test conditions and 8 to 9 replicates for each condition. We wanted

to see if an estimate of the uncertainty of the summary statistic, such as the standard deviation of

the IC50 posterior samples, would be correlated with the dispersion between replicates. Here, we

refer to the variability between (mean) estimates for replicates as the observation uncertainty, and

the variability in the estimate for a single replicate as the estimation uncertainty.

We compared observation and estimation uncertainty across replicate experiments of all 260 con-

ditions (Figure 2A). When the estimation uncertainty is large, we will have less confidence in the esti-

mated IC50 in an experiment. Measurement errors for individual points in a dose-response curve will

generally result in larger estimation uncertainty, whereas greater variation between biological repli-

cates will result in larger observation uncertainty. We found two trends in the relationship between

observation and estimation uncertainty. First, for experiments where the estimated IC50 lies within

the concentration range tested, the estimation uncertainty is positively correlated (Pearson correla-

tion = 0.84, 95% CI [0.76, 0.89]) with the observation uncertainty. Second, for experiments where

the estimated IC50 lies beyond the maximum tested concentration, we observed a negative correla-

tion (Pearson correlation = �0.39, 95% CI [�0.51,–0.25]). We note that the latter experiments
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Figure 2 continued on next page
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require extrapolation to estimate the IC50 beyond the concentration range, which increases the esti-

mation uncertainty, but does not generally affect the observational uncertainty. However, we

observed that the estimation uncertainty from our GPs for dabrafenib (BRAF inhibitor) tested in two

independent studies on the same cell lines were comparable both within and beyond the concentra-

tion range (Figure 2B).

Since the replicate experiments were conducted in batches over a period of several months, we

verified that the observed trends held regardless of batches (Figure 2—figure supplement 1). Addi-

tionally, we examined the relationship between estimation uncertainty and observation uncertainty

in a number of edge cases where IC50 was estimated within and beyond the maximum concentration

tested (Figure 2C–E). In the case of olaparib tested on PC-14, the uncertainty for the IC50 within

each replicate experiment was high, and this level of uncertainty was consistent across all replicates

even beyond the max concentration (Figure 2C and F). In other replicate experiments, both estima-

tion and observation uncertainty were low (Figure 2D and G), or varied depending on whether the

batch reported mostly IC50 values beyond the concentration range. Talazoparib tested in colorectal

cancer line HCT-15 is a case where observation uncertainty was high, even though estimation uncer-

tainty was low, and experiments in different batches showed different estimated IC50s from very dif-

ferent dose-response curves (Figure 2E and H).

In order to examine the diversity of uncertainty estimates across experiments further, we

described the relationship between AUC value of GP fits with their corresponding estimation uncer-

tainty (Figure 3). We decided to use AUC here due to the greater uncertainty of estimating IC50s

beyond the maximum dose concentration. Since AUCs were computed within the tested concentra-

tion range, the estimation uncertainty for AUC was not substantially higher for cases where IC50s

were estimated within compared to beyond the maximum concentration (Figure 3—figure supple-

ment 1A). The difference between the AUC estimates from the GP compared to the published

GDSC sigmoid curve fits was greatest for experiments showing a partial response (AUC between 0.4

and 0.9), whilst at the same time these experiments also had the highest estimation uncertainty

(Figure 3A). Our visual examination of the raw dose-response data from those experiments revealed

evidence of poor quality readouts, for instance, where cell viability increases with increasing drug

dose (Figure 3—figure supplement 1B). We were able to quantify the quality of these readouts by

estimating the Spearman correlation coefficient based on the raw cell viability counts and the dose

concentrations (Figure 3B). A negative Spearman correlation indicates that cell viability decreases as

dosage increases (as expected) whilst a positive Spearman correlation indicates the opposite. The

experiments with high estimation uncertainty from our GPs were also the experiments with high

Spearman correlation pointing to poor quality.

Next, we investigated whether there were any attributes of experiments that would correspond

to high estimation uncertainty and poor quality results. Labelling of experiments based on cell cul-

ture conditions, dose and cancer type revealed no obvious associations with estimation uncertainty

(Figure 3—figure supplement 2A–E). However, there was a large spread in the uncertainty esti-

mates for AUC when we grouped the experiments into target pathways based on the primary tar-

gets of the tested drugs (Figure 3C; Figure 3—figure supplement 2F). Whilst most drugs had

similar average AUC point estimates between 0.6 and 0.8, suggesting they all had a spread of

Figure 2 continued

in two independent studies (GDSC and CTD2). Estimation uncertainty (error bars and grey shading) were larger beyond the max concentration in both

GDSC (dashed line) and CTD2 (grey line). The point estimates of the IC50s from the GPs (black dots) were also comparable to the published IC50s (red

dots). (C-E) Three sets of replicate experiments, representing different amounts of estimation and observation uncertainty. Each density represents the

distribution of IC50 values from the Gaussian process samples from each replicate experiment. The colours represent different experimental batches.

