

This is a repository copy of *Exploring uncharted territory: Do urban greenspaces support mental health in low- and middle-income countries?*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/169435/

Version: Accepted Version

Article:

Nawrath, M, Guenat, S, Elsey, H et al. (1 more author) (2021) Exploring uncharted territory: Do urban greenspaces support mental health in low- and middle-income countries? Environmental Research, 194. 110625. ISSN 0013-9351

https://doi.org/10.1016/j.envres.2020.110625

© 2020, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Exploring uncharted territory: Do urban greenspaces support mental health
2	in low- and middle-income countries?
3	
4	Authors: Maximilian Nawrath ^{1*} , Solène Guenat ¹ , Helen Elsey ² , Martin Dallimer ¹
5	
6	¹ Sustainability Research Institute, School of Earth and Environment, University of Leeds,
7	Leeds LS2 9JT, UK
8	² Department of Health Sciences, University of York, York, YO10 5NG, UK
9	
10	*Corresponding author
11	
12	Email addresses:
13	MN: <u>eemn@leeds.ac.uk</u> , Tel: +44 (0) 113 3439105
14	SG: <u>s.guenat@leeds.ac.uk</u>
15	HE: <u>helen.elsey@york.ac.uk</u>
16	MD: <u>m.dallimer@leeds.ac.uk</u>
17	Author contributions

Maximilian Nawrath: Conceptualisation, Methodology, Formal analysis, Investigation, Data
curation, Visualisation, Writing – Original Draft, Review & Editing Solène Guenat: Investigation, Data curation, Review & Editing Helen Elsey: Conceptualisation, Methodology, Writing – Review & Editing Martin Dallimer: Conceptualisation, Methodology, Writing – Review
& Editing

23 Abstract

24 Exposure to urban greenspaces promotes an array of mental health benefits. Understanding 25 these benefits is of paramount importance, particularly in low- and middle-income countries 26 (LMICs), where cities are expanding at an unprecedented rate. However, the existing evidence-27 base for the health benefits of greenspaces has a strong bias towards high-income countries. 28 Here we systematically assess the emerging evidence regarding the mental health benefits pro-29 vided by urban greenspaces in LMICs. We carried out a scoping review to assess the extent, 30 type and quality of evidence investigating the relationship between greenspaces and mental 31 health in LMICs. We systematically searched the literature databases Web of Science, Medline, 32 Embase and CAB Abstracts using key terms related to greenspaces and mental health in 33 LMICs. We analysed the resulting studies using a narrative synthesis approach, taking into 34 account study quality, to assess the overall effects on mental health. 36 studies met the inclusion 35 criteria and were included in the narrative synthesis. Studies were heterogeneous in design, 36 study population, greenspace and mental health assessment. While more than 90% of LMICs 37 remain unstudied, we found that eight out of ten studies using validated mental health screening 38 tools detected positive associations between greenspaces and one or more mental health out-39 comes. These studies mostly took place in upper-middle-income countries. However, there still 40 is a lack of evidence from regions with the highest levels of urbanisation, and only four studies 41 assessed lower-middle and low-income countries. Furthermore, the analysis of mediating and 42 moderating factors indicates that the relationship between greenspaces and mental health in 43 LMICs is context dependent and needs to be assessed in relation to locally relevant environ-44 mental and cultural settings. Based on the evidence reviewed here, exposure to urban green-45 spaces can support multiple mental health outcomes in upper-middle-income countries. How-46 ever, we still know little about poorer, rapidly urbanising countries. Our findings highlight the 47 need for high-quality, context specific research in those urban areas with the highest levels of 48 urbanisation, and the need to address specific challenges regarding mediating and moderating 49 factors. Future studies should combine robust ecological assessments of greenspaces with val-50 idated mental health screening tools.

51

52 Keywords

53 Global South, developing countries, natural environment, biodiversity, mental disorders

55

56 Funding

57 This work was supported by NERC through the SPHERES DTP.

59 1. Introduction

60 Cities in low- and middle-income countries (LMICs) are expanding at an unprecedented rate 61 (Angel et al., 2011). Urban growth in these regions is placing tremendous pressure on the abil-62 ity of cities to provide good living conditions for their residents (McPhearson et al., 2016). Not 63 least because through urbanisation, people are less likely to have contact with natural environ-64 ments such as greenspaces (Soga and Gaston, 2016), potentially with profound implications 65 for mental health (Hartig et al., 2014).

66

67 Although urban living can convey many benefits such as providing better access to health care, 68 employment and education (Dye, 2008), living in cities can be detrimental to mental health 69 outcomes, attributable to individual, social and environmental factors (Gruebner et al., 2017). 70 This is particularly true in LMICs, where rapid and unplanned urban growth often results in 71 the expansion of informal settlements and slums (United Nations, 2014), which therefore house 72 a large proportion of the population (McHale et al., 2013). Such settlements tend to be charac-73 terised by a lack of security of tenure, inadequate access to basic services and city infrastructure 74 (United Nations, 2015). Informal settlements and slums are often situated in geographically 75 and environmentally hazardous areas, and their residents are affected by poorer physical (Ezeh 76 et al., 2017) and mental health (Subbaraman et al., 2014).

77

78 Indeed, mental illnesses affect more than one billion people globally (Rehm and Shield, 2019). 79 Therefore, as cities increasingly shape the context in which people live, it is crucial to better 80 understand the determinants of mental health of urban populations (Galea and Vlahov, 2005). 81 Mental health is affected by a variety of factors including social, economic, psychological, 82 physiological, behavioural, genetic, cultural and environmental factors (Meyer-Lindenberg, 83 2014). Indeed, interest in the role the natural environmental context in which people live plays 84 for mental health has been growing (Markevych et al., 2017). Exposure to urban greenspaces 85 promotes an array of mental health benefits (Lovell and Maxwell, 2018). Neighbourhood 86 greenness is broadly associated with good mental health in adults (Gascon et al., 2015), reduced 87 prevalence of depression (Roberts et al., 2019), improved social cohesion (Jennings and 88 Bamkole, 2019) and improved measures of mental well-being such as quality of life 89 (Stigsdotter et al., 2010) and life satisfaction (White et al., 2013). Greenspaces are linked to 90 these mental health benefits through different pathways, which emphasise three general func-91 tions of greenspace: reducing harm (e.g. reducing air and noise pollution), restoring capacities

(e.g. attention restoration and stress recovery) and building capacities (e.g. encouraging physical activity and facilitating social cohesion) (Markevych et al., 2017). While a substantial
amount of research investigates the impact of greenspaces on mental health, little is known
about the contribution that different qualities of the environment, such as different types of
greenspaces or biodiversity, have on mental health (Marselle et al., 2018). Determining which
aspects of biodiversity are relevant to mental health is a key research frontier (Bratman et al.,
2019).

99

100 Although increasingly compelling, the existing evidence has a strong bias towards temperate, 101 high-income settings (Clark et al., 2014; Keniger et al., 2013; Pett et al., 2016). However, it 102 cannot be assumed that findings from HICs are automatically transferrable, given the vast dif-103 ferences in urban conditions, environmental and cultural factors (Markevych et al., 2017). In-104 deed, current research largely excludes the types of urban environments in which the majority 105 of the world's population live. This bias could be problematic as urban conditions in LMICs 106 often differ from those in HICs for a number of reasons (United Nations, 2015). First, different 107 factors might mediate and moderate the relationship between greenspaces and mental health, 108 through different pathways (Markevych et al., 2017). The mental health benefits people derive from greenspaces may depend on the particular environmental context of a region, such as local 109 110 climatic conditions (Botzat et al., 2016). Thus far studies have concentrated on a narrow range 111 of temperate regions (Keniger et al., 2013).

112

113 Secondly, a society's relationship with the natural environment arises from, and reflects, its 114 cultural norms (Selin, 2003). For instance, people in Turkey use urban parks generally for pas-115 sive recreational activities such as resting and relaxing, whereas in most high-income countries, 116 urban parks are predominantly used for physical activity (Özgüner, 2011). Hence, cultural 117 norms will be important in underpinning how people interact with greenspaces (Li, 2014), with 118 repercussions for mental health outcomes (Amano et al., 2018). Moreover, perceptions of 119 health and illness, and the clinical expression of major mental disorders varies geographically 120 and across cultures (Gopalkrishnan, 2018; Viswanath and Chaturvedi, 2012). In Nepal, for in-121 stance, there is no word for depression (Kohrt and Harper, 2008). It follows that the mecha-122 nisms and pathways by which greenspaces affect mental health are likely to vary between cul-123 tures (Hartig et al., 2014). Thus, the United Nations' Sustainable Development Goal 11 target 124 7, which aims to provide universal access to safe and accessible urban greenspaces by 2030 (United Nations, 2019), may be based on findings that are almost solely derived from, andtherefore biased towards, conditions in HICs.

127

128 Although these biases have been long-standing (Markevych et al., 2017), thus far there has 129 been no synthesis of the emerging body of literature on the mental health benefits people derive 130 from greenspaces in cities in LMICs. There are a number of reviews focusing on the relation-131 ships between human health and greenspaces (Dzhambov and Dimitrova, 2014; Gascon et al., 2016, 2015; Hartig et al., 2014; James et al., 2015; Lachowycz and Jones, 2011; Lovell et al., 132 133 2014; Shuvo et al., 2020; Tzoulas et al., 2007) and more specifically on greenspaces and mental 134 health (Bowler et al., 2010; Callaghan et al., 2020; Coon et al., 2011; Dadvand et al., 2015; 135 Wendelboe-Nelson et al., 2019). However, to date no review exists which comprehensively 136 assesses the relationship of urban greenspaces and mental health in LMICs. Here we system-137 atically assess the published evidence for the mental health benefits greenspaces may provide to urban residents under different geographical, environmental and cultural conditions in 138 139 LMICs. At this critical time of development of the field, the aim of our study is to assess the 140 strengths and weaknesses of the available evidence regarding the mental health benefits pro-141 vided by urban greenspaces in such regions, and to point out ways forward for future research. 142 In particular, we address the following key questions: (1) Do greenspaces promote good mental 143 health of urban residents in LMICs; (2) What are the geographic characteristics of the evidence 144 from LMICs; (3) which environmental and cultural factors mediate and moderate how green-145 spaces and mental health are associated in LMICs; (4) how were greenspaces assessed and 146 which mental health outcomes were studied in LMICs?

147 **2. Methods**

148 We carried out a scoping review to assess the extent, type and quality of evidence contained in 149 the heterogeneous body of literature investigating the impact of greenspaces on mental health 150 in LMICs. Scoping reviews are a type of knowledge synthesis. They follow a systematic ap-151 proach to map evidence and examine the extent, range and nature of the evidence on a topic. 152 Given the heterogeneity of the evidence and the breadth of the research questions, scoping 153 review was the most appropriate approach (Tricco et al., 2018). We followed Arksey and 154 O'Malley's (2005) framework and the Preferred Reporting Items for Systematic Reviews and 155 Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) (Tricco et al., 2018). This re156 quires the *a priori* development of a review protocol (see Supplementary material), which de-157 fines eligibility criteria, information sources, the literature search strategy and the data extrac-

158 tion process. The protocol also defined how any evidence quality assessment is carried out.

159 **2.1. Eligibility criteria**

160 To be included in the review, studies needed to report on original research, be published in a 161 peer-reviewed journal and be written in English. We found seven non-English studies, of which 162 all would have been excluded due to not meeting other inclusion criteria. Hence, excluding 163 those studies did not affect the findings. Study types included were randomised controlled trial 164 studies, cohort studies, case-control studies, cross-sectional studies, before and after studies, 165 time series, longitudinal studies, experimental studies and qualitative studies. Case reports, re-166 views, opinion pieces, editorials, comments, news, letters and grey literature were excluded. 167 Studies needed to involve aspects of urban greenspaces and mental health and consider one or 168 more LMICs. We defined urban greenspaces as all forms of 'living nature' of flora and fauna 169 in cities (Hartig et al., 2014), including maintained and unmaintained environmental areas such 170 as nature reserves, wilderness environments, urban parks and urban wildlife (Barton and 171 Rogerson, 2017). We included private gardens because especially in informal settlements and 172 slums, they can improve diets and increase food security (Audate et al., 2019) in particular for 173 low-income residents (Orsini et al., 2013), which may indirectly affect mental health. For the 174 assessment of greenspaces, we differentiate between objective and subjective measures of 175 greenspaces. We define objective measures as assessing greenspaces exposure through remote 176 sensing or ecological survey techniques, while subjective measures assess exposure through the participants' perceptions. We used the World Health Organisation's (2014) definition of 177 178 health as 'a state of complete physical, mental and social well-being and not merely the absence 179 of disease'. Mental disorders were defined through The Diagnostic and Statistical Manual of 180 Mental Disorders (American Psychiatric Association, 2013). Studies needed to address the 181 general urban population of upper/lower-middle-income or low-income countries, as defined 182 by OECD's Development Assistance Committee, which is based on country classification data 183 by the World Bank (DAC, 2017). For slums and informal settlements, we followed the defini-184 tion of the United Nations (2016) (for definitions see Supplementary material section 3.1).

185 **2.2. Information sources**

186 Due to the interdisciplinary character of this review, we included a variety of electronic data-187 bases covering environmental and health sciences. We systematically searched the databases Web of Science Core Collection (1900 - Nov 2019), Medline (1946 - Nov 2019), Embase 188 189 (1947 – Nov 2019) and CAB Abstracts (1910 – Nov 2019). Searches used queries that targeted 190 studies on (1) greenspaces and (2) mental health in (3) urban areas in LMICs. The selection of 191 search terms relating to (1) greenspaces followed the methodology used in a previous review 192 on the mental health benefits of exposure to greenspaces (Gascon et al., 2015). For the (2) 193 mental health and (3) LMICs search terms, existing search filters, optimised for the Medline 194 database, were used (Academic Unit of Health Economics University of Leeds, 2018). We 195 filtered for the LMICs on the DAC list in the initial database search. The Medline search filters 196 were then translated for use in Embase, CAB Abstracts and Web of Science. Studies were 197 included if they were conducted in a country which was listed as LMIC on the DAC list at the 198 time of publication, regardless of current DAC statuses. Information on the search strategies 199 and the selection of search terms used for each database are included in Supplementary material 200 section 3.1.