Narrow distributions demonstrate low estimation uncertainty and overlapping distributions demonstrate low observation uncertainty. The thick black

line represents the density obtained by pooling samples from all replicates and the dashed line shows the maximal dosage tested. GP-curve fits

corresponding to the three sets of replicate experiments showing IC50 estimates with (F) high uncertainty, (G) low uncertainty, and (H) mix of

uncertainties depending on whether estimates are made within or beyond the max concentration. The blue areas represent the 95% confidence interval

in the curve fits and extrapolated GP curves (light grey lines) are displayed up to five times the maximum concentration, where the uncertainty will be

extremely high.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Investigation of batch effects in the replicate data.
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experiments showing resistance and sensitivity, the average estimation uncertainties varied across

target pathways. Interestingly, similar target pathways (e.g. chromatin histone methylation and chro-

matin histone acetylation) had very different levels of estimation uncertainty. Within each of these

target pathways, we also see different distributions of estimation uncertainties (Figure 3D). Most
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experiments (orange-red) result in greater uncertainty and positively correlated with cell viability increasing with higher dose. (C) Average uncertainty

and AUC for experiments with uncertain fits (estimation uncertainty >0.03) with drugs grouped by their target pathway. (D) Distribution of estimation

uncertainty for all drugs targeting chromatin histone methylation, chromatin histone acetylation, and mitosis and (E) for individual drugs.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. High estimation uncertainty independent of concentration range.

Figure supplement 2. Relationship between uncertainties and other experimental factors.
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target pathways have a bi-modal distribution representing compounds that have low uncertainty in

the cases of clear sensitivity or resistance, and high uncertainty in the cases of partial responders

(Figure 3E). Both chromatin histone methylation drugs in particular had a much longer right tail

towards higher estimation uncertainties that are associated with poor experimental readouts, or pos-

sibly off-targets.

Curve fits using Gaussian Processes can help identify clinically relevant
biomarkers
The IC50 values are highly conconcordant for sigmoid and GP-curve fittings, showing an average

weighted Pearson correlation of 0.88 (95% CI [0.85; 0.91]) across individual drugs, and cancer types

(Figure 4A). Strong agreement is found when true responding cell lines were observed in the screen

(Figure 4B). For example, if >10% of cell lines responded within the concentration range, that is

IC50 <maximum tested concentration, then a weighted Pearson correlation >0.75 was consistently

achieved for all drugs. We found positive correlations for all drugs, even when comparing exclusively

non-responding cell lines, where all the IC50 values are extrapolated beyond the maximum dosage

range. Drug-response values are concordantly fitted with both methods for sensitive cell lines

(Figure 4C, mean log10(IC50) in mM of 0.02 95% CI [�0.05; 0.09]), whilst extrapolated non-respond-

ers tend to lead to more conservative and higher IC50 values fitted with GP (Figure 4C, mean log10

(IC50) in mM of 1.10, 95% CI [1.03; 1.18]). Whilst the average fits from the sigmoid and GP models

identify known clinical biomarkers, there are clearly differences for individual cell lines, especially

when the IC50 value has been extrapolated beyond the dosage range, that may help identify new

biomarkers. Alternatively, AUC values can be used to compare both curve fitting methods (Fig-

ure 4—figure supplement 1). Whilst known clinical biomarkers are recovered with AUC as a drug-

response metric, IC50 measures were used in the subsequent analysis as they retain direct relation-

ship with the drug concentration and are more interpretable.

To highlight the overall agreement of both curve fitting methods, we systematically tested 26 clin-

ically established biomarkers of drug response (Figure 4D, Figure 4—figure supplement 2A–C,

Supplementary file 1) using previously established association tests (Iorio et al., 2016), 24 of which

were significantly reproduced regardless of sigmoid or GP-curve fitting (10% FDR). For example,

both curve fittings captured the association of BRAF inhibitors (PLX4720, progenitor of vemurafenib;

and dabrafenib) with BRAF mutations in melanoma (Figure 4—figure supplement 3A–C;

Chapman et al., 2011). Dabrafenib is a potent BRAF inhibitor and in addition we detected BRAF

mutations as a sensitivity marker in thyroid carcinoma (Figure 4D, Figure 4—figure supplement

3D). Another example are the EGFR inhibitors, afatinib and gefitinib, that are concordantly corre-

lated with drug sensitivity in EGFR mutant cell lines in lung adenocarcinoma (Figure 4—figure sup-

plement 3E–G; Tamura and Fukuoka, 2005; Yang et al., 2012). ERBB2(HER2) amplification in

breast cancer was also recapitulated as a biomarker of sensitivity to the dual EGFR/ERBB2 inhibitor

lapatinib (Figure 4—figure supplement 3H; Konecny et al., 2006). Among the 26 clinical bio-

markers, we consistently found drug resistance of TP53 mutants to MDM2 inhibition with nutlin-3a in

five different cancer types (Figure 4E, Figure 4—figure supplement 3I–L). Overall, the majority of

expected clinical and preclinical biomarkers are reproduced, regardless of the drug-response curve

fitting method.

We concordantly and significantly identified six novel (not yet clinically established) drug sensitiv-

ity biomarkers (0.1% FDR) regardless of the applied drug-response curve fitting method. Investigat-

ing two different curve fitting algorithms, and retrieving the same biomarkers can be considered as

a test of robustness, which in our case concordantly highlighted non-gold standard associations for

prioritising experimental validation. For example, daporinad (also known as FK866 and APO866) is a

small-molecule inhibitor of nicotinamide phosphoribosyltransferase leading to inhibition of NAD+

biosynthesis. It has been clinically tested in melanoma (ClinicalTrials.gov Identifier: NCT00432107),

Refractory B-CLL (NCT00435084) and Cutaneous T-cell Lymphoma (NCT00431912), whilst showing

anti-proliferative effect in glioblastoma cell lines (Zhang et al., 2012). Therapeutic potential when

combining with other drugs used to treat gliomas (Lucena-Cacace et al., 2019; Lucena-

Cacace et al., 2017) has been suggested, whilst we additionally and concordantly identify EGFR

amplification as a biomarker (Figure 4F).

Another novel and concordant identified biomarker is doramapimod response (also known as

BIRB-796) in ARID2 mutant melanoma cell lines (Figure 4G). Doramapimod is a small-molecule p38
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Figure 4. Comparison of sigmoid and GP-curve fitting. (A) Weighted Pearson correlation of each drug within cancer types. (B) Comparing the

concordance of sigmoid and GP-curve fitting when stratifying for percentage of cell lines with IC50 value lower than maximum concentration. (C) IC50

value difference between GP and sigmoid curves. Grey histogram represents frequency distribution of the IC50 value difference between GP and

sigmoid curves without stratification by within/outside the concentration range. (D) Drug-response biomarker comparison based on both curve fittings

(sigmoid vs GP). The Benjamini-Hochberg adjusted p-values are in log10 scale and signed based on the direction of the effect size (Cohen’s d).

Additional biomarker examples for (E) diffuse large B-cell lymphoma (DLBCL) treated with nutlin-3a (MDM2 inhibitor) and stratified by TP53 mutants; (F)

Low grade glioma (LGG) treated with daporinad (NAMPT inhibitor) and stratified by EGFR amplification; (G) Skin cutaneous melanoma (SKCM) treated

with doramapimod (p38 and JNK2 inhibitor) and stratified with ARID2 mutations.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of GP and Sigmoid curve fitting using AUCs.

Figure supplement 2. Comparison of sigmoid and GP-curve fitting using IC50s.

Figure supplement 3. Drug-response biomarker comparison based on both curve fittings.
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MAPK inhibitor and has been reported in different cancer types (in combination with other drugs)

including cervical cancer, paracrine tumours and myeloma (Jin et al., 2016; Yasui et al., 2007).

ARID2 is part of chromatin remodelling complex and is involved in DNA repair in hepatocellular car-

cinoma cells (Oba et al., 2017) and enriched in melanomas (Ding et al., 2014; Hodis et al., 2012).

In conclusion, different curve fitting approaches lead to concordantly and novel identified bio-

markers, thereby increasing the robustness in those findings, and consequently enabling to prioritise

hypotheses.