201 **2.3. Selection of sources of evidence and data extraction**

Studies were extracted following a two-stage screening process performed independently by two researchers (MN and SG). In the first stage, title and abstract of all database search results were screened in order to select studies for inclusion that matched the stated eligibility criteria. Full-text screening of the remaining studies was conducted at a second screening stage independently by the same two researchers. All conflicts generated through the screening stages between the two reviewers were discussed until consensus was reached.

208

Using the stated eligibility criteria, a data extraction form was designed to abstract key information, including authors, title, year of publication, objectives, study population, methods, study design, health measure and outcome, measure of greenspace and general results. Differences in the extracted data were validated through discussion until consensus was reached.

213 **2.4.** Synthesis of results

214 Due to the marked heterogeneity of the identified evidence, meta-analyses and statistical meth-215 ods of synthesis were inappropriate and instead we performed a narrative synthesis. One pitfall

- of this approach is that narrative syntheses often rely on summarising literature through the use of summary statistics and vote-counting approaches. Even though this has known shortcomings, such as giving equal weight to studies with different sample and effect sizes, it is a helpful
- 219 method for preliminary interpretation of findings across studies (Marselle et al., 2018).
- 220

221 Nevertheless, we mitigated for some of these shortcomings by characterising studies according 222 to their quality, thereby ensuring that our narrative is not dominated by low-quality data. To do 223 this we adapted two previously used approaches. For quantitative studies, methodological qual-224 ity was assessed using an 9-item scale (Gascon et al., 2016);(Supplementary material Table 225 S4). Studies could score one or two points for each item and points were summed between 0-226 11. We obtained a quality score (%) for each study (Supplementary material Table S3). We 227 created five quality categories: excellent quality (>81%), good quality (61-80%), fair quality 228 (41-60%), poor quality (21-40%) and very poor quality (<20%) (Gascon et al., 2016).

229

In order to be included into the narrative synthesis, studies needed to use validated mental health screening tools, as their use enables drawing reliable conclusions about specific mental health outcomes to compare between populations. Validated mental health screening tools are instruments which have been psychometrically tested for validity (the ability of the instrument to produce true results), reliability (the ability of the instrument to produce consistent results) and sensitivity (the probability of correctly identifying an individual with the condition) (The Joint Commission, 2020).

237

238 Data from quantitative studies using validated mental health screening tools were synthetized 239 thematically to record the overall impacts of greenspaces on mental health as positive (signifi-240 cant positive relationships), neutral (no significant relationships) or negative (significant neg-241 ative relationships), to describe the frequency of statistically significant findings (Table 1). 242 Qualitative studies were included to facilitate understanding of the pathways and mechanisms 243 through which greenspaces may affect mental health. The methodological quality of qualitative 244 studies was assessed using the 10-item Critical Appraisal Skills Programme (CASP) tool (Sup-245 plementary material Table S5).

246

In order to explore the mechanisms and pathways by which greenspaces affect mental healthin LMICs, we assessed the results of mediating and moderating analyses of quantitative studies.

249 We defined mediation analysis as the statistical assessment of variables which transmit an ef-250 fect of an independent variable (greenspaces) on a dependent variable (mental health) 251 (Mackinnon et al., 2007). For the assessment of mediating factors, we followed Markevych et 252 al.'s (2017) domains of pathways linking greenspaces to mental health outcomes through re-253 ducing harm, restoring capacities and building capacities. We defined moderation analysis as 254 the statistical assessment of variables which influence the direction and/or strength of the rela-255 tionship between greenspaces and mental health (Hayes, 2017). For the analysis, moderating 256 factors were classified as either personal or contextual (Marselle et al., 2018). In the synthesis 257 of qualitative studies, we followed Markevych et al.'s (2017) domains of pathways to organise 258 the findings.

259 **3. Results**

260 The electronic database search yielded 1,801 hits. Removal of duplicates, screening of title and 261 abstract reduced this number to 105 references. Studies excluded at this stage did not meet the 262 inclusion criteria, were not written in English or did not report primary research. Full-text 263 screening further reduced the number of studies to 62 (Supplementary material section 3.3). 264 One study (Gruebner et al., 2011) was excluded because it reported the same data as a related 265 study (Gruebner et al., 2012). The review therefore included a final set of 36 quantitative stud-266 ies using validated mental health screening tools (Table 1; 58% of studies) five studies using 267 qualitative and one study using mixed research methods (Table 2). All studies examined, 268 wholly or in part, the relationships between greenspaces and mental health in LMICs. The 269 quality of quantitative studies ranged from fair quality (score: 55%) to excellent quality (score: 270 91%);(Supplementary material, Table S3). Three quarters of the identified studies were published in the last five years, demonstrating increased research interest in LMICs. 271

272

3.1. Mental health outcomes

Of the 36 studies using validated mental health screening tools, 31 highlighted one or more positive (defined as health promoting) relationships between greenspaces and one or more mental health outcomes. Eight studies found at least one neutral (i.e., there were no detected effects) impact of greenspaces on mental health. Only three studies reported explicitly negative relationships, of which one focused on slum dwellers in Bangladesh (Gruebner et al., 2012, 2011). The only study from a low-income country (Bangladesh) showed negative relationships. Five of the six studies from lower-middle-income countries showed positive relationships, while eight out of ten studies from upper-middle-income countries showed one or more posi-tive relationships.

282

283 To identify patterns in the results, we examined the evidence by mental health outcomes (Fig-284 ure 1). Dimensions of positive mental health including mental well-being, quality of life and 285 life satisfaction were assessed by 15 studies. Mental well-being was assessed by 9 studies 286 mostly from Asia, which generally reported positive relationships (7). Three studies from Latin 287 America showed positive associations between greenspaces and quality of life. Life satisfaction 288 was assessed by one study from South Africa finding neutral impacts. While one study as-289 sessing mental well-being focused on a low-income country, all remaining studies concentrated 290 on upper-middle-income countries.

291

292 Dimensions of mental ill-health were assessed by 14 studies. Out of 11 studies investigating depressive disorders, nine reported positive effects, and three reported mixed or neutral effects. 293 294 Geographically, studies assessing depressive disorders were quite diverse and targeted Latin 295 America, South/East Asia and South Africa. However, with the exception of two studies from 296 India, a lower-middle-income country, all studies focused on upper-middle-income countries. 297 Of the six studies assessing anxiety disorders, all but one reported positive relationships. The 298 evidence for anxiety disorders remains limited to the upper-middle-income countries China 299 and Serbia.

300

301 Two out of the three studies assessing risk factors for mental disorders such as stress demon-302 strated positive effects but are limited to upper-middle-income countries in Europe and Latin 303 America. Three studies based in upper-middle-income China assessed affective states such as 304 mood. All reported positive effects, suggesting similarities to findings from HICs. All of the 305 eight studies assessing the potential of greenspaces for contributing to attention restoration 306 showed at least one positive association. Two of the studies found negative associations be-307 tween particular greenspace types and attention restoration. The studies were conducted in Asia 308 and Latin America.

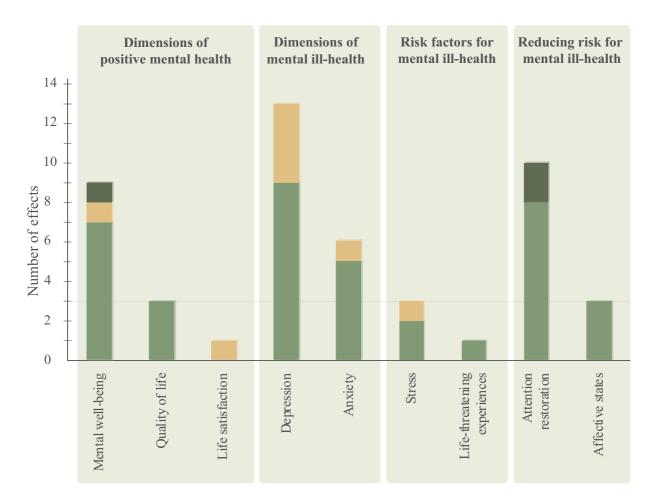


Figure 1: Mental health outcomes of 36 quantitative studies using validated mental health screening tools. Data were synthesised thematically to display the overall impacts of greenspaces on mental health as positive (significant positive relationships), neutral (no significant relationship) or negative (significant negative relationship), to describe the frequency of statistically significant findings. The number of effects does not match the number of reviewed studies, because some studies measured multiple mental health outcomes or showed varying effects for different greenspaces types. For depression, anxiety, stress and life-threatening experiences, a significant positive impact means that these conditions were reduced through exposure to greenspaces.

309

310 **3.2. Study designs and participants**

Most quantitative studies employed cross-sectional study designs (20), followed by experimental (12), longitudinal (3) and uncontrolled before-after designs (1). Experimental in this context refers to studies in which participants were exposed to greenspace, either directly or through pictures/videos. All experimental studies used convenience sampling, predominantly

- involving students from the research teams' university, limiting the generalisability of the re-
- 316 sults. All quantitative studies used questionnaire surveys to assess mental health (36). Other
- 317 approaches used were interviews (6), focus groups (3), participant observation (1), physical
- 318 measurements (1) and photovoice (1). Exposure to greenspaces was measured with a variety
- 319 of approaches. Most studies were conducted through remote sensing techniques (13) and face-
- 320 to-face (27), while eight were carried out in greenspaces.
- 321
- 322 The number of study participants varied considerably among the quantitative studies, ranging
- from 29 to more than 20,000 (Median: 687). Most studied were urban residents (12 studies)
- and university and school students (12), followed by park visitors (3). The remaining studies
- 325 focused on the following target groups: slum dwellers (2), children with Autistic Spectrum
- 326 Disorder (ASD; 1), psychiatric patients (1), university staff (1) and workers (1). Additional
- 327 studies were solely on women (2) or the elderly (1).

Table 1: Main characteristics and results of 36 quantitative studies using validated mental health screening tools addressing greenspaces and mental health in
 low- and middle-income countries (LMICs). An overview over all assessed studies is provided in Supplementary material Table S2.

Study	Objectives	Study loca- tion	Study pop- ulation	Study de- sign	Methods	Health outcome and measures	Measure of green- space	Media- tors	Mod- erators	General result	Qual- ity score
<u>Adams et al.</u> (2016)	Explored the rela- tionship between children's percep- tions of the natural environment and their subjective well-being	Cape Town (1-5m ¹), South Africa (subtropical climate), Up- per-Middle- Income Country	Children from low- and mid- dle-SES communi- ties, age 12 years, n=1004	Cross-sec- tional	Question- naire sur- vey	Life satisfaction (Stu- dent Life Satisfaction Scale) and mental well-being (Personal Well-being Index: School Children)	Exposure to green- space without control – engagement with nature measured through New Ecolog- ical Paradigm (NEP) Scale ²	NA	NA	Mixed relationships – children's perceptions of the natural environment not related to domain-spe- cific and global life satis- faction	Good qual- ity (7)
<u>Akpinar</u> (2016)	Investigated the association be- tween perceived restorativeness of high school green- ness	Aydin (1- 5m ¹), Turkey (subtropical climate), Up- per-Middle- Income Country	High school stu- dents (from single school), age 12-20 years, n=223	Cross sec- tional	Question- naire sur- vey (men- tal health) and ex- perts' opin- ions (green- space)	Attention restoration (Perceived Restora- tiveness Scale) and self-perception of health	Cumulative oppor- tunity – greenness scale; Experts' rank- ing of greenness from 0 (barely green) to 5 (predominantly green)	NA	NA	Mixed relationships – at- tention restoration, but not quality of life was as- sociated with greenness	Good qual- ity (7)
<u>Aliyas (2019)</u>	Investigated the influence of de- signed natural out- door spaces and space type on the physical, mental and physiological health status of the elderly	Bandar Ab- bas (0.5- 1m ¹), Iran (arid cli- mate), Up- per-Middle- Income Country	Elderly, age >65 years, n=912	Cross-sec- tional	Question- naire sur- vey	Mental well-being (Rand MOS Short Form 20)	Exposure to different greenspace types – self-report park and blue space access, visitation, length of stay, physical activity level ²	Physical activity	NA	Mixed relationships – ac- cess to parks was not as- sociated with better men- tal well-being; level of physical activity was as- sociated with better men- tal health	Fair qual- ity (5)
Ambrey and Shahni (2017)	Investigated how crime rate in the neighbourhood may moderate the link between greenspace and well-being	Tehran, Iran (5-10m ¹) (arid cli- mate), Up- per-Middle- Income Country	Urban resi- dents, age unspeci- fied, n=19060	Cross sec- tional	Question- naire sur- vey linked with GIS analysis	Mental well-being (GHQ-28)	Cumulative oppor- tunity – percentage greenspace in resi- dents' neighbourhood	NA	Crime	Mixed relationships – greenspace associated with mental well-being, but the effect was inhib- ited by crime	Good qual- ity (8)