Improved biomarker detection by taking into account uncertainty in a
Bayesian framework
Since both Bayesian and frequentist methods can be used to prioritise biomarkers for further testing,

we compared association statistics (posterior probabilities and q-values) from both statistical meth-

ods. We observed a number of cases where the Bayesian and ANOVA tests disagree (Figure 5A;

Supplementary file 2). For instance, BRAF mutations in colorectal cancer were detected as a sensi-

tivity biomarker for dabrafenib by the Bayesian test, but less significant by the ANOVA test. This

association had been repeatedly reported in in vitro models (Iorio et al., 2016; Rees et al., 2016)

and also found in melanoma cases (Chapman et al., 2011), whilst not in colorectal cancer patients

due to feedback activation of ERK-signalling mediated via EGFR (Corcoran et al., 2018;

Prahallad et al., 2012). We note in Figure 5B that the Bayesian test takes advantage of the addi-

tional information that sensitive mutant cell lines have low estimation uncertainty, whilst the small

number of resistant mutant cell lines have high estimation uncertainty, causing them to have less

influence on the biomarker detection. On the other hand, the ANOVA model detected the KRAS

copy number alteration as a resistance biomarker for lenalidomide (immunomodulatory drug) partial

sensitivity in skin cutaneous melanoma (SKCM), whilst not detected by our Bayesian approach. Whilst

on the linear IC50 scale there is some difference between the small number of mutant cell lines and

wildtypes, the Bayesian model considered that the estimated responses of the mutant cell lines had

high uncertainty (Figure 5C). Additionally, a comparison of the uncertainty estimates for the GP and

the Sigmoid curve fitting methods revealed that both display concordant results (Figure 5B and C;

Figure 5—figure supplement 1); However, the Sigmoid curve fitting method (Materials and meth-

ods; Vis et al., 2016) underestimates variance of non-responding cell lines rendering the GP

approach superior. The dosages within Figure 5B and C were rescaled to prevent the need for

adapting the length-scale hyperparameter to the maximum dosage. IC50 values were back-trans-

formed to the log10 drug dosage scale to make comparisons with (Iorio et al., 2016) (see Materials

and methods). Whilst discrepancies between Bayesian and ANOVA tests have to be taken with cau-

tion, they may highlight novel biological insights which would be missed when applying only a single

model.

Discussion
The GP approach developed in this research has several advantages compared to the traditional

approach of fitting sigmoidal drug-response curves. Firstly, these flexible, non-parametric models

can be used to fit a wider variety of dose-response curves than the parametric sigmoidal models,

for example curves of unexpected shapes may reflect biological signals of off-target effects. Sec-

ondly, the GP models provide straightforward uncertainty quantification of any summary statistic

that can be calculated on a dose-response curve, a fact that we take advantage of in developing our

hierarchical Bayesian model for biomarker testing. Thirdly, the GP model can deal with outlying

measurements better than a sigmoidal model, due to formulating it as a mixture model with one

component representing the latent GP process of the drug response, and the second component

accounting for outliers.

In contrast to other GP-based models in Tansey et al., 2018, our approach is highly interpret-

able, as we do not integrate the biomarkers into the model estimation in a non-linear fashion, but

instead proceed in a two-step approach that first fits our Gaussian process model to the dose-

response curves, and then uses the derived summary statistics and uncertainty measures to perform

biomarker detection. Thus, we can take advantage of the flexibility of the Gaussian process without

the complexity of fitting a non-linear neural network to enable prediction from molecular

measurements.
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Figure 5. Comparison of Bayesian testing and ANOVA using the GP IC50 estimates. (A) Scatterplot of biomarker

associations with IC50 drug response. The y-axis shows the negative log10 transformed posterior probability of a

sign change in the effect under the Bayesian testing model, whilst the x-axis shows the negative log10 of the

q-value from ANOVA testing. The size of the circles is proportional to the number of mutants or copy number

variations in the given type of cancer cell line. (B) GP estimates for the mean and standard deviation of the log

(IC50) from colorectal cell lines tested with BRAF inhibitor dabrafenib, which showed significant association with

BRAF mutation in the Bayesian test. (C) Estimated IC50 and its uncertainty for skin cutaneous melanoma cell lines

tested with the immunomodulatory drug lenalidomide, which showed significant association with KRAS copy

number alteration in the ANOVA test. Black vertical lines show the location of the maximum experimental drug

dosage. Dose-response curve of the (D) MDST8 colorectal cancer cell lines with BRAF mutation treated with

dabrafenib. The black dotted line represents the maximum concentration of the drug used to treat the cell lines.

The blue area represents the 95% confidence intervals in the dose-response fits. (E) Similar to (D) but for CHL-1

skin cutaneous melanoma cell lines with KRAS copy number alteration treated with lenalidomide.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Sigmoid curve fitting uncertainty.

Figure supplement 2. An overview of the cell viability values.
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The increased flexibility of the GP model comes at a price. Most notably, because we do not

impose a specific functional form, there are few constraints on the behaviour of the curve outside

the range of observed dosages. This leads to the counter-intuitive behaviour that the posterior

mean estimate of drug response can go up when extrapolating beyond the maximum dosage. Note,

however, that this goes along with a commensurate increase in the posterior variance (Figure 5D,E).

In other words, the model is highlighting that extrapolation beyond the observed dosage range is

highly uncertain, and the posterior mean estimate should not be relied on. It would be possible to

constrain this behaviour by introducing artificial data points at a high concentration, or less crudely

by imposing monotonicity constraints via virtual derivative observations (Riihimäki and Vehtari,

2010). However, these methods would limit the flexibility of our method and lead us to underesti-

mate the uncertainty of the posterior mean. An alternative approach is to constrain the Gaussian

process using generalised analytic slice sampling (Tansey et al., 2019), which integrates the con-

straints into the sampling process. Whilst theoretically appealing, this approach is not compatible

with the variational inference method that we have chosen for our work, and would lead to an unac-

ceptable increase in computational burden for fitting the dose-response curves.

We have systematically compared the application of GP to sigmoid models across a pan-cancer

drug screen. We demonstrated that our GP estimates of the IC50 values and their subsequently pre-

dicted biomarkers using ANOVA are reliable when compared to estimates from the sigmoid models.

In addition, the GP models provide useful information about the uncertainty associated with the

drug-response quantification. However, there is a crucial difference between estimation uncertainty

on a single experiment and observational uncertainty across multiple replicates of the same experi-

ment, which incorporates measurement error, technical and biological variation. We are interested in

the former to assess the quality of the fit, and therefore the reliability of the estimated IC50. We

hypothesized that estimation uncertainty characterises observational uncertainty within the dose

concentration range tested. However, extrapolating beyond the concentration range would be chal-

lenging due to the uncertainty in the behaviour of the dose-response curve in unobserved concentra-

tions. Imposing monotonicity may not be the best path in this case, but we avoid making this

assumption. Instead, our method defines a very large confidence interval for drug-response statistics

extrapolated beyond the maximum dose tested and we would additionally need to take the obser-

vation uncertainty between replicate experiments into account. We have verified this by applying

our estimation method to a replication data set of 26 drugs tested on 10 different cell lines, with 8

to 9 replicates for each drug-cell line experiment. We conclude that whilst estimation uncertainty is a

useful indicator for within-concentration IC50 values, it cannot be used as a proxy for observation

uncertainty when the IC50 is extrapolated beyond the tested concentration range. Indeed, overall

drug responses and biomarkers from independent drug screens were consistent when comparing

similar dose ranges (Haverty et al., 2016). Any difference between replicate experiments may be

due to batch effects or other unobserved factors that are not necessarily reflected in the estimation

error. Whilst previous studies have attempted to capture uncertainty by measuring the spread of the

residuals from the fitted curves, such as root mean square error, they were not able to capture these

false positive biomarkers by setting strict cutoffs (Cokelaer et al., 2018).

Whilst Bayesian posterior probabilities and ANOVA q-values are different statistical quantities for

measuring biomarker associations that should not be compared in absolute terms, we compared

these quantities in relative terms to prioritise biomarkers of response for further testing. Our Bayes-

ian biomarker model extends the classical ANOVA testing, since it is able to leverage the estimation

uncertainty of the IC50 values. We showed that taking estimation uncertainty into account in the

Bayesian model can lead to both inclusion and exclusion of putative biomarkers. For example, the

Bayesian model highlighted the association between BRAF mutation in colorectal cancer and BRAF

inhibitor response. Targeting BRAF signalling has recently been confirmed as a viable option for

metastatic colorectal cancer cases with BRAF mutations (Kopetz et al., 2019). In contrast, the Bayes-

ian model excluded a suggestion from ANOVA of association between KRAS mutation with lenalido-

mide response in melanoma. Lenalidomide has thus far had no clinical success in KRAS mutant cases

nor melanoma (Gandhi et al., 2013; Glaspy et al., 2009).