Barreto et al. (2019)	Investigated the association be- tween exposure to green areas in the surroundings of the residence and the presence of common mental disorders among adults	Rio de Janeiro (>10m ¹), Brazil (tropi- cal climate), Upper-Mid- dle-Income Country	Adminis- trative technical staff of sin- gle univer- sity, age 25-75, n=2584	Cross sec- tional	Question- naire sur- vey linked with GIS analysis	Depression, anxiety (GHQ-12)	Cumulative oppor- tunity – Normalised Difference Vegeta- tion Index (NDVI)	NA	NA	Positive relationships – presence of greenspaces was associated with re- duced depression and anxiety in the intermedi- ate income group (200 m buffer) and in the low-in- come group (400 and 1,500 m buffers)	Fair qual- ity (6)
Bojorquez and Ojeda-Revah (2018)	Investigated the association be- tween urban pub- lic park coverage and mental health in adult women	Tijuana (1- 5m ¹), Mex- ico (subtropi- cal climate), Upper-Mid- dle-Income Country	Women, age 18-65 years, n=2345	Cross sec- tional	Question- naire sur- vey linked with meas- urement of urban park coverage	Depression (10 item CES-D)	Cumulative oppor- tunity – percentage greenspace in resi- dents' neighbourhood	NA	Age	Mixed relationships – public park coverage was associated with reduced depression for younger, but not for older women	Good qual- ity (8)
<u>Camargo et al.</u> (2017)	Explored potential associations be- tween individual and environmental correlates of qual- ity of life in Co- lombian park users	Bucara- manga (0.5- 1m ¹), Co- lombia (trop- ical climate), Upper-Mid- dle-Income Country	Park visi- tors, age >12 years, n=1392	Cross sec- tional	Park in-situ question- naire sur- vey	Quality of life (EU- ROHIS-QOL 8-item Index, 5-level EQ-5D Index)	Exposure to green- space without control – park use	NA	Percep- tion of safety	Positive relationships – park use was associated with better quality of life	Good qual- ity (7)
<u>Chang et al.</u> (2019)	Examined the role played by leisure satisfaction in the relationship be- tween leisure set- tings (built and natural), subjec- tive well-being and depression among midlife res- idents	Multiple Chinese cit- ies (multiple climate zones), Up- per-Middle- Income Country	Urban pop- ulation, age 40-65, n=663	Cross sec- tional	Question- naire sur- vey	Depression (CES-D) and mental well-being (Dieners 5-item SWB scale)	Green vs. grey – sur- vey questions (expe- riences of 17 leisure activities, including "leisure in nature: outdoor exercise and visiting a park") ²	NA	NA	Positive relationships – leisure in nature was as- sociated with life satisfac- tion and reduced depres- sion	Fair qual- ity (5)
Dong and Qin (2017)	Analysing associa- tions between built and social envi- ronment with resi- dents' mental well- being	Beijing (>10m ¹), China (tem- perate cli- mate), Up- per-Middle-	Urban resi- dents, age 18-89 years old), n=712	Cross sec- tional	Question- naire sur- vey	Mental well-being (WEMWBS, 6-item)	Exposure to green- space without control – distance from each neighbourhood to nearest park	NA	NA	Positive relationships – Living closer to an ur- ban park was positively associated with better mental well-being	Fair qual- ity (6)

		Income Country									
Firdaus and Ahmad (2016)	Identified tem- poral variation in the risk factors and prevalence rate of depression across the city at house- hold level	Delhi (>10m ¹), In- dia (subtropi- cal climate), Lower-Mid- dle-Income Country	Urban resi- dents, age >18 years, n=3291	Longitudi- nal	Household question- naire sur- vey in 2003 and 2013	Depression (20-item CES-D)	Exposure to green- space without control – survey questions: Accessibility to play- ground/park ²	NA	NA	Positive relationships – lack of accessible parks associated with increased depression	Fair qual- ity (6)
<u>Gao et al.</u> (2019)	Investigated the physiological (electroencephalo- gram, EEG), and psychological (at- tention, positive mood, negative mood) responses and individual preferences for different urban en- vironments	Xianyang (5- 10m ¹), China (temperate climate), Up- per-Middle- Income Country	College students (from sin- gle univer- sity), age 20.7 (mean), n=120	Experi- mental	Exposure to virtual reality pic- tures	Emotions, mood (Pro- file of Mood States, 40-item)	Exposure to different greenspace types – pictures of grey space, blue space, open greenspace, partly open green- space, partly closed greenspace, closed greenspace	NA	NA	Positive relationships – exposure to pictures of greenspace was associ- ated with attention resto- ration and positive mood; Partly open greenspace had the most effective re- duction of negative mood, followed by open green- space, partly closed greenspace, blue space, and grey space, while closed greenspace had the least effect	Good qual- ity (7)
<u>Gruebner et</u> al. (2012)	Assessed the fac- tors that describe the mental well- being of poor pop- ulations residing in urban slums	Dhaka (>10m ¹), Bangladesh (tropical cli- mate), Low- income Country	Slum dwellers, age >15 years, n=1938	Cross sec- tional	Face-to- face ques- tionnaire survey linked with GIS analy- sis	Mental well-being (WHO-5)	Cumulative oppor- tunity – distance to nearest river, park, vegetation ratio, wa- ter ratio, affected by flooding	NA	Infec- tious dis- eases, envi- ron- mental pollu- tion	Negative relationships – mental well-being nega- tively associated with vegetation patches, due to risk of infectious diseases and environmental pollu- tion of greenspaces	Good qual- ity (8)
<u>Hassan et al.</u> (2018)	Investigated the physiological and psychological re- laxation effects of forest walking on adults	Chengdu (5- 10m ¹), China (temperate climate), Up- per-Middle- Income Country	University students (from sin- gle univer- sity), age 19-24 years, n=60	Experi- mental	Walks in urban or bamboo forests linked with question- naire sur- vey and physical	Anxiety (State-Trait Anxiety Inventory, Se- mantic Differential Method)	Green vs. grey – sampling in-situ, bamboo forests and urban area	NA	NA	Positive relationships – walking in bamboo forest was associated with im- proved mood and atten- tion restoration, as well as with reduced anxiety	Fair qual- ity (5)

measure-

ments

Jiang et al. (2019)	Investigated the psychophysiologi- cal relaxation ef- fects of viewing different landscape pictures on adults	Chengdu (5- 10m ¹), China (temperate climate), Up- per-Middle- Income Country	University students (from sin- gle univer- sity), age 22 (mean), n=50	Experi- mental	Question- naire sur- vey pre- and post- exposure to pictures of green- spaces	Anxiety (State-Trait Anxiety Inventory, Se- mantic Differential Method)	Exposure to different greenspace types – pictures of urban landscapes: urban city traffic, garden landscape, natural scenery, forest land- scape and city land- scape	NA	NA	Positive relationships – viewing greenspace pic- tures was associated with feeling more natural, re- laxed, and comfortable; stress levels were signifi- cantly lower after looking at to T1 and T2 (both green), and increased af- ter exposure to T0 (traf- fic)	Good qual- ity (8)
<u>Korn et al.</u> (2018)	Investigated the effects of individ- ual household gar- dens on the health of urban slum dwellers	Lima (>10m ¹), Peru (arid climate), Up- per-Middle- Income Country	Adult slum dwellers, age unspec- ified, n=29	Longitudi- nal with repeated measures	Interviews, survey question- naire after implemen- tation of gardens	Quality of Life (WHOQOL-BREF), Stress (Perceived Stress Scale), Life- Threatening Experi- ences (LTE-Q), Social Capital (SCS)	Green vs. grey –pri- vate garden imple- mentation	NA	NA	Positive relationships – 12-months post construc- tion, the gardens were as- sociated with improved quality of life, reduced life-threatening experi- ences, and increased so- cial capital	Good qual- ity (7)
<u>Li et al.</u> (2019b)	Investigated which type of park is most effective for psychological ben- efits	Shanghai (>10m ¹), China (sub- tropical cli- mate), Up- per-Middle- Income Country	Park visi- tors, age >60 years, n=200	Uncon- trolled be- fore-after study	GPS and pedometer records linked with question- naire sur- vey	Depression, anxiety (Visual Analogue Scale)	Exposure to green- space without control – sampling in-situ, plan and land-cover maps, duration of stay indifferent areas through GPS (hard surface, lawn, tree cover, water, path/trail, children's playground, desig- nated fitness area)	NA	NA	Positive relationships – park use was associated with reduced anxiety and depression, as well as with higher relaxation and contentment after park visit. Differences between activities: active park us- ers were more relaxed and content than active walkers	Good qual- ity (7)

<u>Liu et al.</u> (2019b)	Explored biopsy- chosocial path- ways linking ex- posure to neigh- bourhood green- ness to mental well-being	Guangzhou (>10m ¹), China (sub- tropical cli- mate), Up- per-Middle- Income Country	Urban resi- dents, age 41 (mean), n=1029	Cross sec- tional	Question- naire sur- vey and GIS analy- sis	Mental well-being (WHO-5)	Cumulative oppor- tunity – Normalised Difference Vegeta- tion Index (NDVI)	Mitiga- tion of air and noise pollu- tion, stress re- duction, physical activity, social cohesion	NA	Positive relationships – NDVI was positively as- sociated with mental well-being; significant mediators were encourag- ing walking behaviours, facilitating neighbour- hood cohesion, satisfac- tion with greenspaces	Excel- lent qual- ity (9)
<u>Liu et al.</u> (2019a)	Explored biopsy- chosocial path- ways linking resi- dential greenness exposure to de- pression	Multiple provinces in China (multi- ple climate zones), Up- per-Middle- Income Country	Rural and urban resi- dents, age 15-64, n=20533	Cross sec- tional	Question- naire sur- vey and GIS analy- sis	Depression (CES-D 20-item)	Cumulative oppor- tunity – percentage of greenspace in resi- dents' neighbourhood	Stress re- duction, physical activity, social cohesion	Ur- banic- ity	Positive relationships – exposure to residential greenness was negatively associated with depres- sion; physical activity, stress reduction, and neighbourhood social co- hesion mediated the asso- ciation	Good qual- ity (8)
<u>Lyu et al.</u> (2019)	Examined the role of bamboo forests in the promotion of physical activ- ity and positive mental health after park use	Chengdu (5- 10m ¹), China (temperate climate), Up- per-Middle- Income Country	Students from agri- cultural university (single uni- versity), age unspec- ified, n=120	Quasi-ex- perimental	3 days field experi- ments; ex- perience of the land- scape fol- lowed by question- naire sur- vey (bam- boo forest therapy)	Emotions, mood (Pro- file of Mood States)	Exposure to different greenspace types – sampling in-situ, ur- ban or bamboo for- ests (3 types)	NA	NA	Positive relationships – interacting with bamboo forest was associated with reduced tension, anxiety, anger, hostility, depres- sion, fatigue; vigour was lower in urban areas	Excel- lent qual- ity (9)
Martínez-Soto et al. (2014)	Explored the pos- sible restorative effects of variables related to urban nature and psycho- logical transaction processes with the environment on emotional and	Mexico City (>10m ¹), Mexico (sub- tropical cli- mate), Up- per-Middle- Income Country	Urban resi- dents, age 17-79 years, n=120	Cross sec- tional	Question- naire sur- vey	Attention restoration (Revised Scale of Per- ception of Restorative Environments, 26 item), (Reverse Order Digit Span Subtest), (Well-being Scale)	Exposure to green- space without control – nature in the Home Scale, proximity of greenspaces, Transac- tions with Nature Scale (11 item)	NA	NA	Mixed relationships – im- proved cognitive function associated with potted plants and visiting green areas outside home; cog- nitive functioning im- proved by greater dis- tance from common green area	Good qual- ity (7)

cognitive indicators of psychological restoration

<u>Martinez-Soto</u> et al. (2014), study 2	Evaluated the re- storative quality of three environ- ments and as- sessed differences between them	Mexico City (>10m ¹), Mexico (sub- tropical cli- mate), Up- per-Middle- Income Country	University students (from sin- gle univer- sity), age unspeci- fied, n=96	Quasi-ex- perimental	Viewing pictures of green- spaces linked with question- naire sur- vey	Attention restoration (Revised Scale of Per- ception of Restorative Environments, 25- item)	Exposure to different greenspace types – pictures including im- ages of the natural environment, urban nature and urban landscape without na- ture	NA	NA	Positive relationships – greenspaces had greater restorative quality than urban with greenspaces and built-up without greenspaces; urban green- space was perceived as having greater restorative quality than images with- out greenspaces	Good qual- ity (7)
<u>Martinez-Soto</u> <u>et al. (2014)</u> , study 1	Documented the affective qualities of three environ- ment classes: natu- ral, urban with na- ture, and built-up without nature	Mexico City (>10m ¹), Mexico (sub- tropical cli- mate), Up- per-Middle- Income Country	University students (from sin- gle univer- sity), age unspeci- fied, n=104	Quasi-ex- perimental	Viewing pictures linked with question- naire sur- vey	Attention restoration (Self-assessment Man- ikin)	Exposure to different greenspace types – pictures of the natural environment, urban nature and urban landscape without na- ture	NA	NA	Positive relationships – affective valence (pleas- ure, arousal) was associ- ated positively with im- age of greenspace, com- pared to urban with greenspace and green- space vs built-up without greenspace	Good qual- ity (7)
<u>Memari et al.</u> (2017)	Identified the rela- tionship between environmental characteristics of restorative natural environments	Gorgan (0.3- 0.5m ¹), Iran (arid cli- mate), Up- per-Middle- Income Country	University students (from sin- gle univer- sity), age 19-26 years, n=124	Quasi-ex- perimental	Viewing pictures linked with question- naire sur- vey	Attention restoration (Short-version Revised Restoration Scale, 8- item)	Exposure to different greenspace types – pictures representing the perceived sensory dimensions (eight components: serene, nature, rich in spe- cies, space, prospect, refuge, social, cul- ture)	NA	NA	Mixed relationships – the pictures of "serene", "na- ture" and "refuge" green- space resulted in most re- duction of stress; "species richness" and "social" showed a negative associ- ation	Good qual- ity (8)