Although we systematically tested for drug-biomarker associations, we did observe common

behaviour for certain cell types or classes of drugs. The high uncertainty in the response estimates of

chromatin histone methylation targeting compounds for instance may be due to the large number of

factors contributing to epigenetic regulation of cells (Luo, 2015). It would be straightforward to
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extend the GP model to allow for sharing information across drugs or cell lines of similar class, by

using either shared hyperparameters or a hyperprior on the hyperparameters. We have not imple-

mented this approach in our work here as our aim was to show the advantage of fitting individual

drug-response using GPs, and extending the method to fitting multiple curves jointly would increase

the memory and computational requirements significantly. It is our hope to continue expanding the

suite to multiple dimensions of dose-response and biomarker prediction needed for drug combina-

tions, which is predominantly based on synergy modelling with either Loewe Additivity or Bliss Inde-

pendence (Di Veroli et al., 2016; Vlot et al., 2019). In cases where multiple statistical models

converge to concordant biomarkers, this increases the reproducibility of the evidence, potential for

clinical translatability and ultimately enables precision medicine.

The increasing utilisation of high-throughput drug screening for identifying effective new treat-

ments will necessitate the use of more powerful statistical and machine learning methods

(Toh et al., 2019). We have introduced an approach for quantifying the uncertainties of dose-

response using Gaussian Processes and further described how these uncertainties can be integrated

into statistical testing of biomarkers. For cancer treatments, our approach can help estimate the

uncertainty of dose-responses reported in the numerous drug screening studies by academic

(Ghandi et al., 2019; Holbeck et al., 2017; Iorio et al., 2016) and pharmaceutical laboratories

(Menden et al., 2019; O’Neil et al., 2016). This can provide more robust metrics for comparing

drug responses to identify the most potent ones and highlight sensitivity biomarkers that are more

likely to succeed clinically because they are associated with low uncertainty. The approach is also

generalisable beyond cancer to any disease and any dose-response measures. We hope that by con-

sidering response uncertainty and providing a probabilistic view of drug biomarkers, the risks associ-

ated with drug development can be better balanced and smarter decisions can be made.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line (Home sapines) 1074 cancer cell lines (Iorio et al., 2016)
PMID:27397505

GDSC cell line drug
response:GDSC1 (v17);
GDSC cell line
genomics:
GDSCtools_mobems

Further information about the cancer
cell lines from the GDSC can
be found here:
https://www.cancerrxgene.org/
downloads/bulk_download

Software, algorithm Source code for curve
fitting and Bayesian
biomarker detection

This paper All source code can be found
via GitHub here:
https://github.com/FrankD/
GPDrugModels

Software, algorithm GPFlow GPFlow
(https://www.gpflow.org)

Version 1.5.1

Software, algorithm TensorFlow TensorFlow
(https://www.tensorflow.org/)

Version 1.14.0

Drug screening
We analysed 1074 cancer cell lines tested with 265 compounds from a high-throughput screen

resulting in 225,384 experiments that were previously published (Iorio et al., 2016). Cell line data

was retrieved and is publically available via the GDSC website (Key Resources Table). All cell lines

were authenticated. Details for each cell line can be found at: https://www.cancerrxgene.org/help.

Compounds were tested with 5 to 9 titration points, whilst either diluted with 4- or 2-fold, respec-

tively. Cells were seeded on day zero, left in the microtiter plate for 24 hr to retain linear growth,

and consecutively treated for 3 days. After those 3 days of treatment, cellTiterGlo staining is used to

quantify ATP levels within each well. In parallel, untreated cells and blank wells were also measured

to estimate and normalise cell viability.

Compounds within the replicate study were screened across a seven point dose-response curve

with a half-log dilution and 1000 fold range. The duration of drug treatment was 72 hr and cell viabil-

ity was measured using CellTiter-Glo (Promega). Each cell line and compound pair was screened in
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technical triplicate, three assay plates generated simultaneously, and across three biological repli-

cates with 46 and 44 days between the first to second and second to third replicates respectively.

Cell viability measurements for these experiments can be found in Supplementary file 3.

Preprocessing
Prior to analysis, we scaled the raw observed fluorescent intensities for each drug/cell line combina-

tion using the observations from the blank and negative control wells as follows. Let R ¼ r1; r2:::; rnf g
be the observed intensities for n dosages. Let B be the mean of the intensities for the blank wells on

the same plate as the experiment, and C be the mean of the intensities of the negative control wells

(no drug added). Then the relative cell viability V can be calculated as:

V ¼ R � B

C � B

Relative cell viability values below 0 (n = 2646, Figure 5—figure supplement 2) were set to 0.

For the purpose of fitting the Gaussian process models, we additionally rescale the dosages to

avoid having to adapt the length-scale hyperparameter to the maximum dosage. We rescale the

log2-transformed dosages d ¼ d1; d2:::; dnf g as follows:

d0 ¼ d þ 1

max dð Þ þ 1

Note that IC50 values have been back-transformed to the log10 drug dosage scale for compara-

bility with those reported in Iorio et al., 2016.

Sigmoid drug-response model
The GDSC estimates in Iorio et al., 2016 were obtained using a sigmoid fit to the drug-response

curve, using the same pre-processing of the fluorescent intensities as described above. The particu-

lar sigmoid model used is the one described in Vis et al., 2016. In brief, if we have shape parameter

si and position parameter pij for cell line i and drug j , then cell viability can be represented as a func-

tion of dosage d:

f ðd; si;pijÞ ¼
1

1þ expðd�pij
si

Þ

Note that this allows for cell line/drug specific position parameters, but shape parameters that

only vary by cell line and are shared across drugs. The position parameter pij corresponds to the esti-

mated IC50 for cell line i and drug j. For full details, see Vis et al., 2016.

To estimate the uncertainty of the Sigmoid curve fitting, a random bootstrap sampling of 80% of

all treated cell lines available for each drug over 100 iterations was performed. The Sigmoid curve

fitting model from GDSC (Vis et al. 2013) estimates one scale parameter per drug across all treated

cell lines, thus the sampling creates variance in the response data. The standard deviation of the log

(IC50) estimates was computed to assess the model’s variance.

Gaussian process drug-response model
For simplicity, we drop the subscripts ij and present the combination. We model the drug response

y via a two-component Beta mixture such that:

Pðyjf; s1; �2; s2; pÞ ¼pBeta�ðyjF�1ðfÞ; s1 þð1þpÞBeta�ðyj�2; s2ÞÞ

where Beta� is the reparameterization of the Beta distribution in terms of the mean m and a scale

parameter s, and F�1 is the probit function (the inverse of the standard normal cumulative distribu-

tion function). Component one represents the drug response, which is driven by a latent Gaussian

process f, whilst component two represents outliers that deviate from the overall dose- response

trend. We set the scale parameters s1 ¼ 50 and s2 ¼ 11 and specify �2 ¼ 0:9 to reflect our belief that

outliers will mostly be erroneous measurements of resistance. We set p¼ 0:999 as we believe that

outliers are rare.

We place a standard Gaussian process prior on f, such that:
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Pðfjd; 	Þ ¼MVNðfjm; C	ðd; d
0ÞÞ

where m is the mean drug response, and C	ðd; d
0Þ is a covariance function with hyperparameters 	;

in practice we choose a combined linear-Matern3/2 as a flexible option, which avoids the excessive

smoothness of restrictions of the commonly used RBF kernel. Stein (1999) argues that this is a more

realistic representation for physical processes (Stein, 2012). Information sharing across drugs and

cell lines can be achieved via shared hyperpriors in a hierarchical model. For the application in this

paper joint inference with shared hyperpriors would be computationally difficult, and we choose to

instead empirically set the variance and length-scale parameters for the Matern to 0.2 and 0.3,

respectively, and the variance parameter for the linear kernel to 0.1.

Inference is performed using variational learning (Hensman et al., 2013), via the GPFlow software

(Matthews AG de and van der Wilk, 2017). We choose variational learning over alternatives such

as Markov chain Monte Carlo due to its speed, which allows us to process large drug-response pan-

els in a realistic time frame. Hyperparameters for the GP model were determined by manual tuning;

however, for other datasets, we could also envision a Bayesian model selection procedure which pla-

ces the variational inference in a variational-within-MCMC scheme where the MCMC moves update

the hyperparameters. If fixed hyperparameters are desired, one could use the maximum a posteriori

values. To avoid massive computational complexity, the MCMC scheme could be run on a represen-

tative subsample of cell lines.

Calculation of summary statistics
Summary statistics of drug response can be calculated straightforwardly by sampling from the poste-

rior of the Gaussian process (Supplementary file 4). Generally, let gðd; yÞ be a function that calcu-

lates a summary statistic t from a dose-response curve with dosages d and responses y, then we

can obtain a posterior estimate of the mean of the summary statistic by first sampling N dose-

response curves from the posterior of the GP model, and then calculating the average:

�t ¼ 1

N

X

N

l

gðdl; ylÞ

A similar procedure can be used to calculate the posterior estimate of the standard deviation.