<u>Mukherjee et</u> <u>al. (2017)</u>	Examined the as- sociation between park availability and major depres- sion among adults with one or more chronic conditions	Delhi (>10m ¹), In- dia (subtropi- cal climate), Lower-Mid- dle-Income Country	Urban resi- dents with chronic condi- tion(s), age >20 years, n=1208	Cross-sec- tional	Question- naire sur- vey linked to GIS analysis	Depression (Mini In- ternational Neuropsy- chiatric Interview, Section A)	Cumulative oppor- tunity – park distance from households, area of nearest park, number and total area of all parks within 1km of home	Physical activity	NA	Positive relationships – area of the nearest park was positively associated with major depression	Excel- lent qual- ity (9)
Mullings et al. (2013)	Explored the men- tal health effects of the urban neigh- bourhood on men and women in Ja- maica and the im- plications for ur- ban planning and social develop- ment	Country- wide, Ja- maica (tropi- cal climate), Upper-Mid- dle-Income Country	Urban resi- dents, age 15-74 years, n=2848	Cross-sec- tional	Secondary data from Health and Lifestyle Survey	Depression (Diagnos- tic and Statistical Manual of Mental Dis- orders DSM-5) ⁷	Green vs. grey – presence/absence of greenspace in neigh- bourhood (lawn, or- namental plants, trees)	NA	NA	No relationships – no as- sociation between depres- sion and greenspace	Fair qual- ity (6)
<u>Parra et al.</u> (2010)	Examined associa- tions between neighbourhood en- vironment attrib- utes and health re- lated quality of life and self-rated health among older adults	Bogotá (>10m ¹), Co- lombia (sub- tropical cli- mate), Up- per-Middle- Income Country	Urban resi- dents, age >60 years, n=1966	Cross-sec- tional	Face-to- face ques- tionnaire survey	Quality of life (Short form 8)	Cumulative oppor- tunity – walking lev- els and perceived en- vironmental charac- teristics (safety, street noise, public park density, number of public transport sta- tions and bicycle lanes)	Physical activity	Percep- tion of safety	Positive relationships – perceptions of parks be- ing safe were positively associated with higher quality of life; residents of areas with more than 8% of land covered by public park area were more likely to report good, very good, or ex- cellent health status	Good qual- ity (7)
Scopelliti et al. (2016)	Investigated the effects of contact with urban parks on well-being	Bogotá (>10m ¹), Co- lombia (sub- tropical cli- mate), Up- per-Middle- Income Country	Park visi- tors, age 18-80 years, n=300	Cross-sec- tional	In-situ greenspace question- naire sur- vey	Attention restoration (Connectedness to Na- ture Scale), (New Hu- man Interdependence Paradigm Scale), (Per- ceived Restorativeness Scale), (Positive Af- fective Qualities), (Positive Emotions); Negative Emotions), (Physical and Psycho- logical Well-being)	Cumulative oppor- tunity – park size, residence distance to park, frequency of visit, visit length, main activity, fre- quency green	NA	Income	Positive relationships – respondents in larger ur- ban parks experienced higher attention restora- tion compared to respond- ents in smaller district parks; the middle-income group experienced better outcomes compared to the higher- and lower-income groups	Good qual- ity (7)

Shagdarsuren et al. (2017)	Examined patterns of perceived neighbourhood quality by resi- dents and the asso- ciations between these patterns and self-reported gen- eral and mental health in middle- aged women	Ulaanbaatar (1-5m ¹), Mongolia (arid cli- mate), Lower-Mid- dle-Income Country	Women, age 40-60 years, n=830	Cross-sec- tional	Face-to- face ques- tionnaire survey in participants homes	Depression (GHQ-12)	Exposure to green- space without control – survey questions about the perception of the neighbourhood environment: easy to find green open spaces, river water is clean, nature is well preserved ²	NA	NA	No relationships – per- ception of neighbourhood greenspace was not asso- ciated with depression	Fair qual- ity (5)
<u>Smyth et al.</u> (2011)	Examined the rela- tionship between environmental sur- roundings and per- sonal well-being	Multiple cit- ies in China (temperate climate), Up- per-Middle- Income Country	Blue- and white-col- lar work- ers, age 18- 60 years, n=3390	Cross sec- tional	Question- naire sur- vey and GIS analy- sis	Mental well-being (Personal Well-being Index)	Cumulative oppor- tunity – green area per capita in 2003 in the city where respondents lived	NA	NA	Positive relationships – in cities with more parkland, respondents reported sig- nificantly higher levels of mental well-being	Good qual- ity (7)
<u>Tomita et al.</u> (2017)	Investigated the effect of green liv- ing environments in potentially countering inci- dent depression	Country- wide, South Africa (mul- tiple climate zones), Up- per-Middle- Income Country	Urban resi- dents, age unspeci- fied, n=11156	Longitudi- nal	Household and indi- vidual question- naire sur- vey linked with GIS analysis	Depression (CES-D, 10-item)	Cumulative oppor- tunity – Normalised Difference Vegeta- tion Index (NDVI)	NA	NA	Mixed relationships – un- even benefit of NDVI on incident depression; green living environment showed limited benefit across the study popula- tion as a whole, the analy- sis showed that higher NDVI was a predictor of lower incident depression among middle- income compared with low-in- come participants	Excel- lent qual- ity (10)
Vujcic and Tomicevic- Dubljevic (2018)	Explored the re- storative potential of urban forest en- vironments and identified per- ceived benefits of physical activity on psychological well-being and so- cial cohesion of	Belgrade (1- 5m ¹), Serbia (subtropical climate), Up- per-Middle- Income Country	University students (from sin- gle univer- sity), age 22-32 years, n=47	Quasi-ex- perimental with re- peated measures	Time spent either in greenspace or control linked with question- naire sur- vey	Depression, Anxiety, Stress (Depression, Anxiety, Stress Scale)	Green vs. grey – sampling in-situ, ex- posure to arbore- tum/control	NA	NA	No relationships – arbore- tum intervention was as- sociated with reduced de- pression, anxiety and stress, but control group had similar effect	Good qual- ity (7)

the younger population

<u>Vujcic et al.</u> (2017)	Aimed to under- stand how spend- ing time and per- forming horticul- ture therapy in specifically de- signed urban green environments can improve mental health	Belgrade (1- 5m ¹), Serbia (subtropical climate), Up- per-Middle- Income Country	Psychiatric patients, age 25-65 years, n=30	Quasi-ex- perimental with re- peated measures	Horticul- tural ther- apy inter- vention linked with question- naire sur- vey	Depression, Anxiety, Stress (Depression, Anxiety, Stress Scale)	Green vs. grey – sampling in-situ, hor- ticultural therapy in- tervention	NA	Gen- der, ed- ucation	Positive relationships – significant stress reduc- tion in the study group compared to the control group	Good qual- ity (8)
<u>Wang et al.</u> (2016)	Explored the stress recovery effects of different vide- otaped scenes, us- ing six urban parks and one urban roadway scene	Shanghai (>10m ¹), China (sub- tropical cli- mate), Up- per-Middle- Income Country	University students, age 18-24 years, n=140	Quasi-ex- perimental with re- peated measures	Question- naire sur- vey, stress induction (exam) fol- lowed by recovery (video scenes of parks)	Attention restoration (Perceived Restora- tiveness Scale), stress (State-Trait Anxiety Inventory), (Digit Span Backwards Test)	Exposure to different greenspace types – videotapes of 6 urban parks and 1 urban roadway, including nature-based vs. hardscape compo- nents, presence/ab- sence of people, and level of openness	NA	NA	Positive relationships – viewing urban park scenes was associated with stress reduction and attention restoration, es- pecially for scenes with- out people	Fair qual- ity (6)
<u>Wang et al.</u> (2019)	To examine how streetscape and greenery affect well-being, includ- ing the assessment of mediators	Guangzhou (>10m ¹), China (sub- tropical cli- mate), Up- per-Middle- Income Country	Urban resi- dents, age 41 (mean), n=1029	Cross-sec- tional	Question- naire sur- vey linked with GIS analysis	Mental well-being (WHO-5)	Cumulative oppor- tunity – Normalised Difference Vegeta- tion Index (NDVI), Streetscape greenery from street view data	Mitiga- tion of air and noise pollu- tion, stress re- duction, physical activity, social cohesion	NA	Positive relationships – streetscape greenery and NDVI were positively as- sociated with mental well-being; physical ac- tivity, stress, air quality, noise and social cohesion were mediating the rela- tionship	Excel- lent qual- ity (9)

Zhang et al.	Explored whether	Harbin	University	Experi-	Audio-vis-	Emotions, mood (Pro-	Exposure to green-	NA	NA	Positive relationships –	Good
<u>2019)</u>	and how audio-	(>10m ¹),	students	mental	ual walk	file of Mood States,	space without control			the impact intensity of	qual-
	visual contexts	China (tem-	(from sin-		linked to	Positive and Negative	 – sampling in-situ, 			acoustic comfort was sig-	ity (8)
	and experiences in	perate cli-	gle univer-		question-	Affect Scale)	sound pressure level,			nificantly higher than that	
	urban parks influ-	mate), Up-	sity), age		naire sur-		loudness, sharpness,			of visual comfort on emo-	
	ence psychological	per-Middle-	22-33		vey		roughness; landscape			tions and mood, while	
	responses	Income	years, n=36				elements (plants, sky,			visual comfort was signif-	
		Country					paving)			icantly higher than acous-	
										tic comfort on psycholog-	
										ical responses of cogni-	
										tion dimension	
Zhao et al.	Aimed to find reli-	Xuzhou (5-	University	Experi-	Viewing	Attention restoration	Exposure to different	NA	NA	Positive relationships -	Good
(2018)	able evidence to	10m ¹), China	students	mental	pictures	(Short version Revised	greenspace types -			viewing pictures of water-	qual-
	inform landscape	(temperate	(from sin-		and listen-	Restoration Scale)	pictures of 3 parks			scape was associated with	ity (7)
	design of auditory-	climate), Up-	gle univer-		ing to		(categories: building,			attention restoration; bird	
	visual combina-	per-Middle-	sity), age		sounds		topographical varia-			song and wind song in-	
	tions aiming to im-	Income	unspeci-		linked with		tion, water body,			creased attention restora-	
	prove the restora-	Country	fied, n=382		question-		plants), soundscapes			tion in highly vegetated	
	tive quality				naire sur-		(natural sounds: bird-			areas	
					vey		song, sound of flow-				
							ing water, sound of				
							wind)				

330 ¹Urban population in millions

331 ²Study did not use objective measures of greenspaces

332

3.3. Geographic characteristics of the evidence

To date, the relationship between greenspaces and mental health remains unexplored in more than 90% of LMICs (Figure 2). Most studies were based in Asia (25), two in Europe, five in Africa, and ten in Latin America. Although 13 countries were studied, 55% of research was carried out in only three countries, China, Iran and South Africa. Almost two out of five studies (35%) focused on urban areas in China.

338

339 The body of evidence in Asia has been expanding rapidly and begins to cover a diversity of 340 geographic regions and cultural groups. However, studies focused predominantly on upper-341 middle-income countries, and low-income countries remain unexplored with the exception of 342 Bangladesh. In Africa, South Africa, an upper-middle-income country, is the only studied 343 country, leaving unexplored a tremendous diversity of environmental and cultural conditions 344 on a continent which is experiencing the fastest urbanisation globally (Angel et al., 2011). Latin 345 America gained more research attention, yet again this was limited to upper-middle-income 346 countries. Even though limited in numbers, ten studies covered a diversity of environmental and cultural conditions in Latin America. 347

348

349 The spatial scale at which linkages were assessed ranged from nationwide, inter-city compari-350 sons to local, intra-city comparisons. Major cities with a population of more than one million 351 (United Nations 2014, 2018) gained most attention, whereas small and medium-sized towns 352 remain understudied in the LMIC context. Apart from five studies which performed inter-city 353 comparisons, around half of the city-level studies (17) investigated mega-cities with a popula-354 tion of more than 10 million. Seven studies took place in cities with 5-10 million inhabitants, 355 and nine in cities with 1-5 million inhabitants. Only one study from South Africa focused on a 356 city with a population of less than 300,000 inhabitants. Three studies from South Africa as-357 sessed the relationship between greenspaces and mental health in informal settlements, whereas 358 another two studies from Bangladesh and Peru focused on slums settlements.

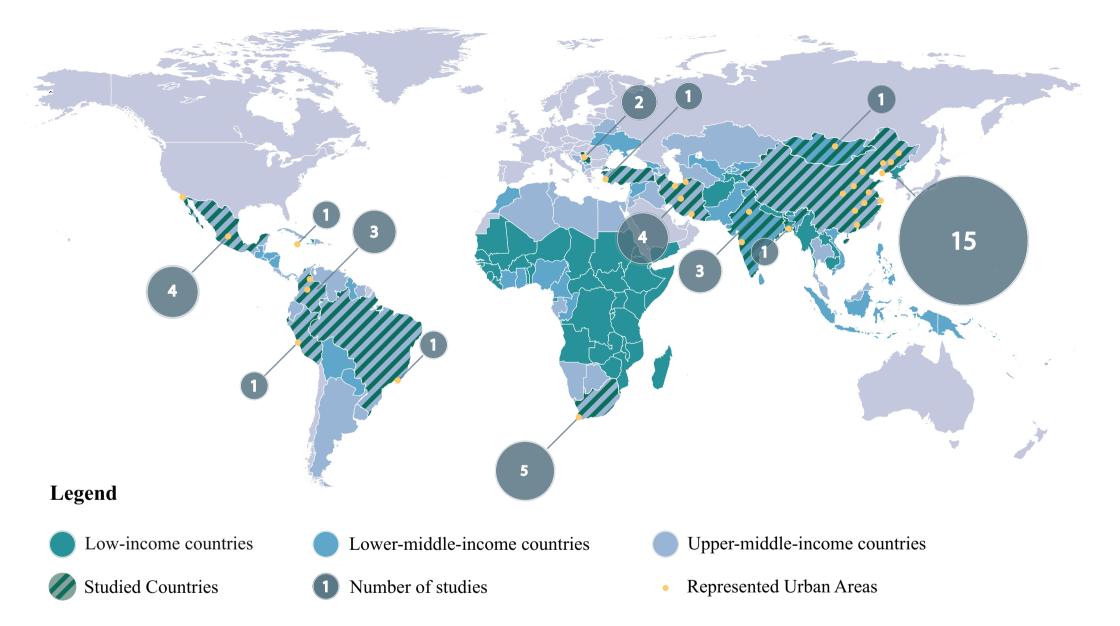


Figure 2: Geographic distribution of the 36 qualitative studies using validated mental health screening tools and the six qualitative studies. All studies assessed the relationship between greenspaces and mental health in LMICs. Shown are Development Assistance Committee (DAC) low- and middle-income countries (LMICs) and urban areas investigated by the studies included in this review. In some urban areas several studies were conducted. Hence, the number of represented urban areas does not correspond with the number of reviewed studies.

360 3.4. Greenspace assessment

361 Studies took into account a variety of greenspace types, including urban greenspaces (25 stud-362 ies), urban parks (7), urban forests (3) and private gardens (1). The only study with focus on 363 private gardens focused on a slum settlement in Lima, Peru (Korn et al., 2018). There was con-364 siderable variation across the 36 studies on how exposure to greenspaces was assessed, ranging 365 from 'green vs. grey' (vegetated vs. non-vegetated) comparisons to assessing greenspace struc-366 tural diversity. Eight studies assessed the effects of exposure to greenspaces without using ex-367 perimental controls, such as exposure to non-green environments. Lacking experimental con-368 trols reduces the reliability of results since it is difficult to determine the effects of the inde-369 pendent variable (greenspaces) on the dependent variable (mental health). Four studies relied 370 on the perception rather than on objective measures of greenspaces such as through assessing 371 exposure with remote sensing or ecological survey techniques, while seven studies compared 372 'green vs. grey' scenarios. 13 studies estimated exposure to greenspaces through cumulative 373 opportunity (Ekkel and de Vries, 2017), based on the proportion of greenspaces within a spatial 374 unit that incorporates individuals' location such as a residence, commonly measured through 375 the amount of greenness in an area, using metrics such as Normalised Difference Vegetation 376 Index (NDVI) or green area per capita (Bratman et al., 2019). Nine studies assessed differences 377 in the natural features characterising greenspaces such as size, composition, vegetation struc-378 ture or tree canopy density and their effects on mental health (Bratman et al., 2019). However, 379 most of such studies used pictures rather than ecological measures of greenspaces. A defining 380 characteristic of the reviewed body of evidence is a lack of use of standard approaches for 381 assessing ecological differences in greenspaces such as ecological surveys. This means that 382 studies did not survey information on the distribution and abundance of animal and plant spe-383 cies present in greenspaces. Furthermore, despite being recognised as a key research frontier, 384 none of the studies explored how different aspects of biodiversity may affect mental health. 385 Further, only few of the studies considered other exposure metrics such as frequency and du-386 ration of exposure, or accessibility of greenspaces (Bratman et al., 2019).

387

The different strategies which were used for measuring exposure to greenspaces did not show clear differences in how greenspaces and mental health were associated, as most studies showed positive links. Six of the eight studies assessing greenspaces without using controls 391 such as non-green environments showed positive associations. Three of the five studies as-392 sessing the mental health effects of green vs. non-green environments showed positive rela-393 tionships. Around 92% of the studies exploring relationships between the amount of greenness 394 in an area (cumulative opportunity) and mental health outcomes showed positive results. Fi-395 nally, eight of the nine studies assessing the mental health effects of the structural diversity of 396 greenspaces showed positive relationships.

397 3.5. Mental health assessment

398 A variety of mental health outcomes were studied using a range of validated mental health 399 screening tools (Table 1). None of the studies used a trained mental health professional to as-400 sess mental health. Most studies defined mental health 'positively' through measuring positive 401 states of mental health, including mental well-being (9 studies), quality of life (3), or factors 402 which are linked to positive mental health, including cognitive functioning (1), life satisfaction 403 (1) and social capital (1). Some studies defined mental health 'negatively', as the absence of 404 specific mental disorders, measuring prevalence of depressive disorders (11) and anxiety dis-405 orders (6). None examined severe mental ill-health such as schizophrenia or bipolar disorder. 406 Four studies assessed risk factors for mental disorders such as stress (3) and life-threatening 407 experiences (1). All studies focusing on stress were conducted in China. As a further limitation, 408 all of the studies analysed the responses of university students. Some studies assessed the po-409 tential of greenspaces to reduce risk for developing disorders/to increase mental well-being 410 (attention restoration; 8). The remaining studies assessed affective states (3) (short-term aspects 411 of well-being) including emotions (4) and mood (3).

412 **3.6. Mediation analysis**

Mediation analyses were conducted in six studies (Table 1). The evidence for pathways through which greenspaces can reduce harm to mental health remains inconclusive. Two studies from China investigated the role of air and noise pollution for mediating the link between greenspaces and mental health, with contradicting results. In contrast to Liu et al. (2019b), Wang et al. (2019) found that reduced air and noise pollution mediated the mental health effects of greenness.

419

420 None of the studies explicitly took into account environmental factors such as local climatic421 conditions as a mediating factor impacting on the relationship between greenspaces and mental

422 health, nor did any study draw comparisons between cities in different climate zones. However, 423 the studies were conducted in a variety of climatic conditions. A number of studies from China 424 (8) assessed cities characterised by temperate climate, of which all showed positive relation-425 ships. A large proportion of the studies (17) examined cities in subtropical settings, covering 426 four continents and a range of mental health outcomes. 90% of studies from subtropical cities 427 showed positive relationships. A diversity of studies from arid regions in Latin America and 428 Asia (5) demonstrated that greenspaces can support mental health in such regions. This sug-429 gests that greenspaces can support mental health in temperate, subtropical and arid settings. 430

431 Despite being relatively diverse in geographic distribution, the evidence from tropical LMICs 432 did not indicate a clear relationship between greenspaces and mental health. Four studies took 433 place in tropical regions in Latin America (Brazil, Colombia, Jamaica) and Asia (Bangladesh). 434 While two studies from Latin America reported mental health promoting relationships with 435 greenspaces, a study from Dhaka, Bangladesh, indicated a pathway through which greenspaces 436 may affect mental health negatively under tropical conditions. They suggested that negative 437 links between the presence of vegetation and mental well-being may be partially explained 438 through a fear of risk of infectious diseases, which may occur more frequently in greenspaces 439 in tropical regions (Gruebner et al., 2012). It is important to note that none of the studies ex-440 plored reducing heat exposure as a mediating factor, which would have been of particular in-441 terest in regions characterised by hot climate.

442

Four studies took into account the potential of greenspaces for restoring psychological capacities. Two studies from China found that stress reduction mediated the effects of exposure to greenspaces on depression (Liu et al., 2019a) and on mental well-being (Wang et al., 2019). In contrast to previous findings, Liu et al., (2019b) found no evidence to indicate that stress reduction was a pathway linking greenspaces to mental well-being.

448

Greenspaces may support good mental health through building capacities by encouraging physical activity and facilitating social cohesion (Markevych et al., 2017). In this review, the evidence for the mediating role of physical activity is inconclusive. Physical activity was found to be a significant mediator to increase mental well-being (Aliyas, 2019; Liu et al., 2019a, 2019b; Wang et al., 2019) and to decrease depression (Liu et al., 2019a) in Chinese cities. In contrast, Parra et al.'s (2010) study found that physical activity did not mediate changes in quality of life related to park availability in Colombia. In Mukherjee et al.'s (2017) study, physical activity 456 played no role in reducing depression in India. Two studies found that social cohesion mediated
457 the effects of greenspaces on mental well-being (Liu et al., 2019b; Wang et al., 2019).

458 **3.7. Moderation analysis**

459 Moderation analyses were conducted in nine studies (Table 1). These were classified as either 460 personal (gender) or contextual (safety and crime, pollution, cultural factors) (Marselle et al., 2018). Most studies did not consider the moderating effects of demographic or socio-economic 461 462 factors. Studies from Iran, South Africa and Colombia found that crime levels and perceptions 463 of safety moderated the relationship between greenspaces and mental health. In Tehran, the 464 mental well-being benefits linked with greenspaces were inhibited in areas with higher crime 465 rates; against expectations, no gender differences were observed (Ambrey and Shahni, 2017). 466 In their qualitative study, Adams et al. (2018) found that a lack of safety restricted children's 467 discovery and exploration of greenspaces in Cape Town, thereby inhibiting potentially positive 468 effects. In Bogotá, Parra et al. (2010) and Camargo et al. (2017) found that perceptions of safety 469 in general and on the way to the park moderated the effects of density of parks and park use on 470 quality of life.

471

472 In Dhaka, Bangladesh, Gruebner et al. (2012) assessed the mental well-being of slum dwellers. 473 They found negative links between mental well-being and the presence of vegetation patches. 474 Even though not assessed through moderation analysis, the authors suggest that the mental 475 well-being benefits were inhibited by environmental pollution. Vegetated areas in the slums 476 turned out to be low-lying and regularly flooded areas. Combined with poor sanitation, open 477 wastewater drainage and garbage disposal, these vegetation patches increased the risk for in-478 fectious diseases, with negative repercussions for mental well-being. None of the studies took 479 into account explicitly particular environmental and cultural factors impacting on how people 480 interact with greenspaces, nor did they assess how such factors might moderate beneficial men-481 tal health effects.

482

3.8. Synthesis of qualitative studies

The five studies using qualitative research methods and one mixed methods study documented mostly positive impacts of greenspaces on mental health in LMICs (Table 2). The majority of these were of excellent and good quality, while only one study was of fair quality and one of 486 poor quality. In two cities in China, the parents and caregivers of children with Autism spec-487 trum disorder (ASD) were questioned about the observed benefits of greenspace interactions 488 (Li et al., 2019a). Exposure to greenspaces provided emotional and social benefits to children 489 with ASD. Parents observed that spending time in greenspaces helped children to soothe stress 490 and anxiety.

491

492 Two studies explored how greenspaces can support restoring capacities through psychological 493 restoration and building capacities through encouraging physical activity and facilitating social 494 cohesion. Elderly residents of Pune, India, expressed being able to derive psychological bene-495 fits such as relieving stress, mental peace, and restorative experiences such as feeling fresh and 496 cheerful from visiting urban parks (Gaikwad and Shinde, 2018). Adding to this, spending time 497 in urban parks was considered being an important resource for social interactions and for being 498 physically active. In Isfahan, Iran, a green canal corridor was found to help urban residents to 499 have a more physically active life, to promote a sense of restoration, calmness and concentra-500 tion, as well as to foster social interactions (Vaeztavakoli and Lak, 2018).

501

502 Two studies focusing on informal settlements in Cape Town, South Africa documented posi-503 tive relationships between greenspaces and mental health. Examining the psychological effects 504 of urban agriculture, Olivier and Heinecken (2017) found that cultivation helped women to 505 develop supportive networks that unlock benefits across the personal, social and economic 506 spectrum. Beyond cultivating being an important livelihood strategy, women reported 'getting' 507 joy and fulfilment' from working on their plots. Similarly, another study from Cape Town used 508 photovoice to explore the effects of urban agriculture for people in an informal settlement 509 (Lucke et al., 2019). Informants reported that the act of harvesting made them happy, since it 510 meant they had something to eat or sell. They also experienced a sense of pride from the 511 achievement of growing vegetables. For some, having gardening as a task translated into mean-512 ing of life. Another study focusing on informal settlements in Cape Town, however, docu-513 mented how safety issues can inhibit positive mental health effects of greenspaces. Exploring 514 the meanings children in a low socio-economic status community attached to greenspaces, 515 Adams et al. (2019) found that a lack of safety restricted children's discovery and exploration 516 of greenspaces, thereby inhibiting potentially positive effects on subjective well-being.

518 Table 2: Main characteristics and results of five qualitative and one mixed methods studies addressing 519 greenspaces and mental health in low- and middle-income countries (LMICs).

Study	Objectives	Study loca- tion	Study popu- lation	Methods	Health measures	Measure of green- space	General result
<u>Adams et al.</u> (2018)	Explored chil- dren's con- structions and the meanings they attach to natural spaces and the impact on their sub- jective well- being	Cape Town (1-5m ¹), South Africa (subtropical climate), Up- per-Middle- Income Country	Children from low- SES com- munities, age 13-14, n=32	FGDs, inter- views	Interview themes around child friendly neighbour- hoods and en- vironmental awareness	NA	Children's percep- tion of the natural environment was negative mainly due to safety is- sues (crime)
<u>Gaikwad</u> and Shinde (2018)	Contributed to understanding how neigh- bourhood amenities such as parks relate with active ag- ing	Pune (5- 10m ¹), India (arid climate), Lower-Mid- dle-Income Country	Elderly park visitors, age unspecified, n=20 (inter- views), 6 (FGDs), 31 (survey)	Visitor counts and question- naires, non- participant observation, interviews, FGDs and feedback visitor regis- ter	Themes emerging from qualita- tive data about psychological benefits of in- teracting with greenspaces ⁷	Sampling in-situ, park use	Interactions with greenspaces were associated with stress reduction and attention res- toration
<u>Li et al.</u> (2019)	Investigated whether bene- fits associated with exposure to nature could be observed by parents of chil- dren diagnosed with ASD	Shanghai (>10m ¹) and Yantai (5- 1m), China (subtropical climate), Up- per-Middle- Income Country	Children with autism (ASD) (in- terviews through caregivers, not directly with chil- dren), age 4- 7, n=22	Semi-struc- tured inter- views	Interview question: What are the benefits of visiting green- space to your child? ⁷	"How often does your child go outdoors" and "Is greenspace a part of his or her outdoor ex- perience?"	Most parents (20 out of 22) per- ceived nature vis- its as being helpfu for children to re- lax, promote posi- tive emotions and reduce negative emotions; they also reduced stress and anxiety, but did not help with tantrums
<u>Lucke et al.</u> (2019)	Explored the motivation for, and potential effects of, par- ticipation in a township com- munity garden	Masakhane (<0.3m ¹), South Africa (subtropical climate), Up- per-Middle- Income Country	Township residents at- tending community garden, age 21-57, n=18	Photovoice	Guiding ques- tions handed out with cam- eras, about "how does the garden make you feel?" ⁷	Participa- tion in community gardening	Engagement in gardening activi- ties was motivated by psychological effects such as happiness, pride, self-encourage- ment, meaning of life, feeling of in- dependence and stress reduction
Olivier and <u>Heinecken</u> (2017)	Established how NGO-run urban agricul- ture projects benefit women on the Cape Flats	Cape Town (1-5m ¹), South Africa (subtropical climate), Up- per-Middle- Income Country	Adult agri- cultural cul- tivators, age unspecified, n=59	In-depth in- terviews, FGDs	Intangible so- cial benefits of urban agri- culture ⁷	Participa- tion in ur- ban agri- culture	Participation in ur- ban agriculture provided a sense of accomplish- ment, belonging, fulfilment, relaxa- tion, reconnection to rural roots and increased social capital

(2018)of urban water (arid climate), 15-85 years, canals in phys- Upper-Mid- n=200canals to target users the target users(2018)of urban water (and sin phys- (canals in phys- Upper-Mid- dle-Income15-85 years, target users the target usersthe target users(2018)dle-Income (canals in phys- (canals in	pants thought that the canal contrib- utes to mental health, promotes comfort and relax- ation, sense of safety, sensory richness, relaxa- tion and sense of satisfaction
--	--

520 ¹Urban population in millions

521 **4. Discussion**

522 This scoping review provides novel insights into the relationship between greenspaces and 523 mental health in LMICs. While a large majority of LMICs remain unexplored, we found that 524 eight out of ten studies using validated mental health screening tools detected positive associ-525 ations between greenspaces and one or more mental health outcomes. The findings suggest that 526 greenspaces can generally support mental health in LMICs.