Although we can extract other response statistics from our curve fits, the most common are the

IC50 and the area under the drug-response curve (AUC). On the log2 dosage scale the dosages are

equally spaced, and hence AUC can be straightforwardly estimated by the mean function:

gAUCðd; yÞ ¼
1

n

X

n

m

ym

where m indexes over the n dosages. For the IC50, estimation for a single curve is complicated by

the fact that the curve may not cross the 50% viability threshold within the observed dosage range

(non-crossing sample). We therefore extrapolate the GP samples to 10 times the maximum (log2)

experimental dosage and specify gIC50ðd; yÞ as:

gIC50ðd; yÞ ¼ dm suchthatym ¼ 0:5 if 9ym � 0:5

Note that this ignores samples where for all dosages, ym � 0:5; one could devise a multivariate suf-

ficient statistic that takes this information into account, but we have found that in general there is a

reasonable amount of correlation between gIC50ðd; yÞ and the number of non-crossing samples for a

given cell line/drug combination.

Comparison of GP and sigmoid IC50 values
Concordance between IC50 values based on sigmoid and GP-curve fitting is quantified with Pearson

correlation for each drug. To account for tissue specificity and the varying number of cell lines

assessed per tissue type, we employed the average weighted Pearson correlation (pw) of the sig-

moid-curve versus GP-curve fitted IC50 values for the individual cancer types (i).
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The weight for a given cancer type i was denoted as
ffiffiffiffiffiffiffiffiffiffiffiffi

ni � 1
p

, where ni is the total number of cell

lines treated with the drug within this tissue type. The following metric was applied,

pw¼ tanh

P

N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi

ni � 1
p

arctanhðpiÞ

P

N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi

ni� 1
p

0

B

B

B

@

1

C

C

C

A

where pi is unweighted Pearson correlation within a cancer type (i) and a total number of tested can-

cer types is N ¼ 30. For a given drug and tissue type combination, at least 10 cell lines need to be

treated (ni � 10).

Differences in IC50 values for each drug-response value j were consistently defined as

dfi ¼ IC50j;GP � IC50j;sigmoid

with a total number of tested cell line and drug combinations equalling to Nj ¼ 171;937.

Bayesian biomarker testing
Standard statistical approaches for testing the influence of biomarkers on drug response mostly rely

on analysis of variance (ANOVA) testing. An ANOVA can be understood as a linear model of the

dependent variable i (in this case, a summary measure of drug response such as IC50):

gi ¼ aþbziþgxi þ �i

where xi is an indicator variable denoting the group membership of data point i. In our application,

the data points are cell lines, zi indicates group membership, for example the mutation status of a

given SNP, and xi indicates any other covariates that we wish to correct for, such as tissue type. The

parameter a captures the global mean of the drug response, whilst b captures the effect of mutation

status on the drug response, g is the effect of covariates, and �i is independent Gaussian noise.

This model, whilst useful, fails to account for the fact that our Gaussian process model provides

estimates si of the uncertainty (or standard error) associated with the mean IC50 estimates gi. In

order to make use of these uncertainty estimates, we take an idea from Bayesian meta-analysis, and

integrate them via a hierarchical model:

gi ~Nð�i; s
2

i Þ
�i ~Nðaþbziþgxi; s

�2Þ

where �i is the mean drug-response estimate for cell line i, and s�2 is the variance across cell lines

(the variance of �i in the ANOVA example). Note that this model can be reduced to:

gi ~Nðaþbzi þgxi; s
2

i þs�2Þ

We further specify a Gaussian prior b~Nð0; 0:1Þ on the effect size parameter to discourage false

positives and reflect our prior belief that most mutations are not associated with drug response. We

also place an exponential prior s�2 ~Expð10Þ to regularize the variance parameter. Finally,

a~Nð0;t 2Þ is a Gaussian prior on the global mean with standard error t ~Gammað1; 1Þ. Early explor-

atory results showed that using the estimates of si directly placed too much weight on experiments

with very low estimation uncertainty, leading to unrealistic posterior estimates of the effect size b.

To attenuate this, we used a transformed estimate sc
i , where the effect of parameter c was explored

over the range [0,1], and empirically set to 0.25 for the results reported in this paper. The main tune-

able hyperparameter is the scaling parameter c, as the model is robust to changes to the parameters

for the sparse priors on b and s�2. Setting this hyperparameter is straightforward, as we can use a

simple line search to find a value that optimally trades off between disregarding the uncertainty esti-

mates (c = 0) and placing too much weights on estimates with low uncertainty (c >= 1). One way to

determine the optimal value for c is to randomly permute the biomarker labels, and reduce c until

the false positive rate is below some acceptable threshold.

Inference in this model is performed using Hamiltonian Monte Carlo via the Stan software pack-

age Carpenter, 2017. We report the posterior mode of b as well as the posterior probability of

observing b>0 (if the posterior mode is positive) or b<0 (if the posterior mode is negative).
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