527

528 Regarding positive dimensions of mental health, the evidence indicates that mental well-being 529 and quality of life can be supported by greenspaces in upper-middle-income countries. This 530 supports the evidence from HICs for mental well-being (Houlden et al., 2018) and quality of 531 life (Stigsdotter et al., 2010). For depressive disorders, the evidence is quite strong and indi-532 cates a positive relationship for a diversity of upper-middle-income countries. This confirms 533 the evidence from HICs (Lovell and Maxwell, 2018). However, the relationship remains unex-534 plored in lower-middle and low-income countries. Similarly, the evidence for anxiety disorders 535 indicates that greenspaces may reduce anxiety levels in upper-middle-income countries. Alto-536 gether, the evidence from upper-middle-income countries for the impact of greenspaces on 537 stress, affective states and attention restoration indicates to support the evidence from HICs.

538

4.1. Limitations of the reviewed evidence

A limitation of the evidence is that most studies used cross-sectional designs. In such studies, temporal relationships cannot be established, no conclusions about causality can be drawn (van den Berg et al., 2015) and changes in long-term mental health effects cannot be assessed (Bratman et al., 2019). Moreover, selection bias may have influenced results, particularly for those studies using convenience sampling to recruit study participants.

545 Geographically, the evidence in LMICs begins to cover a diversity of upper-middle-income 546 countries in Asia and Latin America, the regions with the highest urbanisation rates in Asia 547 and Africa, especially lower-middle-income and low-income countries, remain largely unex-548 plored. None of the African studies, for instance, addressed cities outside of South Africa. In-549 formal settlements and slums are the dominant type of settlement in many cities in LMICs 550 (United Nations, 2015). By 2050, up to 3 billion people will be living in informal settlements 551 and slums, mostly in LMICs (Nagendra, 2018). Even though relative numbers of people living 552 in such environments have been decreasing, slums and informal settlements will remain a key 553 urban challenge during the next decades (United Nations, 2015). So far, only few studies have 554 focused on these particular urban settings. Research in LMICs took place overwhelmingly in 555 large cities with a population of more than one million. Limiting research to the largest cities 556 may be problematic, since small to medium-sized cities are growing the fastest and will be the 557 home for a large majority of future urban populations (United Nations, 2014).

558

559 Only a few studies took into account mediating and moderating factors. Therefore, the evidence 560 for the mediating pathways through which greenspaces reduce harm, restore capacities and 561 build capacities for mental health in LMICs remains inconclusive. This is mainly due to the 562 limited number of studies taking into account pathways linking greenspaces and mental health. 563 A further limitation of the evidence is that all five studies taking into account mediating path-564 ways focused on only one country, China.

565

Even though the evidence indicates a positive relationship between greenspaces and multiple mental health outcomes in upper-middle-income countries across temperate, subtropical, arid and tropical regions, none of the studies explicitly tested the impact of different climatic conditions. This gap is further exacerbated through climate change, which poses significant challenges to human health including increased numbers of heat waves, droughts and flooding events (EEA, 2016).

572

A number of the reviewed studies, predominantly those with focus on informal settlements and slums, found negative links between greenspaces and mental health. Negative links were associated with the moderating factors safety (or perception of safety) and environmental pollution (litter, open wastewater drainage) of greenspaces. These results are consistent with previous findings about the importance of such greenspace attributes (McCormack et al., 2010). Indeed, Amano et al. (2018) found that greenspaces were linked with decreased health for residents of 579 economically deprived cities in LMICs. The authors argued that the observed negative links 580 were due to the poor quality of greenspaces in many urban low-income settings, which con-581 trasts to a recent review of the links between greenspaces and general health in LMICs that 582 reported mostly health benefits (Shuvo et al., 2020). Our review is substantially different from 583 Shuvo et al. (2020) in that we focus on mental health specifically and included qualitative 584 studies, which enabled us to identify and review a much higher number of studies and allowed 585 deeper insights into the links between greenspaces and mental health in LMICs. This suggests 586 that greenspaces can generally support mental health in urban low-income settings, unless ben-587 eficial effects are not inhibited by factors such as safety, environmental pollution or other fac-588 tors compromising the quality of greenspaces.

589

Moreover, in biodiverse tropical regions, greenspaces can promote the introduction and survival of vector or host organisms for infectious pathogens such as habitats for mosquitoes and may increase exposure to pollen (Lohmus and Balbus, 2015). Zoonotic disease risk, for instance, is elevated in tropical regions where wildlife biodiversity is high, especially when experiencing land-use changes such as urbanisation (Allen et al., 2017).

595

596 Studies used a variety of approaches to measure greenspace exposure. However, none of the 597 reviewed studies used robust ecological assessments such as ecological surveys. Adding to this, 598 much of the evidence from LMICs treated greenspaces as uniform and lacked appropriate def-599 initions of what was being measured. This is problematic, because recent research from HICs 600 suggests that mental health effects may depend on metrics of biodiversity such as species rich-601 ness and composition or the specific ecological traits of greenspaces (Marselle et al., 2018) and 602 robust ecological assessments of greenspaces are needed to explore these metrics.

603

Some studies relied on participants' perceptions of greenspaces, rather than on objective measures such as measuring exposure through remote sensing or ecological survey techniques. While it is important to take into account perceptions, such studies do not allow drawing conclusions about actual mental health effects. A range of studies used imagery of greenspaces to assess health outcomes. Although using pictures or videos of greenspaces is an accessible way of testing hypotheses and there is some value in using such stated preference methods, these approaches fall short of producing generalisable results.

612 Only two studies investigated the mental health effects of engaging in urban agriculture. Evi-613 dence from HICs has shown that urban agriculture can improve mental well-being, contribute 614 to stress reduction (Hofmann et al., 2018) and foster social cohesion (Yotti Kingsley and 615 Townsend, 2006). The contribution of urban agriculture to mental health might be of particular 616 importance in LMICs through the contributions to food security and improved nutrition out-617 comes (Audate et al., 2019), in particular for low-income urban residents (Orsini et al., 2013). 618 619 A variety of approaches was used to measure mental health outcomes. However, another limi-620 tation of the evidence is that many studies did not use validated mental health screening tools. 621 Using self-developed questionnaires provides only limited insights into mental health benefits, 622 as they do not allow drawing reliable conclusions about specific mental health outcomes. Using 623 validated screening assessment tools, in contrast, enables to produce translatable results to

validated screening assessment tools, in contrast, enables to produce translatable results to compare between populations, as they aim to replicate psychiatric assessment (diagnostic interview) as close as possible (Ali et al., 2016). Such screening tools usually have to undergo cross-cultural translation to be validated for use in different languages and socio-cultural contexts (Kohrt et al., 2016), which may be one of the reasons for their infrequent use in the LMIC context.

629

4.2. Implications for future research

630 The recent expansion of research efforts into LMICs has begun to fill important research gaps. 631 However, the insights these studies provide are limited by the fact that none of the studies 632 explicitly considered local cultural and environmental factors mediating the relationship be-633 tween greenspaces and mental health. So far, research in LMICs has failed to take into account 634 these contextual factors. This will be of particular importance for future studies, because the 635 evidence from this review indicates that the relationship between greenspaces and mental 636 health is context dependent and needs to be assessed for the particular environmental and cul-637 tural setting of a given area. Reductions in heat exposure, for example, may be more important 638 in hot climates than in temperate regions (Guenat et al., 2019). Therefore, more research is 639 needed to explore how greenspaces and mental health are associated across climates, especially 640 as those climates are shifting and urban populations will be exposed to higher temperatures and 641 new threats such as an increase in vector-borne diseases (Müller et al., 2019). Adding to this, 642 the use of greenspaces, and thereby their effects on mental health, can as well be determined 643 by cultural norms (Elands et al., 2019). Mowafi et al. (2012), for instance, did not detect a 644 relationship between the availability of greenspace and physical activity assessed through Body 645 Mass Index in Cairo, Egypt. The authors argued that utilising greenspace for the purpose of 646 exercise is likely not culturally acceptable, especially for women. Taking into account cultural 647 norms will therefore be crucial for understanding how greenspaces can benefit mental health 648 locally. Additionally, future research in LMICs should consider moderating factors such as 649 safety, environmental pollution and other factors compromising the quality of greenspaces. The 650 findings of this review support the Sustainable Development Goal 11 target 7, which aims to 651 provide universal access to urban greenspaces to increase public health.

652

The relationship between greenspaces and mental health in informal settlements and slums is critically understudied and needs to be explored through future research. Sub-Saharan Africa in particular is predicted to undergo the most rapid urbanisation globally over the next decades (Angel et al., 2011). Hence, it will be crucial to research a wide array of its cities. Moreover, research in LMICs should not remain limited to major cities and focus more on smaller towns and cities.

659

660 We found that a lack of appropriate sampling strategies for the population of interest decreased 661 the comparability of the reviewed studies and thus will have to be addressed by further research, 662 in order to reduce selection bias caused by convenience sampling. The quality of future studies 663 could further be increased by conducting more longitudinal studies. Regarding the assessment 664 of greenspaces, it will be crucial for future studies to use robust ecological methods such as 665 ecological surveys to unpick the various components and traits of greenspaces leading to mental health effects, including finer scales of biodiversity such as species richness or ecological 666 667 traits. This will be important for understanding the mechanisms through which greenspaces can 668 support mental health in LMICs. We strongly encourage combining robust ecological assess-669 ments of greenspaces with validated mental health screening tools. Considering the high rele-670 vance of food security in particular for low-income residents in LMICs, we recommend to 671 further explore how urban agriculture affects mental health in these regions.

672 **5.** Conclusions

673 Urbanisation during the coming decades may have profound implications for the mental health
 674 of urban populations in LMICs. The evidence indicates that greenspaces have the potential to
 675 improve the mental health of urban populations in these areas. These benefits, however, may

depend on the particular environmental and cultural conditions in a given area. Our findings highlight the need for high-quality, context specific research in those urban areas with the highest levels of urbanisation, and the need to address specific challenges regarding moderating factors impacting on the quality of greenspaces. This review pointed out important directions for future research in LMICs, ultimately aiming to inform environmental and health policies in cities in LMICs in our rapidly urbanising world.

682 **Declaration of competing interest**

683 We have no conflict of interest.

684 Acknowledgements

- 685 We thank Natalie King for useful discussions that helped to develop the protocol. We are also
- 686 grateful for the valuable comments from the anonymous reviewers on earlier versions of the
- 687 manuscript.

688 6. References

- Academic Unit of Health Economics University of Leeds, 2018. AUHE search strategy: Low and
 middle income countries geographic search.
- Adams, S., Savahl, S., Florence, M., Jackson, K., 2018. Considering the natural environment in the
 creation of child-friendly cities: Implications for children's subjective well-being. Child Indic.
 Res.
- Akpinar, A., 2016. How is high school greenness related to students ' restoration and health? Urban
 For. Urban Green. 16, 1–8. https://doi.org/10.1016/j.ufug.2016.01.007
- Ali, G.C., Ryan, G., De Silva, M.J., 2016. Validated screening tools for common mental disorders in
 low and middle income countries: A systematic review. PLoS One 11, 1–14.
 https://doi.org/10.1371/journal.pone.0156939
- Aliyas, Z., 2019. Physical, mental, and physiological health benefits of green and blue outdoor spaces
 among elderly people. Int. J. Environ. Health Res. 00, 1–12.
 https://doi.org/10.1080/09603123.2019.1681379
- Allen, T., Murray, K.A., Zambrana-torrelio, C., Morse, S.S., Rondinini, C., Marco, M. Di, Breit, N.,
 Olival, K.J., Daszak, P., 2017. Global hotspots and correlates of emerging zoonotic diseases. Nat.
 Commun. 8, 1–10. https://doi.org/10.1038/s41467-017-00923-8
- Amano, T., Butt, I., Peh, K.S.H., 2018. The importance of green spaces to public health: A multi continental analysis. Ecol. Appl. 28, 1473–1480. https://doi.org/10.1002/eap.1748
- Ambrey, C.L., Shahni, T.J., 2017. Greenspace and wellbeing in Tehran: A relationship conditional on
 a neighbourhood's crime rate? Urban For. Urban Green. 27, 155–161.
 https://doi.org/10.1016/j.ufug.2017.08.003
- American Psychiatric Association, 2013. Diagnostic and statistical manual of mental disorders fifth
 edition.
- Angel, S., Parent, J., Civco, D.L., Blei, A., Potere, D., 2011. The dimensions of global urban expansion:
 Estimates and projections for all countries, 2000-2050. Prog. Plann. 75, 53–107.
 https://doi.org/10.1016/j.progress.2011.04.001
- Arksey, H., O'Malley, L., 2005. Scoping studies: Towards a methodological framework. Int. J. Soc.
 Res. Methodol. Theory Pract. 8, 19–32. https://doi.org/10.1080/1364557032000119616
- Audate, P.P., Fernandez, M.A., Cloutier, G., Lebel, A., 2019. Scoping review of the impacts of urban
 agriculture on the determinants of health. BMC Public Health 19, 1–14.
 https://doi.org/10.1186/s12889-019-6885-z
- Barreto, P.A., Lopes, C.S., Silveira, I.H. da, Faerstein, E., Junger, W.L., 2019. Is living near green areas
 beneficial to mental health? Results of the Pró-Saúde Study. Rev. Saude Publica 53, 75.
 https://doi.org/10.11606/s1518-8787.2019053001008
- Barton, J., Rogerson, M., 2017. The importance of greenspace for mental health. BJPsych Int. 14, 79.
 https://doi.org/S2056474000002051 [pii]
- Bojorquez, I., Ojeda-Revah, L., 2018. Urban public parks and mental health in adult women: Mediating
 and moderating factors. Int. J. Soc. Psychatry. https://doi.org/10.1177/0020764018795198

- Botzat, A., Fischer, L.K., Kowarik, I., 2016. Unexploited opportunities in understanding liveable and
 biodiverse cities. A review on urban biodiversity perception and valuation. Glob. Environ. Chang.
 39, 220–233. https://doi.org/10.1016/j.gloenvcha.2016.04.008
- Bowler, D.E., Buyung-Ali, L., Knight, T.M., Pullin, A.S., 2010. Urban greening to cool towns and
 cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 97, 147–155.
 https://doi.org/10.1016/j.landurbplan.2010.05.006
- Bratman, G.N., Anderson, C.B., Berman, M.G., Cochran, B., de Vries, S., Flanders, J., Folke, C.,
 Frumkin, H., Gross, J.J., Hartig, T., Kahn, P.H., Kuo, M., Lawler, J.J., Levin, P.S., Lindahl, T.,
 Meyer-Lindenberg, A., Mitchell, R., Ouyang, Z., Roe, J., Scarlett, L., Smith, J.R., van den Bosch,
 M., Wheeler, B.W., White, M.P., Zheng, H., Daily, G.C., 2019. Nature and mental health: An
 ecosystem service perspective. Sci. Adv. 5, eaax0903. https://doi.org/10.1126/sciadv.aax0903
- Callaghan, A., McCombe, G., Harrold, A., McMeel, C., Mills, G., Moore-Cherry, N., Cullen, W., 2020.
 The impact of green spaces on mental health in urban settings: a scoping review. J. Ment. Heal. 0,
 1–15. https://doi.org/10.1080/09638237.2020.1755027
- 741 Camargo, D.M., Ramirez, P.C., Fermino, R.C., 2017. Individual and environmental correlates to quality 742 Colombia. Environmal Public Heal. of life in park users in Res. 14. 743 https://doi.org/10.3390/ijerph14101250
- Chang, P.J., Lin, Y., Song, R., 2019. Leisure Satisfaction Mediates the Relationships between Leisure
 Settings, Subjective Well-Being, and Depression among Middle-Aged Adults in Urban China.
 Appl. Res. Qual. Life 14, 1001–1017. https://doi.org/10.1007/s11482-018-9630-3
- Clark, N.E., Lovell, R., Wheeler, B.W., Higgins, S.L., Depledge, M.H., Norris, K., 2014. Biodiversity,
 cultural pathways, and human health: A framework. Trends Ecol. Evol. 29, 198–204.
 https://doi.org/10.1016/j.tree.2014.01.009
- Coon, J.T., Boddy, K., Stein, K., Whear, R., Barton, J., Depledge, M.H., 2011. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 45, 1761–1772. https://doi.org/10.1021/es102947t
- Dadvand, P., Nieuwenhuijsen, M.J., Esnaola, M., Forns, J., Basagaña, X., 2015. Green spaces and
 cognitive development in primary schoolchildren 1–6. https://doi.org/10.1073/pnas.1503402112
- 756 Development Assistance Commitee, 2017. DAC list of ODA recipients.
- 757 Dong, H., Qin, B., 2017. Exploring the link between neighborhood environment and mental wellbeing: 758 case Beijing, China. Landsc. 71-80. study in Urban Plan. 164, A 759 https://doi.org/10.1016/j.landurbplan.2017.04.005
- 760
 Dye,
 C.,
 2008.
 Health and urban living.
 Science (80-.).
 319,
 766–769.

 761
 https://doi.org/10.1126/science.1150198
- Dzhambov, A., Dimitrova, D., 2014. Urban green spaces' effectiveness as a psychological buffer for
 the negative health impact of noise pollution: A systematic review. Noise Heal. 16, 157.
 https://doi.org/10.4103/1463-1741.134916
- 765 EEA, 2016. Climate change, impacts and vulnerability in Europe.
- Ekkel, E.D., de Vries, S., 2017. Nearby green space and human health: Evaluating accessibility metrics.
 Landsc. Urban Plan. 157, 214–220. https://doi.org/10.1016/j.landurbplan.2016.06.008

- Fischer, L.K., Gonçalves, P., Haase, D., Kowarik, I., Luz,
 A.C., Niemelä, J., Santos-Reis, M., Wiersum, K.F., 2019. Biocultural diversity: A novel concept
 to assess human-nature interrelations, nature conservation and stewardship in cities. Urban For.
 Urban Green. 40, 29–34. https://doi.org/10.1016/j.ufug.2018.04.006
- Ezeh, A., Oyebode, O., Satterthwaite, D., Chen, Y.F., Ndugwa, R., Sartori, J., Mberu, B., MelendezTorres, G.J., Haregu, T., Watson, S.I., Caiaffa, W., Capon, A., Lilford, R.J., 2017. The history,
 geography, and sociology of slums and the health problems of people who live in slums. Lancet.
 https://doi.org/10.1016/S0140-6736(16)31650-6
- Firdaus, G., Ahmad, A., 2016. Temporal variation in risk factors and prevalence rate of depression in urban population: Does the urban environment play a significant role ? Int. J. Heal. Promot. 3730.
 https://doi.org/10.1080/14623730.2014.931068
- Gaikwad, A., Shinde, K., 2018. Use of parks by older persons and perceived health benefits: A
 developing country context. Cities 0–1. https://doi.org/10.1016/j.cities.2018.08.001
- 781 Galea, S., Vlahov, D., 2005. Handbook of urban health. Populations, Methods, and Practice. Springer.
- Gao, T., Zhang, T., Zhu, L., Gao, Y., Qiu, L., 2019. Exploring psychophysiological restoration and
 individual preference in the different environments based on virtual reality. Int. J. Environ. Res.
 Public Health 16, 1–14. https://doi.org/10.3390/ijerph16173102
- 785 Gascon, M., Mas, M.T., Martínez, D., Dadvand, P., Forns, J., Plasència, A., Nieuwenhuijsen, M.J., 786 2015. Mental health benefits of long-term exposure to residential green and blue spaces: A 787 Environ. Public Health 4354-4379. systematic review. Int. J. Res. 12, 788 https://doi.org/10.3390/ijerph120404354
- Gascon, M., Triguero-Mas, M., Martínez, D., Dadvand, P., Rojas-Rueda, D., Plasència, A.,
 Nieuwenhuijsen, M.J., 2016. Residential green spaces and mortality: A systematic review.
 Environ. Int. 86, 60–67. https://doi.org/10.1016/j.envint.2015.10.013
- Gopalkrishnan, N., 2018. Cultural Diversity and Mental Health: Considerations for Policy and Practice.
 Front. Public Heal. 6, 1–7. https://doi.org/10.3389/fpubh.2018.00179
- Gruebner, O., Khan, M.M.H., Lautenbach, S., Müller, D., Kraemer, A., Lakes, T., Hostert, P., 2011. A
 spatial epidemiological analysis of self-rated mental health in the slums of Dhaka. Int. J. Health
 Geogr. 10, 36. https://doi.org/10.1186/1476-072X-10-36
- Gruebner, O., Khan, M.M.H., Lautenbach, S., Müller, D., Krämer, A., Lakes, T., Hostert, P., 2012.
 Mental health in the slums of Dhaka A geoepidemiological study. BMC Public Health 12, 177. https://doi.org/10.1186/1471-2458-12-177
- Gruebner, O., Rapp, M.A., Adli, M., Kluge, U., Galea, S., Heinz, A., 2017. Cities and mental health.
 Dtsch. Arztebl. Int. 114, 121–127. https://doi.org/10.3238/arztebl.2017.0121
- Guenat, S., Dougill, A.J., Kunin, W.E., Dallimer, M., 2019. Untangling the motivations of different
 stakeholders for urban greenspace conservation in sub-Saharan Africa. Ecosyst. Serv. 36, 100904.
 https://doi.org/10.1016/j.ecoser.2019.100904
- Hartig, T., Mitchell, R., de Vries, S., Frumkin, H., 2014. Nature and Health. Annu. Rev. Public Health.
 https://doi.org/10.1146/annurev-publhealth-032013-182443
- Hassan, A., Tao, J., Li, G., Jiang, M., Aii, L., Zhihui, J., Zongfang, L., Qibing, C., 2018. Effects of
 walking in bamboo forest and city environments on brainwave activity in young adults. Evidence-

- 809 Based Complement. Altern. Med.
- Hayes, A.F., 2017. Fundamentals of moderation analysis, in: Introduction to Mediation, Moderation,
 and Conditional Process Analysis, Second Edition: A Regression-Based Approach. Guilford
 Publications, 2017.
- Hofmann, M., Young, C., Binz, T.M., Baumgartner, M.R., Bauer, N., 2018. Contact to nature benefits
 health: Mixed effectiveness of different mechanisms. Int. J. Environ. Res. Public Health 15.
 https://doi.org/10.3390/ijerph15010031
- Houlden, V., Weich, S., de Albuquerque, J.P., Jarvis, S., Rees, K., 2018. The relationship between
 greenspace and the mental wellbeing of adults: A systematic review. PLoS One.
 https://doi.org/10.1371/journal.pone.0203000
- James, P., Banay, R.F., Hart, J.E., Laden, F., 2015. A review of the health benefits of greenness. Curr.
 Epidemiol. Reports 2, 131–142. https://doi.org/10.3390/nu10030368
- Jennings, V., Bamkole, O., 2019. The relationship between social cohesion and urban green space: An
 avenue for health promotion. Int. J. Environ. Res. Public Health 16.
 https://doi.org/10.3390/ijerph16030452
- Jiang, M., Hassan, A., Chen, Q., Liu, Y., 2019. Effects of different landscape visual stimuli on
 psychophysiological responses in Chinese students. Indoor Built Environ. 0, 1–11.
 https://doi.org/10.1177/1420326X19870578
- Keniger, L.E., Gaston, K.J., Irvine, K.N., Fuller, R.A., 2013. What are the benefits of interacting with
 nature? Int J Env. Res Public Heal. 10, 913–935. https://doi.org/10.3390/ijerph10030913
- Kohrt, B.A., Harper, I., 2008. Navigating diagnoses: Understanding mind-body relations, mental health,
 and stigma in Nepal. Cult. Med. Psychiatry 32.
 https://doi.org/10.1016/j.neuroimage.2013.08.045.The
- Kohrt, B.A., Luitel, N.P., Acharya, P., Jordans, M.J.D., 2016. Detection of depression in low resource
 settings: Validation of the Patient Health Questionnaire (PHQ-9) and cultural concepts of distress
 in Nepal. BMC Psychiatry 16, 1–14. https://doi.org/10.1186/s12888-016-0768-y
- Korn, A., Bolton, S.M., Spencer, B., Alarcon, J.A., Andrews, L., Voss, J.G., 2018. Physical and mental
 health impacts of household gardens in an urban slum in Lima, Peru. Int. J. Environ. Res. Public
 Health 15. https://doi.org/10.3390/ijerph15081751
- Lachowycz, K., Jones, A.P., 2011. Greenspace and obesity: A systematic review of the evidence. Obes.
 Rev. 12, 183–189. https://doi.org/10.1111/j.1467-789X.2010.00827.x
- Li, C., 2014. Ethnicity, culture and park design: Case studies of urban parks in American Chinatowns.
 J. Urban Des. 19, 230–254. https://doi.org/10.1080/13574809.2013.870464
- Li, D., Larsen, L., Yang, Y., Wang, L., Zhai, Y., Sullivan, W.C., 2019a. Exposure to nature for children
 with autism spectrum disorder: Benefits, caveats, and barriers. Heal. Place 55, 71–79.
 https://doi.org/10.1016/j.healthplace.2018.11.005
- Li, D., Zhai, Y., Xiao, Y., Newman, G., De Wang, 2019b. Subtypes of park use and self-reported psychological benefits among older adults: A multilevel latent class analysis approach. Landsc.
 Urban Plan. 190, 103605. https://doi.org/10.1016/j.landurbplan.2019.103605
- 848 Liu, Y., Wang, R., Xiao, Y., Huang, B., Chen, H., Li, Z., 2019a. Exploring the linkage between

- greenness exposure and depression among Chinese people: Mediating roles of physical activity,
 stress and social cohesion and moderating role of urbanicity. Heal. Place 58, 102168.
 https://doi.org/10.1016/j.healthplace.2019.102168
- Liu, Ye, Wang, R., Grekousis, G., Liu, Yuqi, Yuan, Y., Li, Z., 2019b. Neighbourhood greenness and
 mental wellbeing in Guangzhou, China: What are the pathways? Landsc. Urban Plan. 190,
 103602. https://doi.org/10.1016/j.landurbplan.2019.103602
- Lohmus, M., Balbus, J., 2015. Making green infrastructure healthier infrastructure. Infect. Ecol.
 Epidemiol. 5, 30082. https://doi.org/10.3402/iee.v5.30082
- Lovell, R., Maxwell, S., 2018. Health and the natural environment: A review of evidence, policy,
 practice and opportunities for the future.
- Lovell, R., Wheeler, B.W., Higgins, S.L., Irvine, K.N., Depledge, M.H., 2014. A systematic review of
 the health and well-being benefits of biodiverse environments. J. Toxicol. Environ. Heal. Part B
 Crit. Rev. 17, 1–20. https://doi.org/10.1080/10937404.2013.856361
- Lucke, S., Mamo, E., Koenigstorfer, J., 2019. Exploring the meaning of growing food in community
 gardens to South African township residents: A photovoice study. Heal. Place 55, 165–176.
 https://doi.org/10.1016/j.healthplace.2018.11.009
- Lyu, B., Zeng, C., Deng, S., Liu, S., Jiang, M., Li, N., Wei, L., Yu, Y., Chen, Q., 2019. Bamboo forest
 therapy contributes to the regulation of psychological responses. J. For. Res. 24, 61–70.
 https://doi.org/10.1080/13416979.2018.1538492
- Mackinnon, D.P., Fairchild, A.J., Fritz, M.S., 2007. NIH Public Access: Mediation Analysis. Annu Rev
 Psychol. 58, 593–614. https://doi.org/10.1146/annurev.psych.58.110405.085542.Mediation
- Markevych, I., Schoierer, J., Hartig, T., Chudnovsky, A., Hystad, P., Dzhambov, A.M., de Vries, S.,
 Triguero-Mas, M., Brauer, M., Nieuwenhuijsen, M.J., Lupp, G., Richardson, E.A., Astell-Burt,
 T., Dimitrova, D., Feng, X., Sadeh, M., Standl, M., Heinrich, J., Fuertes, E., 2017. Exploring
 pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res.
 158, 301–317. https://doi.org/10.1016/j.envres.2017.06.028
- Marselle, M., Irvine, K.N., Dallimer, M., 2018. Review of the mental health and wellbeing benefits of
 biodiversity.
- Martinez-Soto, J., Gonzales-Santos, L., Barrios, F.A., Montero-López Lena, M.E., 2014. Affective and
 restorative valences for three environmental categories. Percept. Mot. Skills 119, 901–923.
 https://doi.org/10.2466/24.50.PMS.119c29z4
- Martínez-Soto, J., Lena, M.M.L., Vázquez, A.C., 2014. Psychological restoration and urban nature:
 Some mental health implications. Salud Ment. 37, 211–218.
- McCormack, G.R., Rock, M., Toohey, A.M., Hignell, D., 2010. Characteristics of urban parks
 associated with park use and physical activity: A review of qualitative research. Heal. Place 16,
 712–726. https://doi.org/10.1016/j.healthplace.2010.03.003
- McHale, M.R., Bunn, D.N., Pickett, S.T.A., Twine, W., 2013. Urban ecology in a developing world:
 Why advanced socioecological theory needs Africa. Front. Ecol. Environ. 11, 556–564.
 https://doi.org/10.1890/120157
- McPhearson, T., Pickett, S.T.A., Grimm, N.B., Niemelä, J., Alberti, M., Elmqvist, T., Weber, C., Haase,
 D., Breuste, J., Qureshi, S., 2016. Advancing urban ecology toward a science of cities. Bioscience.

- 890 https://doi.org/10.1093/biosci/biw002
- Memari, S., Pazhouhanfar, M., Nourtaghani, A., 2017. Relationship between perceived sensory
 dimensions and stress restoration in care settings. Urban For. Urban Green. 26, 104–113.
 https://doi.org/10.1016/j.ufug.2017.06.003
- Meyer-Lindenberg, A., 2014. Social neuroscience and mechanisms of risk for mental disorders. World
 Psychiatry. https://doi.org/10.1002/wps.20121
- Mowafi, M., Khadr, Z., Bennett, G., Hill, A., Kawachi, I., Subramanian, S. V., 2012. Is access to
 neighborhood green space associated with BMI among Egyptians? A multilevel study of Cairo
 neighborhoods. Heal. Place 18, 385–390. https://doi.org/10.1016/j.healthplace.2011.12.002
- Mukherjee, D., Safraj, S., Tayyab, M., Shivashankar, R., Patel, S.A., Narayanan, G., Ajay, V.S., Ali,
 M.K., Narayan, K.V., Tandon, N., Prabhakaran, D., 2017. Park availability and major depression
 in individuals with chronic conditions: Is there an association in urban India? Heal. Place 47, 54–
 62. https://doi.org/10.1016/j.healthplace.2017.07.004
- Müller, R., Reuss, F., Kendrovski, V., Montag, D., 2019. Vector-Borne Diseases, in: Marselle, M.R.,
 Stadler, J., Korn, H., Irvine, K.N., Bonn, A. (Eds.), Biodiversity and Health in the Face of Climate
 Change. Springer International Publishing, Cham, pp. 67–90. https://doi.org/10.1007/978-3-03002318-8 4
- Mullings, J.A., McCaw-Binns, A.M., Archer, C., Wilks, R., 2013. Gender differences in the effects of
 urban neighborhood on depressive symptoms in Jamaica. Rev. Panam. Salud Publica/Pan Am. J.
 Public Heal. 34, 385–392.
- 910 Nagendra, H., 2018. The global south is rich in sustainability lessons. Nature 557, 485–488.
 911 https://doi.org/10.1038/d41586-018-05210-0
- Olivier, D.W., Heinecken, L., 2017. Beyond food security: women's experiences of urban agriculture
 in Cape Town. Agric. Human Values 34, 743–755. https://doi.org/10.1007/s10460-017-9773-0
- Orsini, F., Kahane, R., Nono-Womdim, R., Gianquinto, G., 2013. Urban agriculture in the developing
 world: A review. Agron. Sustain. Dev. 33, 695–720. https://doi.org/10.1007/s13593-013-0143-z
- 916 Özgüner, H., 2011. Cultural differences in attitudes towards urban parks and green spaces. Landsc. Res.
 917 36, 599–620. https://doi.org/10.1080/01426397.2011.560474
- Parra, D.C., Gomez, L.F., Sarmiento, O.L., Buchner, D., Brownson, R., Schimd, T., Gomez, V., Lobelo,
 F., 2010. Perceived and objective neighborhood environment attributes and health related quality
 of life among the elderly in Bogotá, Colombia. Soc. Sci. Med. 70, 1070–1076.
 https://doi.org/10.1016/j.socscimed.2009.12.024
- Pett, T.J., Shwartz, A., Irvine, K.N., Dallimer, M., Davies, Z.G., 2016. Unpacking the peoplebiodiversity paradox: A conceptual framework. Bioscience 66, 576–583.
 https://doi.org/10.1093/biosci/biw036
- Rehm, J., Shield, K.D., 2019. Global Burden of Disease and the Impact of Mental and Addictive
 Disorders. Curr. Psychiatry Rep. 21. https://doi.org/10.1007/s11920-019-0997-0
- Roberts, H., van Lissa, C., Hagedoorn, P., Kellar, I., Helbich, M., 2019. The effect of short-term exposure to the natural environment on depressive mood: A systematic review and meta-analysis.
 Environ. Res. 108606. https://doi.org/10.1016/j.envres.2019.108606

- 930 Scopelliti, M., Carrus, G., Adinolfi, C., Suarez, G., Colangelo, G., Lafortezza, R., Panno, A., Sanesi, 931 G., 2016. Staying in touch with nature and well-being in different income groups: The experience 932 of urban parks in Bogotá. Landsc. Urban Plan. 148, 139–148. 933 https://doi.org/10.1016/j.landurbplan.2015.11.002
- 934 Selin, H., 2003. Nature across cultures.
- Shagdarsuren, T., Nakamura, K., Mccay, L., 2017. Association between perceived neighborhood
 environment and health of middle-aged women living in rapidly changing urban Mongolia.
 Environ. Health Prev. Med. 1–11. https://doi.org/10.1186/s12199-017-0659-y
- Shuvo, F.K., Feng, X., Akaraci, S., Astell-Burt, T., 2020. Urban green space and health in low and
 middle-income countries: A critical review. Urban For. Urban Green. 52, 126662.
 https://doi.org/10.1016/j.ufug.2020.126662
- 941 Smyth, R., Nielsen, I., Zhai, Q., Liu, T., Liu, Y., Tang, C., Wang, Zhihong, Wang, Zuxiang, Zhang, J., 942 2011. A study of the impact of environmental surroundings on personal well-being in urban China 943 Popul. multi-item well-being indicator. Environ. using а 32, 353-375. 944 https://doi.org/10.1007/s11111-010-0123-z
- Soga, M., Gaston, K.J., 2016. Extinction of experience: The loss of human-nature interactions. Front.
 Ecol. Environ. 14, 94–101. https://doi.org/10.1002/fee.1225
- Stigsdotter, U.K., Randrup, T.B., Ekholm, O., Schipperijn, J., Toftager, M., Kamper-Jørgensen, F.,
 2010. Health promoting outdoor environments Associations between green space, and health,
 health-related quality of life and stress based on a Danish national representative survey. Scand.
 J. Public Health 38, 411–417. https://doi.org/10.1177/1403494810367468
- Subbaraman, R., Nolan, L.B., Shitole, T., Sawant, K., Shitole, S., Sood, K., Nanarkar, M., Ghannam,
 J., Bloom, D.E., Patil-Deshmukh, A., 2014. The psychological toll of slum living an assessment
 of mental health, disability, and slum-related adversities in Mumbai, India. Lancet Glob. Heal. 2,
 S26. https://doi.org/10.1016/S2214-109X(15)70048-3
- 955 The Joint Commission, 2020. Specifications Manual for Joint Commission National Quality Measures.
- Tomita, A., Vandormael, A.M., Cuadros, D., Minin, E. Di, Heikinheimo, V., Tanser, F., Slotow, R.,
 Burns, J.K., 2017. Green environment and incident depression in South Africa: a geospatial
 analysis and mental health implications in a resource-limited setting. Lancet Planet. Heal. 1, 152–
 162. https://doi.org/10.1016/S2542-5196(17)30063-3
- Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K., Colquhoun, H., Levac, D., Moher, D., Peters, M.D.J.,
 Horsley, T., Weeks, L., Hempel, S., Akl, E.A., Chang, C., McGowan, J., Stewart, L., Hartling, L.,
 Aldcroft, A., Wilson, M.G., Garritty, C., Lewin, S., Godfrey, C.M., Macdonald, M.T., Langlois,
 E. V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö., Straus, S.E., 2018. PRISMA
 Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med.
 169, 467. https://doi.org/10.7326/m18-0850
- Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., James, P., 2007.
 Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81, 167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001
- 969 United Nations, 2019. The 2030 Agenda for Sustainable Development. https://doi.org/10.1201/b20466 970 7
- 971 United Nations, 2016. Habitat III issue papers. Informal settlements, Habitat III Issue Papers.

- 972 https://doi.org/http://dx.doi.org/10.3402/gha.v5i0.19065
- 973 United Nations, 2015. Slum Almanac. Tracking improvement in the lives of slum dwellers.
- 974 United Nations, 2014. World urbanization prospects.
- Vaeztavakoli, A., Lak, A., 2018. Blue and green spaces as therapeutic landscapes: Health effects of
 urban water canal areas of Isfahan. Sustainability 10. https://doi.org/10.3390/su10114010
- van den Berg, M., Wendel-Vos, W., van Poppel, M., Kemper, H., van Mechelen, W., Maas, J., 2015.
 Health benefits of green spaces in the living environment: A systematic review of epidemiological studies. Urban For. Urban Green. 14, 806–816. https://doi.org/10.1016/j.ufug.2015.07.008
- Viswanath, B., Chaturvedi, S.K., 2012. Cultural aspects of major mental disorders: A critical review
 from an Indian perspective. Indian J. Psychol. Med. https://doi.org/10.4103/0253-7176.108193
- 982 Vujcic, M., Tomicevic-Dubljevic, J., 2018. Urban forest benefits to the younger population: The case 983 of the city of Belgrade, Serbia. For. Policy Econ. study 96, 54-62. 984 https://doi.org/10.1016/j.forpol.2018.08.006
- Vujcic, M., Tomicevic-Dubljevic, J., Grbic, M., Lecic-Tosevski, D., 2017. Nature based solution for
 improving mental health and well-being in urban areas. Environ. Res. 158, 385–392.
 https://doi.org/10.1016/j.envres.2017.06.030
- Wang, R., Helbich, M., Yao, Y., Zhang, J., Liu, P., Yuan, Y., Liu, Y., 2019. Urban greenery and mental
 wellbeing in adults: Cross-sectional mediation analyses on multiple pathways across different
 greenery measures. Environ. Res. 176, 108535. https://doi.org/10.1016/j.envres.2019.108535
- Wang, X., Rodiek, S., Wu, C., Chen, Y., Li, Y., 2016. Stress recovery and restorative effects of viewing
 different urban park scenes in Shanghai, China. Urban For. Urban Green. 15, 112–122.
 https://doi.org/10.1016/j.ufug.2015.12.003
- Wendelboe-Nelson, C., Kelly, S., Kennedy, M., Cherrie, J.W., 2019. A scoping review of mapping
 research on green space and associated mental health benefits. Int. J. Environ. Res. Public Health
 16. https://doi.org/10.3390/ijerph16122081
- White, M.P., Alcock, I., Wheeler, B.W., Depledge, M.H., 2013. Would you be happier living in a
 greener urban area? A fixed-effects analysis of panel data. Psychol. Sci. 24, 920–928.
 https://doi.org/10.1177/0956797612464659
- 1000World Health Organisation, 2014. Mental health: A state of wellbeing. [WWW Document].1001https://www.who.int/features/factfiles/mental_health/en/.URL1002https://www.who.int/features/factfiles/mental_health/en/URL
- Yotti Kingsley, J., Townsend, M., 2006. 'Dig in' to social capital: Community gardens as mechanisms
 for growing urban social connectedness. Urban Policy Res. 24, 525–537.
 https://doi.org/10.1080/08111140601035200
- 1006 Zhang, S., Zhao, X., Zeng, Z., Qiu, X., 2019. The influence of audio-visual interactions on psychological responses of young people in urban green areas: A case study in two parks in China.
 1008 Int. J. Environ. Res. Public Health 16. https://doi.org/10.3390/ijerph16101845
- 1009Zhao, J., Xu, W., Ye, L., 2018. Effects of auditory-visual combinations on perceived restorative1010potential of urban green space. Appl. Acoust. 141. https://doi.org/10.1016/j.apacoust.2018.07.001